
sensors

Article

Moving Object Detection in Heterogeneous
Conditions in Embedded Systems

Alessandro Garbo and Stefano Quer *

Dipartimento di Automatica ed Informatica, Politecnico di Torino, 10129 Torino, Italy; alessandro.garbo@polito.it
* Correspondence: stefano.quer@polito.it; Tel.: +39-011-090-7076

Received: 25 May 2017; Accepted: 27 June 2017; Published: 1 July 2017

Abstract: This paper presents a system for moving object exposure, focusing on pedestrian detection,
in external, unfriendly, and heterogeneous environments. The system manipulates and accurately
merges information coming from subsequent video frames, making small computational efforts
in each single frame. Its main characterizing feature is to combine several well-known movement
detection and tracking techniques, and to orchestrate them in a smart way to obtain good results
in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions
of interest, and it also adopts techniques to efficiently track movements, and detect and correct
false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the
software system is designed and implemented, on how the different algorithmic phases communicate
information and collaborate with each other, and on how concurrency is organized. The application is
specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras
and small embedded computational units, eventually forming an intelligent urban grid. As a matter
of fact, the major contribution of the paper is the presentation of a tool for real-time applications in
embedded devices with finite computational (time and memory) resources. We run experimental
results on several video sequences (both home-made and publicly available), showing the robustness
and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that
our application has similar tracking accuracy but much higher frame-per-second rates.

Keywords: motion estimation; human detection; tracking; embedded systems; automatic surveillance

1. Introduction

The number of surveillance cameras in urban areas has been increasing at a rate which results in
massive amounts of video to be analyzed. As a consequence, in the last decade, many approaches [1–11]
have been proposed for moving object detection and tracking from videos. Researchers concentrate on
traffic monitoring and security, visual surveillance, and sensors networks able to analyze complex area
and flow movements.

Detection of moving objects in videos is based on the realistic assumption that in almost all
frames those objects are perceivable as different from the background and from recent previous
frames. When models of target objects are known a priori, model-based applications can be used for
improving detection. On the contrary, when precise geometrical models are not possible (for instance,
for non-rigid objects) or, simply, object models are not exhaustively known in advance, model-based
detection cannot be applied. When the analysis concentrates on moving people, it involves very
complex situations, as tracking must follow heterogeneous trajectories over time. In those cases, to
perform tracking it is usually necessary to find feature-based correspondences of the same physical
objects in different frames. As a consequence, robust human tracking is highly dependent on reliable
detection in each frame, and most of the existing approaches are unsuitable for detecting targets with
large variance in appearance. Therefore, robust human detection remains a challenge.

Sensors 2017, 17, 1546; doi:10.3390/s17071546 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17071546
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 1546 2 of 25

In this work, we focus on a system which detects and tracks different and possibly unknown
objects; it restricts its attention to pedestrians, tracking and finally counting them. We will describe
all main steps from the video analysis to the pedestrian tracking phase. Even if those steps do share
several aspects and state-of-the-art methodologies with previous approaches, our system orchestrates
them in a new way presenting an innovative recipe to reach the final goal.

Our application is divided into three separated modules including several concurrent threads.
To maximize concurrency, threads are organized as a multi-layer pipeline, where each layer manipulates
information coming from the previous layers and it delivers more compact data to the next layers.

The first module is in charge of partitioning the problem into sub-problems and dividing
the overall workload among all other threads. Partitioning is performed adopting an eager
divide-and-conquer approach. In more detail, given a video frame V, each frame F is partitioned into a
grid of cells and different sub-sets of those cells are fed to the different modules/threads. Great care is
taken to partition the grid and to select sub-sets in an efficient way, such that subsequent computation
tasks are more efficient and accurate.

The second module statically analyzes each cell to perform background subtraction, followed by
static and a dynamic luminosity analysis, and finally movement detection. The target of this phase is
to allow the third module to focus only on promising areas of the videos where some movement has
already been detected, so saving time and increasing accuracy. Those phases are mainly implemented
using well-known algorithms optimized such that they efficiently manipulate our grid cells. Moreover,
we use histograms to statistically represent and analyze texture pixels, and dynamically adjusted
thresholds to avoid false detections.

