
sensors

Article

Efficient Depth Enhancement Using a Combination of
Color and Depth Information

Kyungjae Lee, Yuseok Ban and Sangyoun Lee *

Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
kjaelee@yonsei.ac.kr (K.L.); van@yonsei.ac.kr (Y.B.)
* Correspondence: syleee@yonsei.ac.kr; Tel.: + 82-2-2123-5768

Received: 30 April 2017; Accepted: 26 June 2017; Published: 1 July 2017

Abstract: Studies on depth images containing three-dimensional information have been performed
for many practical applications. However, the depth images acquired from depth sensors have
inherent problems, such as missing values and noisy boundaries. These problems significantly affect
the performance of applications that use a depth image as their input. This paper describes a depth
enhancement algorithm based on a combination of color and depth information. To fill depth holes
and recover object shapes, asynchronous cellular automata with neighborhood distance maps are
used. Image segmentation and a weighted linear combination of spatial filtering algorithms are
applied to extract object regions and fill disocclusion in the object regions. Experimental results on
both real-world and public datasets show that the proposed method enhances the quality of the
depth image with low computational complexity, outperforming conventional methods on a number
of metrics. Furthermore, to verify the performance of the proposed method, we present stereoscopic
images generated by the enhanced depth image to illustrate the improvement in quality.

Keywords: depth enhancement; depth recovery; hole filling; image segmentation; RGB-D sensor

1. Introduction

RGB-D sensors are used to identify color and depth simultaneously in real time. With the
development of low-cost commercial RGB-D sensors such as Kinect and PrimeSense, computer vision
technologies utilizing depth images or color and depth images have been used to develop many vision
applications such as object tracking [1,2], pose estimation [3–5] for human-computer interaction (HCI),
3D modeling [6–8] and video surveillance [9–11].

The practical use of depth information is recognized as a key technology for many three-dimensional
multimedia applications. Over the years, researchers have attempted to develop technologies that generate
a high-quality three-dimensional view. Using depth information, high-quality three-dimensional images
can be generated in the form of a stereoscopic image, which provides the necessary sense of reality [12].
Accordingly, extensive multimedia research based on depth information has been conducted, such as
depth image-based rendering (DIBR) [12,13], free-viewpoint television (FTV) [14,15], augmented reality
(AR) [16], virtual reality (VR) [17] and mixed reality (MR) [18].

However, depth sensors that rely on infrared laser light with a speckle pattern (e.g., the Kinect
sensor) suffer from missing or inaccurate depth information. These problems are caused by the
incorrect matching of infrared patterns and a positional difference between the internal infrared
sensors. Incorrect pattern matching yields numerous errors, such as optical noise, loss of depth values
and flickering. Moreover, the different positions of the depth sensor, which is composed of an infrared
projector and camera [19], mean that the rear regions may be occluded by the front object, making it
difficult for depth information to be measured. In particular, there can be much noise around the object
shape, as shown in Figure 1. The result is low-quality depth information, which makes it difficult

Sensors 2017, 17, 1544; doi:10.3390/s17071544 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17071544
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1544 2 of 27

to utilize the computer vision technologies [20–22]. For this reason, enhanced depth information is
urgently required for applications.

(a) (b) (c)

Figure 1. (a) The initial depth image; (b) the depth image with a colored marker; (c) the depth image
overlaid with the color image with a colored marker. (The depth images are normalized and aligned
with the color images. Blue, green and red markers indicate the first, second and third cases introduced
in Section 2, respectively, and the black regions represent missing depth values.)

A number of methods for enhancing the quality of depth information and overcoming the
limitations of depth sensors have been proposed. Matyunin et al. [23] suggested an algorithm that uses
color and motion information derived from the image sequences to fill occlusion regions of the depth
image and improve the temporal stability. This algorithm can make depth images more stable, rectify
errors and smooth the image. The confidence metric for motion vectors, spatial proximity and occlusion
is highly dependent on the depth image. Fu et al. [24] proposed a divisive normalized bilateral filtering
method that is a modification of the method proposed in [25], filling up the depth holes in the spatial
domain and reducing the noise in the temporal domain. However, this approach leads to a blurry
depth image and has a high computational cost. Joint bilateral-based methods, such as joint bilateral
filter [26], joint bilateral upsampling [27] and weighted mode filtering [28], aim to improve the quality
of the depth image by utilizing an aligned color and depth image. In these methods, the color image
is used as a guide while the edges are preserved. Unfortunately, these methods frequently yield
blurring effects and artifacts around boundaries in regions with large holes. Chan et al. [29] presented
a noise-aware filtering method that enhances the quality and resolution of the depth image using
an adaptive multi-lateral upsampling filter. However, this approach must be implemented on a GPU
for real-time performance, and the parameters in the heuristic model must be set manually. Le et al. [30]
suggested a directional joint bilateral filtering scheme based on [26]. This method fills the holes and
suppresses the noise in the depth image using an adaptive directional filter that is adjusted on the
basis of the edge direction of a color image. Although the directional joint bilateral filter performs
well if the depth hole regions are located near the object boundaries, it is only applicable to four

Sensors 2017, 17, 1544 3 of 27

cases described by the edge directions. Lin et al. [31] proposed a method based on inpainting [32]
for removing artifacts and padding the occlusions in a depth image. This approach is designed to
inpaint the removed regions in a color image by assigning a priority to pixel locations and filling the
removed regions based on these priorities. Though this method can eliminate depth noise and temporal
variations and smooth inaccurate depth values, the processed depth values are changed from their
original values. The computation time remains a problem for real-time applications. Gong et al. [33]
incorporated guidance information from an aligned color image for depth inpainting by extending
the inpainting model and the propagation strategy of the fast marching method [34]. This method
reconstructs unknown regions simply but efficiently from the surrounding areas without additional
information. However, this approach cannot convey texture information in the holes. Despite all efforts,
these methods are time consuming and deliver blurry results, especially when the depth hole area
is large.

To extract the object regions, many image segmentation techniques based on color information
have been developed [35–39]. However, these methods suffer from challenging issues concerning
illumination variations, shadows, and complex textures. RGB-D sensors have been employed to solve
the problems of color-based image segmentation methods, because depth information is less affected
by these issues, even if an image has shadows or complex textures [10]. One of the first approaches
based on the fusion of color and depth information was developed by Gordon et al. [40], who presented
the background model using an approximation of a 4D Gaussian mixture. Using a unimodal
approximation, each image pixel is classified as foreground when the background exists in fewer
sequences. However, the background model does not provide the correct fit when the background is
dynamic and has various values per pixel. Schiller and Koch [41] proposed an object segmentation
method by combining the segmentation of depth measurements with segmentation in the color
domain using adaptive background mixture of Gaussian (MoG) models. To determine the depth
reliability, the authors concluded that the amplitude information provided by the ToF camera is more
effective than the depth variance. Fernandez-Sanchez et al. [9] generalized the background subtraction
algorithm by fusing color and depth information based on a Codebook-based model [42]. In this
method, the depth information is considered as the fourth channel of the codebook, and provides the
bias for the foreground based on color information. This approach was extended [10] by building a late
fusion mask technique based on morphological reconstruction to reduce the noise of the disparity
estimated by stereo vision. Camplani and Salgado [43] suggested an efficient combination of classifiers
based on a weighted average. One of the classifiers is based on the color features and the other is
based on the depth feature, and the support of each classifier in the ensemble is adaptively modified
by considering the foreground detected in the previous sequences and the edges of the color and
depth images. del Blanco et al. [11] developed a Bayesian network using a background subtraction
method based on [43] to distinguish foreground and background regions from depth sequence images.
This method takes advantage of a spatial estimation model and an algorithm for predicting the
changes of foreground depth distribution. However, many of these approaches are designed for video
surveillance and require image sequence pairs. Moreover, the segmentation results still contain much
noise in the foreground and background.

In this paper, we propose a high-performance, low-complexity algorithm based on color and depth
information by using asynchronous cellular automata with neighborhood distance maps. Our approach
aims to fill the missing depth holes and recover inaccurate object shapes in depth images. The proposed
cellular automata-based depth recovery covers whole regions of the inaccurate and noisy depth image.
Moreover, a weighted linear combination of spatial filtering algorithms is utilized to fill the inner
depth holes in the object. Considering that humans are more sensitive to objects in an image than
to its background [44], we focus on depth holes in the object regions. In general, depth hole filling
methods based on color information utilize the color values of pixels that have a valid depth value
to fill the neighboring depth holes. These methods fill the depth holes by calculating color-metric
distances between the color pixel corresponding to the depth hole and the color pixels having a

Sensors 2017, 17, 1544 4 of 27

valid depth value. However, if the depth values of the reference pixels are inaccurate because of
inherent depth sensor issues (e.g., misaligned color and depth values around the hand, as depicted in
Figure 1c, top row), there is a high risk of incorrect depth values filling in the hole regions. To minimize
this risk, we design a weighted linear combination of spatial filtering algorithms by reflecting the
characteristics of the depth holes in the object (e.g., the blue and green markers in Figure 1). In this
algorithm, depth information from the rear regions is used to fill the inner holes. To extract the object
depth regions, we introduce an image segmentation algorithm using the connectivity values in the
depth domain.

The remainder of this paper is organized as follows. Section 2 describes the proposed method in
detail, including an introduction to image segmentation based on the depth domain, the procedure
for filling inner depth holes in an object, and the recovery of a depth image. Section 3 presents our
experimental results, and Section 4 states the conclusions from this research.

2. Proposed Methodology

In this section, we propose a method to enhance depth images using both color and depth
information. The central premise is based on using a color image that has a relatively high resolution
and more image information, such as texture and colors, than the depth image. The proposed
calculations on the color image are intended to enhance the depth quality.

The problems with the images captured by depth sensors are as follows:

• Intermittent gaps in depth values in object regions, mainly because of reflections on the surface of
the object (blue areas in Figure 1).

• Depth information of the rear regions cannot be estimated because the different positions of
internal sensors in the depth sensor cause the front object to interfere with the depth measurement
(green markers in Figure 1).

• Inaccuracies in the shape of objects compared to the actual scene. The depth value of an actual object
consists of the object depth value (correct), background depth value (incorrect), and a missing
depth value (incorrect) (red areas in Figure 1 show the inaccurate object boundaries).

In this study, we define an inner hole as the region with a missing depth value on account of gaps
and interference from front objects, as stated above. Missing depth values are also called depth holes.
To solve the problems of gaps and interference, inner holes are filled by a weighted linear combination
of spatial filtering algorithms. In the case of shape inaccuracies, color and depth information is used to
fill depth holes and recover the object shape. Our approach has three phases: image acquisition and
preprocessing, image segmentation and weighted linear combination of spatial filtering, and depth
recovery by asynchronous cellular automata (see Figure 2). In the first phase, the color and depth
sensors are calibrated for the aligned color and depth image, and the depth image is filtered for the
next phases. A morphological operation and spatial filtering are used to reduce and stabilize the depth
noise. In the second phase, each object of the depth image is labeled according to the distribution,
distance, and connectivity of depth values to separate the object regions and background. The inner
holes in the object regions are filled using a weighted linear combination from the spatial filtering
framework. The object and background depth regions are reduced using the morphological operation
to recover accurate depth information in the next phase. The final phase uses a depth recovery
algorithm to fill the remaining depth holes and refine the object boundary in the depth image. Details
are explained in the following subsections.

Sensors 2017, 17, 1544 5 of 27

Object Detection Coordinate Transformation

Connected Component Labeling

Object
Depth Regions

GrowFill

Color Image Depth Image

Prepocessing

Sensor Calibration

Weighted Linear Combination
of Spatial Filtering

Image Acquisition
and Preprocessing

Color Space Conversion
Depth Recovery
by Asynchronous

Cellular Automata

Image Segmentation
and Weighted Linear

Combination of
Spatial Filtering

Background
Depth Regions

Morphological Operation

Figure 2. Flowchart of the proposed method.

2.1. Image Acquisition and Preprocessing

A color and depth image pair is acquired from the RGB-D sensor. As mentioned above, the image
captured by the depth sensor contains noise, which may have an undesirable effect on the next phases.
Hence, depth noise is reduced to stabilize the depth image.

To align the color and depth images, the color and depth sensors are calibrated using the camera
geometrical model and calibration formulation [45]. Real depth values obtained from the depth sensor
are normalized to the 8-bit range {0, 255}, as shown in Figure 3b. The normalized depth values are
utilized for object segmentation.

(a)

𝑍𝐵

𝑍𝐴

𝐷𝑁

255

0

(b)

Figure 3. Aligned (a) color and (b) depth image pair. The depth images are normalized to DN (between
0 and 255).

Sensors 2017, 17, 1544 6 of 27

Equation (1) for the linear quantization of depth is implemented as the pixel value set to zero
if the real depth value is less than ZA, and the pixel value set to 255 if the real depth value higher
than ZB.

DN(i, j) =


0, if Z(i, j) < ZA

255
(

Z(i,j)−ZA
ZB−ZA

)
, if ZA ≤ Z(i, j) ≤ ZB

255, if Z(i, j) > ZB

(1)

where Z(i, j) and DN(i, j) are the real and eight-bit normalized depth values, respectively; i and j are
the indices of the pixels in the depth image. ZA and ZB are the minimum (near) and maximum (far)
real depth values, respectively. ZA and ZB are set within the reliable measurement range specified
for the depth sensor. In this study, we set ZA = 0.4 m and ZB = 3 m in accordance with the Kinect
specifications [46]. Thus, quantization darkens the near real depth values and brightens the far real
depth values. Zero values represent missing depth values or real depth values of less than ZA.

Morphological operations and a median filter are used to stabilize the initial depth image
according to Equation (2). Before using the median filter, erosion is employed to reduce the size
of the object regions. The median filter is then applied to smooth the image. Finally, a dilation process
restores the object regions to their original size.

D = median (DN 	 A)⊕ B (2)

where 	 and ⊕ denote erosion by pixel set A and dilation by pixel set B, respectively. D is the stabilized
result of the normalized depth image (DN). The preprocessing steps of erosion, median filtering,
and dilation have the advantages of reducing the noise and smoothing the boundaries of objects in the
depth image without changing their size. Furthermore, the size of depth regions can be reduced by
changing the kernel size of the morphological operation when the object regions in the depth image
exceed the boundary of the corresponding object in the color image.

2.2. Image Segmentation and Weighted Linear Combination of Spatial Filtering

First, the x-y pixel coordinates of the depth image are transformed into x-D coordinates by
projecting all pixels in the pixel coordinate system onto the x-D coordinate system. Subsequently,
a morphological operation is applied to connect neighboring valid points, and adjacent points on the
transformed depth image are clustered by applying the connected component labeling algorithm [47].
The object regions in the depth domain are extracted by using an object detection method in the visual
image. As a result, we can discriminate between the object and the background, and a weighted linear
combination of spatial filtering algorithms is used to fill the inner depth holes in the object regions.
A detailed explanation is provided in the following subsections.

Figure 4 shows the flowchart of a coordinate transformation and image segmentation for a depth
image. In this section, x and y denote the horizontal and vertical axes of the 2D pixel coordinates; Z
and D indicate the real and normalized depth axes, respectively; and X is the horizontal axis of the 3D
world coordinates.

Sensors 2017, 17, 1544 7 of 27

x-D coordinates
depth image

Apply morphological closing

x-y coordinates
depth image

x-y coordinates
visual image

Compute connected component labeling

x-D coordinates
labeled depth image

Detect object (visual)

Object position (x,y)

Get D value using
object position (x,y)

Select object labeled component

Object D value Object x value

Re-project on x-y coordinates

x-D coordinates
object depth regions

x-y coordinates
depth image

x-y coordinates object depth regions

Project on x-D coordinates

Transform coordinates of depth image

Figure 4. Flowchart for coordinate transformation and image segmentation process.

2.2.1. Coordinate Transformation of Depth Image

Each pixel of the color image (e.g., RGB color space) represents color information from the red,
green, and blue channels, whereas each pixel of the depth image represents only depth information.
This depth information can be transformed to another depth-based coordinate system. By using the D
information instead of the information of y axis in x-y coordinates (Figure 5a), a new two-dimensional
image can be represented with x and D domains as shown in Figure 5b, in which its pixel values
represent accumulated D values on each column of x axis of the x-y coordinates. Accordingly, a depth
image with x-D coordinates represents the three-dimensional information viewed from a top view.
The x-D coordinate system of the depth image is useful for analysis because each object has similar
depth values, which helps in the clustering of various objects and backgrounds.

x

y

640 0

480

(a)

x

D

0 640

255

(b)

X
0 2m 2m

Z
3m

0m Bin size: 1cm×1cm

(c)

Figure 5. Depth image of (a) x-y coordinates; (b) x-D coordinates; and (c) X-Z coordinates; (b,c) are
binarized; and (c) is normalized from mm to cm for visualization.

Sensors 2017, 17, 1544 8 of 27

The advantage of the x-D coordinate system (Figure 5b) over the X-Z coordinate system (Figure 5c)
is that the x-D system produces salient objects from the normalized depth information. In addition, the
sharing of the x axis allows us to project and re-project the images between x-y and x-D coordinates
more easily than with X-Z coordinates.

2.2.2. Image Segmentation in Depth Domain

To extract object regions that have connective pixels in terms of their normalized depth values and
locations, a connected component labeling algorithm is applied to the depth image in x-D coordinates.
Figure 5b shows that the pixels of each object are close together. The morphological operation of
closing is performed to reinforce the connectivity of the objects.

After closing the depth image in x-D coordinates, the connected components are labeled. Figure 6a
shows an example of the connected component labeling. In this figure, the labeled objects are marked
in different colors, wherein the values of the pixels are binarized. To extract one of the labeled objects
as described in Figure 6a, object detection is applied to the color image. In this study, a pre-trained
object detector [48] based on [49] is employed. From this object detection method, we obtain the
depth value by using the detected position (x,y). This approach facilitates object selection that matches
the detected location (indicated by the circle in Figure 6b) by being projected on the depth image in
x-D coordinates. After object selection in x-D coordinates, we extract the object regions (Figure 7b)
in the x-y coordinates by re-projecting the x-D coordinates information onto the depth image in x-y
coordinates. Other regions are considered to be the background (Figure 7c).