The third module uses information coming from the previous one to create reliable bounding
boxes around relevant points. Points with similar dynamic characteristics are then grouped into
entities which we call “swarms”. Swarms are then tracked, updated, merged, and eventually ruled out
depending on the set of points belonging to their support. In an initial transitory phase, the system
also develops a model to subsequently correct swarm tracking. This model, called the “hole model”,
allows the system to recover correct information whenever tracked points behave erratically. This
may be due to background “anchors” attracting moving points into frozen positions. Substantially,
the model corrects errors with sophisticated blob analysis and restoring techniques.

Great care is also taken to leverage all computational phases, to make threads to efficiently
cooperate to reach the final goal, and to keep the computational effort low during all phases. To sum
up, the system presents the following main characterizing features and contributions:

1. From the object tracking point of view we substantially have a three-phase approach. During
the first phase, we partition the problem. During the second, we intercept static frame-by-frame
movements using histograms and dynamically adjusted thresholds. During the third phase, we
detect anchor points on the background, and we use a hole model to check for and correct errors
made during the final swarm tracking phase.

2. Our multi-layer and multi-thread pipelined application is suitable for embedded systems, with
real-time requirements and finite computational resources, such as computational power, memory,
and energy availability.

3. Keeping in mind the previous point, the application shows an average accuracy comparable with
other state-of-the-art approaches, but higher frame-per-second rates. Moreover, it also shows very
limited memory (of all types) requirements, as it is usually demanded for embedded applications.

4. The system is conceived to be auto-adaptive, i.e., to work with the best possible performances
on all possible scenarios without any sort of initial or on-line manual set-up. Results show that
accuracy results are aligned with other state-of-the-art approaches, but they are more stable in all
corner-case situations.

5. Our application upgrades a system composed of a single video camera and a single central
computing workstation to an intelligent network grid. Each node of the network is equipped
with a single off-the-shelf fixed camera, and an inexpensive embedded system, autonomously

Sensors 2017, 17, 1546 3 of 25

performing many computations locally on the node. In this way only a reduced amount of
tracking information is transferred to the control room, then preventing heavy computations (on
data coming from several cameras) for the central server. As a consequence, the central host may
concentrate on pedestrian counting, flow analysis [12] or high-level grid evaluations which can be
carried out based only on the fused and consolidated data coming from the network nodes.

6. The system is able to operate in different urban scenarios with no training or previously acquired
models: (1) video cameras are placed at a relative high height for security, safety, and economic
reasons, and the perspective may produce relevant object distortions; and (2) infrastructures, large
shapes, and moving objects may cause occlusions and variable reflection conditions.

As a final remark, notice that the work has been part of an industrial project (Industrial contract
254/2015, with Telecom Italia Joint Open Lab, entitled “Pedestrian Tracking”) whose main target was
to evaluate pedestrian flows (i.e., count the number of pedestrians crossing a specific street, bridge or
square) in several historical area of the city of Venice, in Italy, where the touristic crowd can overwhelm
tourist infrastructure. Current city plans (as publicly described on the news and on local newspapers)
involve a period in which crowd flows will be examined and subsequently controlled, using several
techniques like the one we will describe in this paper.

Road-Map

The paper is organized as follows. Section 2 describes some related recent works. Section 3
illustrates our strategy from a high-level point of view. Sections 4 and 5 introduce the two core
parts, namely the static movement detector and the dynamic tracking module, reporting all main
implementation details to make the work reproducible. Section 6 reports our experimental results.
Finally, Section 7 draws conclusions.

2. Related Works and Comparisons

Pedestrian detection is a canonical instance of object detection. Because of its direct application
to car safety, surveillance, and robotics, it has attracted much attention in the last years. As such,
it has served as a playground to explore different ideas for object detection. Among the seminal
works, it should be remembered that the detector of Viola and Jones [13] has been applied to the
task of pedestrian detection. A broader attention on the topic was brought by Dollar et al. [14]
who introduced the Caltech Pedestrian Dataset which was two orders of magnitude larger than existing
datasets. The established methodology for evaluating pedestrian detectors also changed from per-window
(FPPW) to per-image (FPPI), once the flaws of the per-window evaluation were identified. Many works
have been published from that publication on, reflecting a renewed interest in the problem. Nowadays,
it is possible to discern three families of pedestrian detection methods: Deformable Part Model (DPM)
variants, deep networks, and decision forests.

Dalal and Triggs introduced the landmark Histogram of Oriented Gradients HOG [15] detector,
which later served in 2008 as a building block for the now classic DPM. The DPM [16–18] combines
rigid root filters and deformable part filters for detection, and it performs well for high resolution
objects. Anwer et al. [19] evaluated the opponent color space as an alternative to RGB space for
human detection. As the authors obtained better detection performance, they suggested it could be
worthwhile computing co-occurrence matrices, self-similarity features, etc., also on top of opponent
space as usually done with HOG. Xu et al. [20] used the DPM for representing objects, and focused on
performing an incremental domain adaptation of object detectors. The main benefit was to improve
existing source-oriented detectors as soon as a small amount of labeled target-domain training data is
available, and keep improving as more of such data arrives in a continuous fashion.

Decision forests [21–23] seem particularly suited for pedestrian detection, reaching top
performances on several benchmark sets. It is unclear however what gives them an edge. For example,
to obtain a successfully detector González et al. [24] provide an extensive evaluation along three
orthogonal axes: (1) the integration of multiple feature cues; (2) the fusion of multiple image modalities;

Sensors 2017, 17, 1546 4 of 25

and (3) the use of multiple views of the pedestrian. Their analysis revealed that, although these aspects
are important, the fusion of visible spectrum and depth information allows for boosting the accuracy
significantly by a large margin.

In recent years, deep networks [25,26] have been applied to pedestrian detection, achieving
promising results and fast progress in detection quality. Instead of using handcrafted features, they can
automatically learn features in an unsupervised or supervised fashion. Redmon et al. [27] proposed You
Only Look Once (YOLO), a system based on a single convolutional network which provides a threshold
for the resulting detections by the model’s confidence. YOLO is extremely fast as it is able to process
images in real-time at 45 frames per second (155 flames for Fast YOLO, i.e., a smaller version of the
network). Liu et al. [28] used a single deep neural network to detect objects without re-sampling pixels
or features for bounding boxes. The authors proved that their method has competitive accuracy with
methods adopting additional object proposal steps, and it is much faster, while providing a unified
framework for both training and inference.

Within this general framework, the works closest to ours are the as follows. Cucchiara et al. [4]
presented Sakbot, a system for moving object detection and tracking. The system is endowed
with robust techniques, such as the statistical and knowledge-based background update, the use
of Hue Saturation Value (HSV) color information for shadow suppression, and symbolic reasoning
for tracking. Leone et al. [5], in order to detect potential shadow points, evaluated, for all moving
pixels, the compatibility of photometric properties with shadow characteristics. Shadow detection
is improved by evaluating the similarity between little textured patches. The algorithm is designed
to be unaffected by the scene, the background type, and by the light conditions. Notice that two
previous works methods work at a pixel level whereas as we used low-cost video cameras and
embedded systems with bounded computation resources, we perform background manipulation
by splitting the scene into sub-regions of fixed size, resorting to the divide-and-conquer paradigm.
Mason et al. [29], and Varcheie et al. [30], to model the background and detect motion, used color
histograms, texture information, and successive division of candidate rectangular image regions for
applying Gaussian mixture background modeling. One of the problems with these approaches is the
necessity for mandatory capture of a static background at the beginning of the process. Moreover,
the authors need to optimize the color histogram generation, which original uses 224 classes for a
standard RGB pixel representation. On the contrary, we do not use an initial learning phase, and, again
for efficiency reasons, we use much smaller and memory inexpensive histograms.

3. Designing the Application

As cheap of-the-shelf embedded systems are unable to manage the entire object tracking chain
for every video frame at run-times, our application is divided into several modules running as
separate concurrent threads. To maximize concurrency, threads are organized as a multi-layer
pipeline, where each layer manipulates information coming from previous layers and it delivers
more compact data to next layers. To further speed-up the process for embedded architectures, and
to deal with entire (640× 480) frames, the application also heavily adopts partitioning, following a
eager divide-and-conquer approach. A pictorial representation of the overall logic flow is reported in
Figure 1. All main modules (the Dispatcher, the Static Movement Detector, and the Dynamic Tracking
Module) include one or more working threads, and are described in the following subsections.