(a) (b)

Figure 6. (a) Connected component labeling result (each colored marker involves discriminating
objects); (b) result of object selection (circle indicates detected position).

(a) (b) (c)

Figure 7. (a) Labeled depth image (colored markers correspond to connected component labeling
results in Figure 6a); Extracted (b) object and (c) background regions of the depth image
in x-y coordinates.

Sensors 2017, 17, 1544 9 of 27

2.2.3. Weighted Linear Combination of Spatial Filtering for Inner Hole Filling

Depth sensors cannot measure depth information in regions of shadow and in the background.
Regions of shadow are generally caused by objects in front, which is a geometrical limitation of
depth sensors. These sensors consist of an infrared projector and an infrared camera at different
positions. Accordingly, the different views of these compositions inevitably create problems such
as inner holes on the boundary between the front and rear regions (the green areas in Figure 1b,c).
Moreover, technical issues with depth sensors generate noise, i.e., reflection errors on a surface in
which depth values cannot be measured (the blue areas in Figure 1b,c). To solve these problems, we
propose a weighted linear combination of spatial filtering algorithms. The weighted linear combination
is composed of the weighted sum of two terms, one related to the depth information of segmented
depth regions and the other related to the depth information in the vicinity of inner holes, as shown
in Equation (3).

H = α×mean(Zseg) + β× ZN

N = argmax(Zn)
n∈k

(3)

where H denotes inner hole pixels and Z is a real depth value. Zseg denotes pixels in segmented depth
regions. α and β are the weights of each term, with α + β = 1. n indicates the searching mask size of
surrounding pixels at the inner hole and k is the index of n. α, β and n are empirically determined
according to the problem being considered.

From the mean real depth value of segmented depth regions and the maximum (far) real depth
value of surrounding inner holes, the inner holes in the segmented regions are filled using the above
equation. To compute real depth information, the equation uses real depth values. The mean depth
value of the segmented depth regions is used to balance the depth biases of the holes, and the maximum
real depth value surrounding the inner hole is used to account for depth similarities in the rear regions.
Inner holes in the rear regions are mainly caused by the front objects. Hence, the depth values of the
front regions are not considered. Therefore, the mean depth value of the segmented depth regions
reflects global properties of the segmented depth regions, and the maximum real value reflects local
properties of inner holes in the segmented regions.

2.3. Depth Recovery by Asynchronous Cellular Automata

To fill the depth holes and recover depth information for distorted object shapes in a depth
image (the red areas in Figure 1b,c), we propose a depth recovery method inspired by [36] based on
cellular automata [50]. Cellular automata are described by a triplet A = (S, N, δ) that reflects a discrete
model in both space and time. For each cell, S indicates the state set and N is the neighborhood
system, which is defined as the relationship between the specified cell and the surrounding cells
(the von Neumann neighborhood (4-connected) or Moore neighborhood (8-connected) is generally
used). δ indicates a local transition function that defines the rules for calculating the next state of each
cell. The next state is determined from the current state of the cell and its neighboring cells.

In our proposal, asynchronous cellular automata (ACA) are applied. The ACA change states
immediately, regardless of the processing steps, to reduce the number of iterations and computation
time. In contrast, synchronous cellular automata (SCA) maintain their current states until the operation
of the current step has been completed, and then change states simultaneously before the next step
starts. The maximum strength value is given to pixels that have depth values. Conversely, pixels in
depth holes are assigned the minimum strength value. These pixels are filled by taking advantage
of the feature vectors given by the pixel values in a given color space, strength values of these pixels,
and the transition function. The feature vectors of an input image do not change at all times. Therefore,
it is unnecessary to repeatedly calculate the distance between the feature vectors of the current cell and
its neighboring cells in every step. Finally, we change the RGB color space to the Lab color space to

Sensors 2017, 17, 1544 10 of 27

improve the performance of the algorithm. The pixel values represented in a given color space are
considered as feature vectors. The details are explained in the following subsections.

2.3.1. Asynchronous Cellular Automata

In an SCA system, all cells have the same state during the computation in each step. When a local
transition function is applied to all cells in the current step, the states are updated simultaneously
before the next step starts. Therefore, the states of time t and time t + 1 are independent of each other.
In other words, the result of the local transition at time t has no effect on other cells at the same time.

In the ACA system applied in the proposed method, however, the states change immediately
when the local transition function is computed. The results of this local transition have an effect
on the other cells, regardless of the step. Thus, an algorithm that spreads the state of the cell to the
neighborhood can be efficiently represented by ACA. Using ACA in place of SCA reduces the number
of iterations, and thus the computation time.

In this study, we adopted a vertical scan order as shown in Figures 8 and 9. Figure 8 illustrates
the cell evolution steps given by SCA. The current defender (colored yellow and marked X in Figure 8)
does not change state until the current time step has been completed, although the defender has
been conquered by the attacker and will be changed to the attacker’s state. The defenders’ states are
updated simultaneously at the end of the current time. For instance, although the empty cells will
be changed by the attackers, the empty state cells are not changed in the current time and have no
effect on neighboring cells, as shown in Figure 8. In contrast, the current defender (colored yellow and
marked X in Figure 9) changes state immediately when conquered by the attacker in the ACA system.
The empty state cells immediately affect the neighboring cells when the state has changed, as shown in
Figure 9, which illustrates the cell evolution under ACA. Comparing Figure 8 with Figure 9, the result
that requires three steps for SCA takes only one step for ACA.

X

X

X

X

X
⋯ t

(a)

X

X

X

X

X
⋯ t + 1

(b)

X

X

X

X

X
⋯ t + 2

(c)

Figure 8. Cell evolution steps by SCA. (a) is at time t; (b) is at time t+ 1; and (c) is at time t+ 2. The first
column shows the initial cell state at the time. (The area in yellow marked X indicates the current
defender and the red arrow is the direction of attack on the defender by its neighboring cell, represented
as the attacker. The rectangular areas in red and yellow indicate that the cell state has changed.)

Sensors 2017, 17, 1544 11 of 27

X

X

X

X

X
⋯ t

Figure 9. Cell evolution step by ACA. The first column is the initial cell state at time t. (The yellow
marker denoted as X indicates the current defender and the red arrow is the direction of attack by its
neighboring cell, represented as the attacker. The rectangular areas in red indicate that the cell state
has changed.)

2.3.2. Depth Recovery by Cellular Automata

To estimate a depth value and refine an object shape, we focus on the strength and feature vectors
of cells. The cellular space P is defined by the image and each pixel is considered as a cell. For each cell
p in P, the cell state Sp has four terms (dp, ~Cp, θp, bp), where dp is a depth value, ~Cp is a feature vector,
θp is a strength, and bp is a Boolean flag. The depth value dp, strength θp, and flag bp are defined by the
depth image. The feature vector Cp is defined by the color image. We assume that θp ∈ [0, 1]. If cell p
has a valid depth value, then θp is set to the maximum value of 1 and bp is set to true. If cell p has
an invalid depth value, θp and bp are set to zero and false, respectively. The Boolean flag bp indicates
whether cell p has any depth value on the input depth image.

Algorithm 1 (Lines 6–28) depicts the entire process of the depth recovery method. To explain
our method using a biological metaphor, a bacterium p (attacker) attacks its neighboring
bacteria N(p) (defenders) using an attack force. The attack force is defined by the product of the
strength θp of the attacker and the value obtained from Equation (4), expressed as follows [36].

g(x) = 1− x

max
∥∥∥~C∥∥∥

2

(4)

in which x is the distance value between the feature vectors of attacker ~Cp and defender ~Cq as the
output of Equation (7), and ~C is the feature vector. The function g(x) is a monotonously decreasing
function with a minimum value of zero and a maximum value of one.

Sensors 2017, 17, 1544 12 of 27

Algorithm 1 Depth recovery by asynchronous cellular automata.

Input: color image: Ic 3 ~C; depth image: Id 3 d;
Output: enhanced depth image: Id 3 d;
Initialize: condition flag: k← true;

1: for ∀p ∈ P do
2: for ∀q ∈ N(P) do

3:
−−−→
NDMp,q ← g(

∥∥∥ ~Cp − ~Cq

∥∥∥
2
);

4: end for
5: end for
6: for ∀p ∈ P do
7: if dp 6= 0 then
8: θp ← 1;
9: bp ← true;

10: else
11: θp ← 0;
12: bp ← f alse;
13: end if
14: end for
15: while k = true do
16: k← f alse;
17: for ∀p ∈ P do
18: if bp 6= true then
19: for ∀q ∈ N(p) do

20: if
−−−→
NDMp,q · θq > θp then

21: dp ← dq;

22: θp ←
−−−→
NDMp,q · θq;

23: k← true;
24: end if
25: end for
26: end if
27: end for
28: end while

If the attack force is greater than the strength θq of the defender, the depth value dq and the
strength θq of the defender are replaced by the attacker’s depth value dp and the attack force,
respectively. When the replaced bacteria attack their neighboring defenders, they use the changed
values immediately, regardless of the step. Only those bacteria that have a false flag (bp = f alse) are
repeatedly attacked. These operations are repeated until there is no change in the state of the cells.
In this iterative process, the holes are filled by spreading the bacteria. For this reason, we called this
method “GrowFill”. The computational complexity of GrowFill is O(snk), where s is the number of
invalid pixels in the input depth image, n is the size of the neighborhood system, and k is the number
of iterations.

Sensors 2017, 17, 1544 13 of 27

2.3.3. Neighborhood Distance Map

The steps involved in calculating the evolution of automata are continuously processed until the
stable condition is reached. Equation (5) calculates the Euclidean distance between the feature vector
of the current cell p and that of its neighboring cell q:∥∥∥ ~Cp − ~Cq

∥∥∥
2
=
√
(Rp − Rq)

2 + (Gp − Gq)
2 + (Bp − Bq)

2 (5)

where ~C is the feature vector of a specific pixel, which includes visual information. If the RGB color
space is used for the feature vector, R, G, and B are the values of the red, green, and blue channels,
respectively, as described in Equation (5). p is the pixel indicating the current cell and q is a pixel in the
neighborhood of p.

The feature vector is indicated by pixel information from a color image. When the algorithm
is executed, however, the feature vectors do not change until the end. The color image is a hard
constraint, because the visual information does not change while the algorithm is being processed.
Hence, the distance calculated between two feature vectors does not change, and there is no need
to repeat the distance calculations at every step. Therefore, the neighborhood distance map can be
generated before entering the automata evolution steps and used to find the necessary distances.

−−−→
NDMp,q = g(

∥∥∥ ~Cp − ~Cq

∥∥∥
2
) = 1− ‖

~Cp−~Cq‖2
max‖~C‖2

(6)

in which
−−−→
NDMp,q is the neighborhood distance map (NDM). NDMs are generated before starting the

evolution steps in Algorithm 1 (Lines 1–5). After the NDMs have been generated, they are used in
every iterative step (Algorithm 1 (Lines 15–28)). As a result, during the operation of the algorithm,
Equation (6) is not calculated in each iteration process.

2.3.4. Lab Color Space

The RGB color space is commonly used to calculate the color-metric distance between feature
vectors. Although the RGB color space is designed for hardware-oriented systems and is convenient
for representing colors, it is not useful for object specification and recognition [51] and is not similar
to the human perception of colors [52]. In contrast, the Lab color space is known to give a good
representation of human color perception and is widely used for the evaluation of color differences
and color matching systems [51]. Therefore, we use the Lab color space in the proposed algorithm.

Equation (7) is used to calculate the distance between feature vectors in our method.∥∥∥ ~Cp − ~Cq

∥∥∥
2
=
√
(Lp − Lq)

2 + (ap − aq)
2 + (bp − bq)

2 (7)

where ~C is a feature vector and L · a · b denotes the L, a, and b channel values. p is the pixel indicating
the current cell, and q is a pixel in the neighborhood of p.

3. Experiments and Discussion

To validate our proposed method, we conducted a series of experiments on real-world Kinect
datasets and the Tsukuba Stereo Dataset [53,54]. For the real-world datasets, we captured color and
depth image pairs using the Kinect and obtained a public Kinect dataset [9,43,55]. The experimental
results have been compared with state-of-the-art methods. All experiments were conducted on
a desktop computer with Intel i7-3770 3.4 GHz and 16 GB RAM.

The experiments were as follows:

• Object segmentation (quantitative and qualitative evaluations).
• Inner hole filling (qualitative evaluation).
• Depth recovery (quantitative and qualitative evaluations).

Sensors 2017, 17, 1544 14 of 27

• ACA, NDMs, and Lab color space on the proposed method (quantitative evaluation).
• Enhanced depth images and a practical application of the proposed method.

We evaluated the performance of the object segmentation method with Fernandez’s Kinect
dataset [9] and compared our method with the mixture of Gaussians based on color and depth
(MOG4D) [41], the codebook [42] based on depth (CB1D) and based on color and depth (CB4D), and
the depth-extended codebook (DECB) [9].

To evaluate the results, the following measures are used:

• True positive (TP): the sum of foreground classified as foreground.
• True negative (TN): the sum of background classified as background.
• False positive (FP): the sum of background misclassified as foreground.
• False negative (FN): the sum of foreground misclassified as background.
• Precision (P): the proportion of TP and the total classified as foreground, P = TP

TP+FP .
• Recall (R): the proportion of TP and the ground truth, R = TP

TP+FN .

• F1 score: the harmonic mean of precision and recall, F1 = 2 · P·R
P+R .

F1 ranges from 0–1, with higher values indicating better performance.
Fernandez’s Kinect dataset [9] provides image pairs including color, depth, and ground truth

images for the foreground. As our proposed method focuses on single object, five different image pairs
(Wall #93, Hallway #120, Chair Box #278 and #286, Shelves #197) were selected for the quantitative
and qualitative tests. Following the literature, we compare the results reported in [9], as shown in
Table 1 and Figure 10. A pre-trained body [56] and hand [57] detector were used as the object detector
in our algorithm.

Table 1. Quantitative evaluation results using Fernandez’s Kinect dataset. Red text indicates the best,
and green text indicates the second best F1 score. MOG, mixture of Gaussians; CB, codebook; DECB,
depth-extended codebook.

Wall Hallway Chair Box Shelves Global

Method # 93 # 120 # 278 # 286 # 197 Mean Std

MOG4D 0.406 0.424 0.883 0.865 0.927 0.701 0.262
CB1D 0.927 0.791 0.904 0.904 0.897 0.885 0.054
CB4D 0.843 0.606 0.936 0.907 0.855 0.829 0.131
DECB 0.966 0.782 0.937 0.928 0.926 0.908 0.072
Ours 0.930 0.800 0.907 0.911 0.950 0.900 0.058

Sensors 2017, 17, 1544 15 of 27

•

• \

. ... 111. ··--·· -
ll ·- •

- -

... $z ?"'_

• I

(a) (b) (c) (d) (e)

Figure 10. Experimental results using Fernandez’s Kinect dataset ((a–e) indicate Wall #93; Hallway
#120; Chair Box #278, #286; Shelves #197, respectively). Rows 1–3 are the color images, depth images,
and ground truth, respectively. Rows 4–8 present the results given by MOG4D, CB1D, CB4D, DECB,
and the proposed method, respectively.

Sensors 2017, 17, 1544 16 of 27

Table 1 presents the F1 scores. Our method outperforms MOG4D, CB1D, and CB4D, and has
very similar performance to DECB. From Figure 10, we can observe that all the compared methods
generate much noise on the whole image. The DECB results, which give an average F1 score that
is 0.008 higher than that of our method, also contain much more noise than the image given by our
algorithm. In particular, none of the compared methods can extract object regions that have the depth
values of the depth image, as shown in Figure 10e. As the results are used for the following depth
recovery algorithms, all the depth regions of the object should be extracted. Otherwise, the actual
depth information may be distorted. In addition, when a region with no assigned depth is generated
as a segmentation result, the region cannot be estimated in the following algorithms. The purpose
of the segmentation at this stage is to extract only the object regions that have actual depth values
to fill depth holes or manipulate the object boundary to recover depth values. Therefore, the object
segmentation results should be object-oriented and the noise level should be low. Our method is best
suited for this purpose.

The following describes the performance of the inner hole filling methods, as shown in Figure 11.
To evaluate the performance of inner hole filling, we collected color and depth image pairs acquired by
the Kinect sensor in an indoor environment. As in Figure 11e, inner holes exist in the rear object (body)
as a result of the front object (hand) in the segmented regions. The results of inner hole filling by the
proposed method are compared to those of five previous methods: flood-fill based on morphological
reconstruction [58], Navier–Stokes-based inpainting [59], fast marching inpainting [34], joint bilateral
filtering [26], and guided depth inpainting followed by guided filtering [33]. We set n = 23, α = 0.3,
and β = 0.7 in Equation (3) for the proposed method, and set the radius value to 11, σd = 2, and σc = 10
for the methods in [26,33,34,59], as per the values recommended in [33].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. (a,e) are the segmented depth regions and masking region indicating inner depth holes,
respectively; The others show the experimental results of the inner hole filling methods; (b) method
based on [58]; (c) method in [59]; (d) method in [34]; (f) method in [26]; (g) method in [33]; (h) proposed
method. (The contrast of the depth images has been adjusted for visualization.)

From the results of the methods in [26,33,34,59], we can easily observe that the depth values in
the inner holes are filled by the depth values of both front and rear objects idirectionally, so that the
filled regions are blurred and have incorrect depth values. The methods in [26,33] use both the color
and depth images. In these methods, the hole regions of the rear object are affected by the front depth
values when the inner holes are filled based on color information. This is because the limitations of the
depth sensor cause the depth and color regions of the object to be imprecisely matched. In the case
of [34,59], which use only depth information, the blur effect is inevitable because the information on
the boundary is initially unknown. In contrast, the method based on [58] and the proposed method fill

Sensors 2017, 17, 1544 17 of 27

the holes without spreading the depth values of the front object or blurring the output. The difference
is that the method based on [58] fills the holes with the same depth value per hole, which results
in a dissimilarity between the filled and actual depth values, whereas the proposed method fills
the holes with similar depth values to the actual depth values. The proposed method considers the
characteristics of the inner holes and fills them with similar depth values as the rear object without
expanding the depth values of the front object. As a result, the proposed method gives the best results
among all the methods compared in this experiment.