Sensors 2017, 17, 1546 5 of 25

BS (...)

DLD (...)

MD (...)

SLD (...)

DT (...)
F

V

P

M

F

N

h
w

1
6Thread

5Thread

3Thread

Thread 2

Thread 4

Thread
Partitioning:

Selection:

Static Movement Detector

Dispatcher

tracking and count
Output:

Module
Tracking
Dynamic

Input:
Video Frames

Figure 1. Overall information flow of our algorithm (from left to right): (1) The input video frame F;
(2) The dispatcher, i.e., a divide-and-conquer partitioning module; (3) The static movement detector
(running in parallel sub-modules). BS: background subtraction; SLD: static luminosity detector; DLD
dynamic luminosity detector; MD: movement detector. (4) The dynamic tracking (DT) module.

3.1. The Dispatcher

Given a video frame V, a first module (running a single working thread Thread1) applies the
following divide-and-conquer scheme.

First of all, it partitions each frame F ∈ V into a cell grid FP of (N ×M) cells of (w× h) pixels.
From a theoretical point of view, the smaller the cells, the more accurate our algorithm tends to be.
At the same time, small cells require more expensive computations. From a practical point of view,
it is difficult to go below or above a certain cell size, because cells lose their representativity value
depicting too refined or too coarse-grained information. The cell size also depends on the perspective
used to analyze the scene, as detecting movements of small objects requires smaller cells than detecting
movements on large objects. In the experimental result section, we will show results with the best
trade-off we found for our purpose, that is, for (640× 480) pixel images, N = M = 16, corresponding
to cells of (w = 40)× (h = 30) pixels.

Secondly, it feeds all subsequent modules (and working threads Thread2-Thread6) with a
non-overlapping subset, of variable size, of the cells chosen from the grid FP. As those modules
do not form an ideal pipeline, and have mutual relationships, those subsets are selected adopting
the following strategy. First of all, all threads must iterate on all cells of the video frame, but they
are run once and only once on each video frame. If a thread (such as background substration (BS),
static luminosity detector (SLD), dynamic luminosity detector (DLD), or movement detector (MD))
manipulates a subset of FP of SIZE cells at each step, it will require (N ×M)/SIZE frames to inspect
the entire context. Then, given the dimension SIZE of the selected sub-set of FP to be fed to each
thread, we define the “refreshing rate” as (N × M)/SIZE, i.e., the frequency used to update each
cell. For example, with SIZE = 4, the refresh rate is 64, i.e., cell data in every cell is is manipulated
(refreshed) every 64 frames. With a frame rate of 20 frames per second this is equivalent to 3.2 s.
Similarly, with SIZE = 16, the refresh rate is 16 frames, and we need 0.8 s to update each cell.
Moreover, threads have to manipulate information in a specific order, i.e., background subtraction
has to run before the static and dynamic luminosity procedure, etc. As we choose different subsets
of cells for each thread function, usually each procedure manipulates cells managed by another
function sometimes before, i.e., on a previous video frame. We associate to each data (depending on
its nature) a “soundness time window”, i.e., a time window in which the data is guaranteed to
be meaningful. We are always guaranteed to manipulate data within its soundness time window.

Sensors 2017, 17, 1546 6 of 25

Functions do use synchronization primitives to manage critical sections, but our selection strategy
strives to minimize all synchronization waiting times. Secondly, to choose a proper refreshing rate,
we identify events requiring small response times (such as the ones involving shadow modification
due to clouds, pedestrian standing times, etc.), and changes requiring long response times (such as
shadow modifications due to hearth rotation, etc.). At the same time, there are algorithmic phases more
expensive and other less expensive from the computational point of view. In the experimental section,
we will set different values for the variable SIZE for each thread, depending on those parameters.
Moreover, cell management may be optimized adopting a few further strategies. For example. using
the locality principle, it is possible to select cells where movements are less common less frequently
than cells where movements are more common. Furthermore, we can use statistical analysis to follow
pedestrian lanes whenever possible, e.g., to iterate on the frame grid following a column-major order
instead of a row-major order.