To evaluate the GrowFill values given by the proposed method, we used the Tsukuba Stereo
Dataset. This dataset provides a total of 1800 image pairs including color, ground truth depth
(disparity), and occlusion images. The experiments were conducted using both the color images
and occluded depth images. The occluded depth images are generated by excluding the occlusion
regions from the ground truth depth. In the dataset, all image pairs are based on the right camera,
and the color images are illuminated in daylight. We compared our method with the techniques
developed by Telea [34], Lin [31], and Gong [33]. The results of Lin’s method [31] are reported
in the corresponding paper. Unless specified otherwise, the neighborhood system of our method
was implemented with Moore’s system. The numerical results are evaluated in terms of the peak
signal-to-noise ratio (PSNR) [60] in decibels (dB), the structural similarity (SSIM) [61] against the
ground truth, and the runtime in seconds (s). The runtime is averaged over 10 repeated experiments
of our implementation in the C language. Ten different image pairs (frame numbers 1, 214, 291, 347,
459, 481, 509, 525, 715 and 991) were selected [31] and both quantitative and qualitative tests were
performed. Figure 12 presents the visual results of the qualitative evaluation, and Table 2 and Figure 13
illustrate the results of the quantitative evaluation. The results obtained from each method show that
the proposed method gives better performance than the previous techniques on both the quantitative
and qualitative evaluations. The proposed method gives the best performance in all but two cases
in the quantitative evaluation results. Frame number 214 (PSNR of Gong’s method [33] is 0.425 dB
higher than that of the proposed method) and frame number 525 (SSIM of Gong’s method [33] is
about 0.002 higher than that of the proposed method). In particular, the proposed method is the
fastest among those compared here for all selected datasets. On average, for the selected dataset,
the proposed method improves the PSNR by 10.898 dB, whereas the methods of Telea [34], Lin [31],
and Gong [33] produce improvements of 6.627 dB, 6.772 dB, and 9.620 dB, respectively. Our method
improves the SSIM value by 0.126, compared with enhancements of 0.116, 0.105, and 0.124, respectively,
for the other approaches. The average runtime of the proposed method is 0.118 s, faster than that
of Telea’s method [34] (0.187 s) and Gong’s method [33] (0.615 s), and considerably quicker than
Lin’s method [31] (12.543 s).

Table 2. Quantitative evaluation results on the selected Tsukuba Stereo Dataset. Red text indicates the
best, and green text indicates the second best performance. PSNR, peak signal-to-noise ratio; SSIM,
structural similarity.

Frame
Depth Image Telea [34] Lin [31] Gong [33] Proposed Method

PSNR SSIM PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

001 27.659 0.843 30.912 0.962 0.188 32.036 0.950 13.125 32.579 0.971 0.663 33.314 0.975 0.127
214 22.824 0.827 28.138 0.973 0.209 28.141 0.969 14.833 28.657 0.976 0.643 28.232 0.977 0.065
291 26.972 0.838 37.056 0.976 0.198 37.665 0.970 17.013 39.590 0.982 0.679 40.730 0.985 0.118
347 26.549 0.833 31.699 0.971 0.218 32.343 0.942 13.666 35.435 0.982 0.691 37.177 0.986 0.181
459 31.920 0.897 37.222 0.980 0.149 38.480 0.977 8.858 42.535 0.989 0.507 45.723 0.992 0.066
481 29.272 0.854 37.192 0.978 0.206 37.488 0.970 14.389 39.944 0.982 0.634 40.691 0.986 0.143
509 27.038 0.808 29.132 0.951 0.264 30.120 0.933 18.415 33.096 0.967 0.818 33.299 0.972 0.163
525 20.006 0.832 23.665 0.940 0.198 24.044 0.916 12.270 25.731 0.950 0.692 25.732 0.948 0.191
715 29.665 0.902 46.269 0.995 0.136 43.772 0.993 7.555 48.984 0.995 0.417 50.255 0.996 0.067
991 32.781 0.921 39.666 0.988 0.107 38.312 0.981 5.309 44.331 0.992 0.402 48.511 0.996 0.056

Mean 27.468 0.855 34.095 0.971 0.187 34.240 0.960 12.543 37.088 0.979 0.615 38.366 0.981 0.118

Sensors 2017, 17, 1544 18 of 27

(a) (b) (c) (d) (e) (f) (g)

Figure 12. Experimental results using the Tsukuba Stereo Dataset (# 001; # 214; # 291; # 347; # 459;
481; # 509; # 525; # 715; # 991). (a–c) are the color, ground truth of depth, and depth images,
respectively; (d) is the method in [34]; (e) is the method in [31]; (f) is the method in [33]; and (g) is the
proposed method.

Sensors 2017, 17, 1544 19 of 27

0 0 1 # 2 1 4 # 2 9 1 # 3 4 7 # 4 5 9 # 4 8 1 # 5 0 9 # 5 2 5 # 7 1 5 # 9 9 1 M e a n

2 0

2 5

3 0

3 5

4 0

4 5

5 0

F r a m e

PS
NR

 (d
B)

 D e p t h I m a g e
 T e l e a [3 4]
 L i n [3 1]
 G o n g [3 3]
 P r o p o s e d M e t h o d

(a)

0 0 1 # 2 1 4 # 2 9 1 # 3 4 7 # 4 5 9 # 4 8 1 # 5 0 9 # 5 2 5 # 7 1 5 # 9 9 1 M e a n

0 . 8

0 . 9

1 . 0

F r a m e

SS
IM

 D e p t h I m a g e
 T e l e a [3 4]
 L i n [3 1]
 G o n g [3 3]
 P r o p o s e d M e t h o d

(b)

0 0 1 # 2 1 4 # 2 9 1 # 3 4 7 # 4 5 9 # 4 8 1 # 5 0 9 # 5 2 5 # 7 1 5 # 9 9 1 M e a n
0 . 0

0 . 5

1 . 0
6
8

1 0
1 2
1 4
1 6
1 8
2 0

F r a m e

Tim
e (s

ec)

 T e l e a [3 4]
 L i n [3 1]
 G o n g [3 3]
 P r o p o s e d M e t h o d

(c)

Figure 13. Comparison of (a) PSNR; (b) SSIM; and (c) running time on the selected Tsukuba Stereo Dataset.

Table 3 presents the experimental results using the entire Tsukuba Stereo Dataset. In this experiment,
the proposed method was compared with the methods of Telea [34] and Gong [33], which represent
the fastest and best performing methods among those compared in the previous experiments,
respectively. Additionally, we implemented the proposed method with both the Moore and von
Neumann neighborhood systems. It is clear that the proposed method outperforms the compared
methods. On average, for the entire dataset, the proposed method with the Moore and von Neumann
neighborhood systems improves the PSNR by 14.485 dB and 14.067 dB and enhances the SSIM value
by 0.116 and 0.115 in 0.138 s and 0.057 s, respectively. The methods of Telea [34] and Gong [33] improve
the PSNR by 10.691 dB and 13.298 dB and the SSIM value by 0.109 and 0.114 in 0.117 s and 0.544 s,
respectively. In particular, the proposed method with Moore’s neighborhood system achieves the best
results in terms of PSNR and SSIM, and the proposed method with the von Neumann neighborhood
system is the fastest. From these results, we observe that the proposed method performs best among
all compared methods, regardless of the neighborhood system used.

Table 3. Quantitative evaluation results using the Tsukuba Stereo Dataset. The best performance is
highlighted in bold.

Method
Mean

PSNR SSIM Time

Depth Image 26.762 0.871 -

Telea [34] 37.453 0.980 0.117
Gong [33] 40.060 0.985 0.544

Ours (von Neumann) 40.829 0.986 0.057
Ours (Moore) 41.247 0.987 0.138

In addition, we compared the performance of the internal algorithms of the proposed method
(GrowFill) to verify the effects of the ACA and the NDM. Tables 4 and 5 present the quantitative
results for both SCA- and ACA-based methods with Moore’s neighborhood system on the selected
Tsukuba Stereo Dataset, respectively. In the experiments, the NDM of our method was compared with
the skipping method (SKP) suggested in [62] to reduce the computational cost. We can see that the
PSNR, SSIM, and number of iterations of the algorithms did not deteriorate with the SKP or NDM
schemes. However, the runtime is reduced by using the schemes. The pure ACA-based method is
about 4.4 times faster than the pure SCA-based method. Nonetheless, the proposed method based
on ACA combined with NDM is about 1.3-times faster than the pure ACA-based method, and there
is no fall-off in quality. As a result, the proposed method (ACA + NDM) is about six-times faster
than the pure SCA-based method. The method based on ACA combined with SKP is slower than the
pure ACA-based method, although the method based on SCA combined with SKP is faster than the
pure SCA-based method. From these results, we can observe that SKP works faster based on SCA,

Sensors 2017, 17, 1544 20 of 27

not on the ACA. In the ACA-based experiments, the method with NDM is about 1.4-times faster than
the ACA-based method with SKP. Figure 14 compares the runtimes of each internal algorithm. In all
cases, the ACA-based methods are faster than the SCA-based methods. Further, the proposed method
(ACA + NDM) is the fastest. The results in the tables show that the pure ACA-based method requires
only one-third of the number of iterations in the SCA-based method under the same experimental
conditions. Note that the runtime can only be reduced by reducing the number of iterations. In the
Appendix A, the results obtained with the von Neumann neighborhood system are described in detail.

0 0 1 # 2 1 4 # 2 9 1 # 3 4 7 # 4 5 9 # 4 8 1 # 5 0 9 # 5 2 5 # 7 1 5 # 9 9 1 M e a n
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

F r a m e

Tim
e (s

ec)

 S C A
 S C A + S K P
 S C A + N D M
 A C A
 A C A + S K P
 A C A + N D M

Figure 14. Comparison of runtimes using the selected Tsukuba Stereo Dataset.

Table 4. Quantitative evaluation results for comparing internal algorithms of the ACA-based method
on the selected Tsukuba Stereo Dataset. The best performance is highlighted in bold. SCA, synchronous
cellular automata; SKP, skipping method; NDM, neighborhood distance map.

Frame

PSNR SSIM Iterations Time

SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA
+ SKP + NDM + SKP + NDM + SKP + NDM + SKP + NDM

001 33.313 33.313 33.313 0.975 0.975 0.975 118 118 118 0.602 0.493 0.513
214 28.232 28.232 28.232 0.977 0.977 0.977 131 131 131 0.615 0.503 0.538
291 40.730 40.730 40.730 0.985 0.985 0.985 142 142 142 0.712 0.579 0.624
347 37.173 37.173 37.173 0.986 0.986 0.986 147 147 147 0.748 0.603 0.637
459 45.783 45.783 45.783 0.993 0.993 0.993 89 89 89 0.351 0.292 0.305
481 40.693 40.693 40.693 0.986 0.986 0.986 211 211 211 0.993 0.824 0.874
509 33.299 33.299 33.299 0.972 0.972 0.972 164 164 164 0.949 0.778 0.810
525 25.732 25.732 25.732 0.948 0.948 0.948 254 254 254 1.361 1.111 1.174
715 49.491 49.491 49.491 0.996 0.996 0.996 130 130 130 0.454 0.353 0.434
991 48.516 48.516 48.516 0.996 0.996 0.996 88 88 88 0.308 0.255 0.274

Mean 38.296 38.296 38.296 0.981 0.981 0.981 147.4 147.4 147.4 0.709 0.579 0.619

Table 5. Quantitative evaluation results for comparing internal algorithms of the proposed method on
the selected Tsukuba Stereo Dataset. The best performance is highlighted in bold. ACA, asynchronous
cellular automata.

Frame

PSNR SSIM Iterations Time

ACA ACA ACA ACA SCA ACA ACA ACA ACA ACA ACA ACA
+ SKP + NDM + SKP + NDM + SKP + NDM + SKP + NDM

001 33.314 33.314 33.314 0.975 0.975 0.975 50 50 50 0.178 0.181 0.127
214 28.232 28.232 28.232 0.977 0.977 0.977 26 26 26 0.088 0.090 0.065
291 40.730 40.730 40.730 0.985 0.985 0.985 44 44 44 0.158 0.160 0.118
347 37.177 37.177 37.177 0.986 0.986 0.986 68 68 68 0.242 0.248 0.181
459 45.723 45.723 45.723 0.992 0.992 0.992 37 37 37 0.097 0.098 0.066
481 40.691 40.691 40.691 0.986 0.986 0.986 60 60 60 0.198 0.203 0.143
509 33.299 33.299 33.299 0.972 0.972 0.972 51 51 51 0.219 0.224 0.163
525 25.732 25.732 25.732 0.948 0.948 0.948 66 66 66 0.255 0.262 0.191
715 50.255 50.255 50.255 0.996 0.996 0.996 38 38 38 0.084 0.084 0.067
991 48.511 48.511 48.511 0.996 0.996 0.996 39 39 39 0.085 0.085 0.056

Mean 38.366 38.366 38.366 0.981 0.981 0.981 47.9 47.9 47.9 0.160 0.164 0.118

Sensors 2017, 17, 1544 21 of 27

Table 6 compares the internal algorithms of our method with the Moore and von Neumann
neighborhood systems on the entire Tsukuba Stereo Dataset. We can see that the proposed method
(ACA + NDM) with the Moore and von Neumann neighborhood system is about 6.5 and 8 times
faster than the pure SCA-based method, though the PSNR decreases slightly (by about 0.09 and
0.105 dB, respectively).

Table 6. Quantitative evaluation results for comparing internal algorithms of the proposed method
on the entire Tsukuba Stereo Dataset. Left and right tables show the results using the Moore and von
Neumann systems, respectively. The best computation times are highlighted in bold.

Moore Mean von Neumann Mean

Method PSNR SSIM Iterations Time Method PSNR SSIM Iterations Time

Depth Image 26.762 0.871 - - Depth Image 26.762 0.871 - -

SCA 41.337 0.987 197.7 0.902 SCA 40.934 0.986 153.1 0.467
ACA 41.247 0.987 59.4 0.186 ACA 40.829 0.986 51.0 0.095

SCA + SKP 41.337 0.987 197.7 0.714 SCA + SKP 40.934 0.986 153.1 0.401
ACA + SKP 41.247 0.987 59.4 0.189 ACA + SKP 40.829 0.986 51.0 0.097
SCA + NDM 41.337 0.987 197.7 0.798 SCA + NDM 40.934 0.986 153.1 0.412
ACA + NDM 41.247 0.987 59.4 0.138 ACA + NDM 40.829 0.986 51.0 0.057

The results of the comparison between the RGB and Lab color spaces are presented in Table 7. The
experiments show that the PSNR and SSIM performance is improved, and the number of iterations
and runtime are decreased, by transforming from the RGB to Lab color space. Thus, the change of
color space is an effective means of improving the performance of the algorithm.

Table 7. Comparison of quantitative evaluation results for color space on the entire Tsukuba Stereo
Dataset. The best performance is highlighted in bold.

Method
Mean

PSNR SSIM Iterations Time

Depth Image 26.762 0.871 - -

SCA (RGB) 41.290 0.986 211.6 0.978
SCA (Lab) 41.337 0.987 197.7 0.902

ACA + NDM (RGB) 41.198 0.986 63.4 0.150
ACA + NDM (Lab) 41.247 0.987 59.4 0.138

Finally, we conducted experiments on the real-world dataset [43,55] and our own dataset to verify
the effectiveness of our enhancement method. For the depth normalization, we set ZA = 0.4 m and
ZB = 3 m (near range) for our data and ZA = 0.8 m and ZB = 4 m (default range) for the dataset
in [43,55]. The extracted object (Figure 15c) and background (Figure 15d) regions were utilized to
recover accurate depth information around the object. By taking advantage of the extracted object
regions and morphological operations, depth regions around the object were set as the estimable
regions in the GrowFill. The yellow marker in Figure 15e indicates the original depth holes. The red
and orange markers in Figure 15e indicate the expanded depth holes by using the morphological
operations on the object and background regions, respectively. The disk-shaped kernels with r = 6
for the object and r = 3 for the background regions were used in the morphology. The reason for
expanding the depth hole is to recover the correct depth information by removing the incorrect depth
information in the original depth image as shown in Figure 16, top row, in which the color regions
indicate the corresponding object depth regions and it can be noticed that the background also appears
in the object depth regions. Figure 15f shows the enhanced depth image processed by the proposed
method using Figure 15e as the input image, from which we can easily observe that the quality of

Sensors 2017, 17, 1544 22 of 27

the depth image has improved compared with the original depth images (Figure 15b). In particular,
not only are the depth values of the depth images complete but the object boundaries have also been
clearly recovered. The enhanced depth images (Figure 16, bottom row) shows that the object shape is
more accurate than the original depth images (Figure 16, top row). In addition, the results in Figure 17
were obtained by applying the DIBR technique to generate stereoscopic images with background
pixel extrapolation on newly exposed regions after 3D image warping. Figure 17b shows the visual
enhancement given by the proposed method.

(a) (b) (c) (d) (e) (f)

Figure 15. Examples of depth enhancement using the proposed method. (a,b) are the color and original
depth images, respectively; (c,d) are the object and background depth regions obtained by the proposed
method, respectively; (f) shows the enhanced depth images obtained by the GrowFill algorithm using
(e) as the input depth image; the yellow marker in (e) indicates the original depth holes; red and
orange markers in (e) show the expanded regions by using the morphological operations based on
(c,d), respectively.

Figure 16. The synthesized object image by using the object depth regions. Top row is based on the
original depth image (Figure 15b). Bottom row is based on the enhanced depth images (Figure 15f).

Sensors 2017, 17, 1544 23 of 27

(a) (b)
Figure 17. Comparison of the quality of the stereoscopic images. (a,b) are generated using original and
enhanced depth images by the proposed method, respectively.

4. Conclusions

The main goal of this study was to enhance the quality of depth efficiently. To achieve this goal,
a new depth enhancement approach has been introduced. The proposed method consists of an image
segmentation algorithm to extract object regions and a weighted linear combination of spatial filtering
algorithms. For inner holes, the characteristics of the hole regions inside the object regions were
considered, and for other hole regions, an ACA-based depth recovery algorithm was combined with
NDMs. Compared with the initial depth image, our experimental results on the Tsukuba Stereo Dataset
show an improvement of 14.485 dB in PSNR and 0.116 in SSIM with Moore’s neighborhood system with
an average runtime of only 0.138 s. With the von Neumann neighborhood system, our method achieves
improvements of 14.067 dB in PSNR and 0.115 in SSIM in 0.057 s. Comparative experiments show
that our method outperforms all compared approaches in terms of both quantitative and qualitative
evaluations. Moreover, through experiments with a real-world dataset, we have confirmed that the
object shape is recovered and the performance is improved. It is important to note that the proposed
method is efficient enough to be employed in near-real-time applications, and it is expected that object
regions extracted using our image segmentation algorithm could easily be utilized for activities such
as view synthesis and virtual conference systems.

Sensors 2017, 17, 1544 24 of 27

Acknowledgments: This work was supported by Institute for Information & Communications Technology
Promotion (IITP) grants funded by the Korea government (MSIP) (No. 2016-0-00197 and No. 2016-0-00562).

Author Contributions: Kyungjae Lee developed the methodology, led the entire research including evaluations,
wrote and revised the manuscript. Yuseok Ban was in charge of developing the weighted linear combination of
spatial filtering algorithms. Sangyoun Lee guided the research direction and verified the research results.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We compared the performance of the internal algorithms of the proposed method with the von
Neumann neighborhood system to verify the effects of the ACA and the NDM. The quantitative
performance of SCA and ACA-based methods with the von Neumann system on the selected Tsukuba
Stereo Dataset is presented in Tables A1 and A2, respectively. The pure ACA-based method is about
4.3-times faster than the pure SCA-based method. Nonetheless, the proposed method based on
ACA combined with NDM is about 1.8-times faster than the pure ACA-based method without any
degradation in quality. As a result, the proposed method (ACA + NDM) is about 7.7-times faster than
the pure SCA-based method.

Table A1. Quantitative evaluation results for comparing internal algorithms of the ACA-based method
with von Neumann neighborhood system on the selected Tsukuba Stereo Dataset. The best performance
is highlighted in bold.

Frame

PSNR SSIM Iterations Time

SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA
+ SKP + NDM + SKP + NDM + SKP + NDM + SKP + NDM

001 32.987 32.987 32.987 0.973 0.973 0.973 79 79 79 0.272 0.239 0.222
214 28.210 28.210 28.210 0.976 0.976 0.976 96 96 96 0.312 0.275 0.264
291 39.993 39.993 39.993 0.983 0.983 0.983 101 101 101 0.339 0.296 0.289
347 36.986 36.986 36.986 0.986 0.986 0.986 120 120 120 0.413 0.360 0.335
459 42.733 42.733 42.733 0.991 0.991 0.991 64 64 64 0.183 0.162 0.159
481 40.221 40.221 40.221 0.985 0.985 0.985 153 153 153 0.490 0.432 0.407
509 33.009 33.009 33.009 0.970 0.970 0.970 104 104 104 0.396 0.344 0.322
525 25.073 25.073 25.073 0.946 0.946 0.946 162 162 162 0.569 0.490 0.471
715 49.741 49.741 49.741 0.997 0.997 0.997 94 94 94 0.244 0.208 0.225
991 48.372 48.372 48.372 0.996 0.996 0.996 63 63 63 0.165 0.147 0.149

Mean 37.733 37.733 37.733 0.980 0.980 0.980 103.6 103.6 103.6 0.338 0.295 0.284

Table A2. Quantitative evaluation results for comparing internal algorithms of the proposed method
with von Neumann neighborhood system on the selected Tsukuba Stereo Dataset. The best performance
is highlighted in bold.

Frame

PSNR SSIM Iterations Time

ACA ACA ACA ACA SCA ACA ACA ACA ACA ACA ACA ACA
+ SKP + NDM + SKP + NDM + SKP + NDM + SKP + NDM

001 32.987 32.987 32.987 0.973 0.973 0.973 48 48 48 0.099 0.102 0.054
214 28.210 28.210 28.210 0.976 0.976 0.976 21 21 21 0.045 0.046 0.027
291 39.981 39.981 39.981 0.983 0.983 0.983 31 31 31 0.067 0.070 0.040
347 36.986 36.986 36.986 0.986 0.986 0.986 62 62 62 0.129 0.133 0.067
459 42.706 42.706 42.706 0.990 0.990 0.990 42 42 42 0.066 0.067 0.035
481 40.221 40.221 40.221 0.985 0.985 0.985 51 51 51 0.099 0.101 0.055
509 33.009 33.009 33.009 0.970 0.970 0.970 38 38 38 0.096 0.098 0.052
525 25.073 25.073 25.073 0.946 0.946 0.946 44 44 44 0.101 0.101 0.060
715 49.412 49.412 49.412 0.997 0.997 0.997 21 21 21 0.033 0.032 0.021
991 48.370 48.370 48.370 0.996 0.996 0.996 37 37 37 0.050 0.051 0.029

Mean 37.696 37.696 37.696 0.980 0.980 0.980 39.5 39.5 39.5 0.078 0.080 0.044

Sensors 2017, 17, 1544 25 of 27

References

1. Park, S.; Yu, S.; Kim, J.; Kim, S.; Lee, S. 3D hand tracking using Kalman filter in depth space. EURASIP J.
Adv. Signal Process. 2012, 2012, 36.

2. Kim, J.; Yu, S.; Kim, D.; Toh, K.A.; Lee, S. An adaptive local binary pattern for 3D hand tracking. Pattern Recognit.
2017, 61, 139–152.

3. Kirac, F.; Kara, Y.E.; Akarun, L. Hierarchically constrained 3D hand pose estimation using regression forests
from single frame depth data. Pattern Recognit. Lett. 2014, 50, 91–100.

4. Shotton, J.; Sharp, T.; Kipman, A.; Fitzgibbon, A.; Finocchio, M.; Blake, A.; Cook, M.; Moore, R. Real-time
human pose recognition in parts from single depth images. Commun. ACM 2013, 56, 116–124.

5. Plantard, P.; Auvinet, E.; Pierres, A.S.L.; Multon, F. Pose estimation with a kinect for ergonomic studies:
Evaluation of the accuracy using a virtual mannequin. Sensors 2015, 15, 1785–1803.

6. Chen, X.; Zhou, B.; Lu, F.; Wang, L.; Bi, L.; Tan, P. Garment modeling with a depth camera. ACM Trans.
Graph. 2015, 34, doi:10.1145/2816795.2818059.

7. Taylor, J.; Stebbing, R.; Ramakrishna, V.; Keskin, C.; Shotton, J.; Izadi, S.; Hertzmann, A.; Fitzgibbon, A.
User-specific hand modeling from monocular depth sequences. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 644–651.

8. Tang, S.; Zhu, Q.; Chen, W.; Darwish, W.; Wu, B.; Hu, H.; Chen, M. Enhanced RGB-D Mapping Method for
Detailed 3D Indoor and Outdoor Modeling. Sensors 2016, 16, 1589.

9. Fernandez-Sanchez, E.J.; Diaz, J.; Ros, E. Background subtraction based on color and depth using active
sensors. Sensors 2013, 13, 8895–8915.

10. Fernandez-Sanchez, E.J.; Rubio, L.; Diaz, J.; Ros, E. Background subtraction model based on color and depth
cues. Mach. Vis. Appl. 2014, 25, 1211–1225.

11. Del Blanco, C.R.; Mantecón, T.; Camplani, M.; Jaureguizar, F.; Salgado, L.; García, N. Foreground segmentation
in depth imagery using depth and spatial dynamic models for video surveillance applications. Sensors 2014,
14, 1961–1987.

12. Fehn, C. Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV.
In Proceedings of the International Society for Optics and Photonics, Electronic Imaging 2004, San Jose,
CA, USA, 21 May 2004; pp. 93–104.

13. Yin, S.; Dong, H.; Jiang, G.; Liu, L.; Wei, S. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent
Depth Maps. Sensors 2015, 15, 15246–15264.

14. Tanimoto, M.; Tehrani, M.P.; Fujii, T.; Yendo, T. Free-viewpoint TV. IEEE Signal Process. Mag. 2011, 28, 67–76.
15. Cho, J.H.; Song, W.; Choi, H.; Kim, T. Hole Filling Method for Depth Image-Based Rendering Based on

Boundary Decision. IEEE Signal Process. Lett. 2017, 24, doi:10.1109/LSP.2017.2661319.
16. Billinghurst, M.; Clark, A.; Lee, G.A survey of augmented reality. Found. Trends R© Hum. Comput. Interact. 2015,

8, 73–272.
17. Wang, L.; Hou, C.; Lei, J.; Yan, W. View generation with DIBR for 3D display system. Multimedia Tools Appl.

2015, 74, 9529–9545.
18. Fairchild, A.J.; Campion, S.P.; García, A.S.; Wolff, R.; Fernando, T.; Roberts, D.J. A mixed reality telepresence

system for collaborative space operation. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 814–827.
19. Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimedia 2012, 19, 4–10.
20. Chen, L.; Wei, H.; Ferryman, J. A survey of human motion analysis using depth imagery. Pattern Recognit. Lett.

2013, 34, 1995–2006.
21. Vijayanagar, K.R.; Loghman, M.; Kim, J. Real-time refinement of kinect depth maps using multi-resolution

anisotropic diffusion. Mob. Netw. Appl. 2014, 19, 414–425.
22. Lasang, P.; Kumwilaisak, W.; Liu, Y.; Shen, S.M. Optimal depth recovery using image guided TGV with

depth confidence for high-quality view synthesis. J. Vis. Commun. Image Represent. 2016, 39, 24–39.
23. Matyunin, S.; Vatolin, D.; Berdnikov, Y.; Smirnov, M. Temporal filtering for depth maps generated by kinect

depth camera. In Proceedings of the 2011 IEEE 3DTV Conference: The True Vision-Capture, Transmission
and Display of 3D Video (3DTV-CON), Antalya, Turkey, 16–18 May 2011; pp. 1–4.

24. Fu, J.; Miao, D.; Yu, W.; Wang, S.; Lu, Y.; Li, S. Kinect-like depth data compression. IEEE Trans. Multimedia
2013, 15, 1340–1352.

25. Fleishman, S.; Drori, I.; Cohen-Or, D. Bilateral mesh denoising. ACM Trans. Graph. 2003, 22, 950–953.

Sensors 2017, 17, 1544 26 of 27

26. Petschnigg, G.; Szeliski, R.; Agrawala, M.; Cohen, M.; Hoppe, H.; Toyama, K. Digital photography with
flash and no-flash image pairs. ACM Trans. Graph. 2004, 23, 664–672.

27. Kopf, J.; Cohen, M.F.; Lischinski, D.; Uyttendaele, M. Joint bilateral upsampling. ACM Trans. Graph. 2007,
26, 96.

28. Min, D.; Lu, J.; Do, M.N. Depth video enhancement based on weighted mode filtering. IEEE Trans. Image Process.
2012, 21, 1176–1190.

29. Chan, D.; Buisman, H.; Theobalt, C.; Thrun, S. A noise-aware filter for real-time depth upsampling. In Proceedings
of the Workshop on Multi-Camera and Multi-Modal Sensor Fusion Algorithms and Applications, Marseille,
France, 5–6 October 2008.

30. Le, A.V.; Jung, S.W.; Won, C.S. Directional joint bilateral filter for depth images. Sensors 2014, 14, 11362–11378.
31. Lin, B.S.; Su, M.J.; Cheng, P.H.; Tseng, P.J.; Chen, S.J. Temporal and Spatial Denoising of Depth Maps. Sensors

2015, 15, 18506–18525.
32. Criminisi, A.; Perez, P.; Toyama, K. Object removal by exemplar-based inpainting. In Proceedings of the

2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA,
16–22 June 2003; Volume 2, doi:10.1109/CVPR.2003.1211538.

33. Gong, X.; Liu, J.; Zhou, W.; Liu, J. Guided depth enhancement via a fast marching method. Image Vis. Comput.
2013, 31, 695–703.

34. Telea, A. An image inpainting technique based on the fast marching method. J. Graph. Tools 2004, 9, 23–34.
35. Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts.

ACM trans. Graph. 2004, 23, 309–314.
36. Vezhnevets, V.; Konouchine, V. GrowCut: Interactive multi-label ND image segmentation by cellular

automata. Proc. Graph. Citeseer 2005, 1, 150–156.
37. Boykov, Y.; Funka-Lea, G. Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 2006, 70, 109–131.
38. Grady, L. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1768–1783.
39. Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916.
40. Gordon, G.; Darrell, T.; Harville, M.; Woodfill, J. Background estimation and removal based on range and

color. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Ft. Collins, CO, USA, 23–25 June 1999; Volume 2, pp. 459–464.

41. Schiller, I.; Koch, R. Improved video segmentation by adaptive combination of depth keying and mixture-of-gaussians.
In Proceedings of the 17th Scandinavian conference on Image Analysis, Ystad, Sweden, 23–27 May 2011;
pp. 59–68.

42. Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground–background segmentation
using codebook model. Real Time Imag. 2005, 11, 172–185.

43. Camplani, M.; Salgado, L. Background foreground segmentation with RGB-D Kinect data: An efficient
combination of classifiers. J. Vis. Commun. Image Represent. 2014, 25, 122–136.

44. Han, J.; Ngan, K.N.; Li, M.; Zhang, H.J. Unsupervised extraction of visual attention objects in color images.
IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 141–145.

45. Smisek, J.; Jancosek, M.; Pajdla, T. 3D with Kinect. In Consumer Depth Cameras for Computer Vision; Springer:
Berlin, Germany, 2013; pp. 3–25.

46. Microsoft Corporation, Kinect-Coordinate Spaces. Availabel online: https://msdn.microsoft.com/en-us/
library/hh973078.aspx/ (accessed on 22 May 2017).

47. He, L.; Chao, Y.; Suzuki, K.; Wu, K. Fast connected-component labeling. Pattern Recognit. 2009, 42, 1977–1987.
48. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
49. Lienhart, R.; Kuranov, A.; Pisarevsky, V. Empirical analysis of detection cascades of boosted classifiers for

rapid object detection. In Joint Pattern Recognition Symposium; Springer: Berlin, Germany, 2003; pp. 297–304.
50. Von Neumann, J. Theory of Self-Reproducing Automata; University of Illinois Press: Champaign, IL, USA, 2002.
51. Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding color models: A review. ARPN J.

Sci. Technol. 2012, 2, 265–275.
52. Gonzalez, R.C.; Woods, R.E.Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2002.
53. Peris, M.; Martull, S.; Maki, A.; Ohkawa, Y.; Fukui, K. Towards a simulation driven stereo vision system.

In Proceedings of the 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan,
11–15 November 2012; pp. 1038–1042.

https://msdn.microsoft.com/en-us/library/hh973078.aspx/
https://msdn.microsoft.com/en-us/library/hh973078.aspx/

Sensors 2017, 17, 1544 27 of 27

54. Martull, S.; Peris, M.; Fukui, K. Realistic CG stereo image dataset with ground truth disparity maps.
In Proceedings of the ICPR Workshop TrakMark2012, Tsukuba, Japan, 11 November 2012; Volume 111, pp.
117–118.

55. Moyà-Alcover, G.; Elgammal, A.; Jaume-i Capó, A.; Varona, J. Modeling depth for nonparametric foreground
segmentation using RGBD devices. Pattern Recognit. Lett. 2016, in press.

56. Castrillón, M.; Déniz, O.; Guerra, C.; Hernández, M. ENCARA2: Real-time detection of multiple faces at
different resolutions in video streams. J. Vis. Commun. Image Represent. 2007, 18, 130–140.

57. Nambissan, A. Haarcascade Trained Model for Hand Detection, 2013. Available online: https://
github.com/Aravindlivewire/Opencv/commit/a932f2defc22b0497173a5bea819bf14d9abe3d5/ (accessed on
22 May 2017).

58. Soille, P. Morphological Image Analysis: Principles and Applications; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

59. Bertalmio, M.; Bertozzi, A.L.; Sapiro, G. Navier-stokes, fluid dynamics, and image and video inpainting.
In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume 1, doi:10.1109/CVPR.2001.990497.

60. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett.
2008, 44, 800–801.

61. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612.

62. Yamasaki, T.; Chen, T.; Yagi, M.; Hirai, T.; Murakami, R. GrowCut-based fast tumor segmentation for 3D
magnetic resonance images. In Proceedings of the SPIE Medical Imaging. International Society for Optics
and Photonics, San Diego, CA, USA, 23 February 2012; doi:10.1117/12.911649.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/Aravindlivewire/Opencv/commit/a932f2defc22b0497173a5bea819bf14d9abe3d5/
https://github.com/Aravindlivewire/Opencv/commit/a932f2defc22b0497173a5bea819bf14d9abe3d5/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Methodology
	Image Acquisition and Preprocessing
	Image Segmentation and Weighted Linear Combination of Spatial Filtering
	Coordinate Transformation of Depth Image
	Image Segmentation in Depth Domain
	Weighted Linear Combination of Spatial Filtering for Inner Hole Filling

	Depth Recovery by Asynchronous Cellular Automata
	Asynchronous Cellular Automata
	Depth Recovery by Cellular Automata
	Neighborhood Distance Map
	Lab Color Space

	Experiments and Discussion
	Conclusions
	