3.2. The Static Movement Detector

Once the Dispatcher module has partitioned the current frame F into FP, and distributed the work
load to all next level working threads, the Static Movement Detector module performs all major tasks
to detect and track movements on a frame-by-frame basis. This means that all threads belonging to this
module essentially work without memory, i.e., they analyze single video frames without considering
any correlation among them. To be more precise, the module encompasses the following operations.

The background subtraction (BS) thread finds accurate and stable RGB and HSV models to
be used by other threads to compute histograms. In our tool, we use a Gaussian mixture-based
background/foreground segmentation algorithm [31,32], modeling each background pixel by a mixture
of Gaussian distributions. This procedure is described in Section 4.1.

The static luminosity detector (SLD) thread follows Varcheie et al. [30] to assign each grid cell to a
class storing cells with isomorphic luminosity levels. We use gray histograms to discriminate among
luminosity classes, and we define classes with variable and adjustable sizes. This phase improve
the accuracy of the subsequent movement detection phase which can be heavily influenced by the
luminosity level within the cell. This function is analyzed in Section 4.2.

The dynamic luminosity detector (DLD) thread detects notable rapid luminosity changes on the
grid. Following Boreczky et al. [33], every time the conditions in a cell are changing rapidly we mark
the cell as in transient state and manipulate it separately by standard cells. This step reduces false
detections, i.e., it helps to discern between simple luminosity changes and real movements. This phase
is analyzed in Section 4.3.

The movement detector (MD) threads collects outputs coming from previous threads, such as
histograms, thresholds, etc., to detect notable movements in a cell. Unlike many other algorithms, this
thread works at a cell level instead of concentrating on single pixels. It essentially set a movement flag
on each cell where movements have been detected, such that the dynamic tracking module will be
able to focus on those cells only. This thread is discussed in Section 4.4.

3.3. The Dynamic Tracking Module

All threads belonging to the static movement detector essentially work without memory, i.e., they
analyze cells in each single video frame without correlating data coming from different frames in any
way. On the contrary, the dynamic tracking module grasps the correlation between subsequent video
frames. First of all, it concentrates its attention only on interesting cells, i.e., the ones detected by the
static movement detector module as including “static” movements. Then, it performs object tracking
following [34–37] and using information coming from the MD module.

Points with similar dynamic characteristics are grouped into entities which we call swarms.
Swarms are then tracked, updated, merged, and eventually ruled-out depending on the set of points
belonging to their support. In an initial transitory phase, the system also develops a model to
subsequently correct swarm tracking. This model, called hole model, allows the system to recover

Sensors 2017, 17, 1546 7 of 25

correct information whenever tracked points behave erratically. This may be due to background
“anchors” attracting moving points into frozen positions. Substantially, the model corrects errors with
sophisticated blob analysis and restoring techniques.

The dynamic tracking system finally represents movement information and send it to the host
computer, which in turn is free to deal with the entire sensor grid to perform pedestrian counting, flow
analysis and compute statistical measures. This thread is discussed in Section 5.

4. Static (without Memory) Movement Detector

To allow some sort of data sharing among the different steps of the algorithm, we associate to each
cell an abstract data type (ADT) structure with the data fields reported in Figure 2. We will consider
ADT as globally visible or eventually embedded in a class object, with proper synchronization access
primitives on all setter and getter methods. All fields will be described in the following sub-sections,
but essentially they store the coming data. The first two fields of Figure 2, RGB and a V (lines 2–3),
are internal data structures, representing the RGB channel and the V channel of the HSV background
model (see Section 4.1).

The easiest way to represent texture information in a histogram is to encode color or gray
information [29,30]. For this reason, we will use two histograms, the first one represented in Figure 2,
and the second one introduced in Section 4.2. Our histograms are arrays of 255 integer values,
representing gray tones differences or pure gray tones. Each bin is strictly related to the data
represented by the texture grid, as it indicates the number of pixels in the cell with a specific gray
value. As in our implementation, each cell of the partitioned frame FP has a size equal to (40× 30)
pixels, the sum of all values stored in those bins will be 1200 (see Sections 4.2 and 4.3).

The threshold data field (line 5) is an enumerated data type (enum) storing a set of possible
threshold luminosity values (such as, black, dark, dim, sunrise, bright, sunny, heat) that we will use
throughout the paper. Fields on lines 6 and 7 are flags (or back-counters, i.e., timers) used to indicate that a
transition, in terms of luminosity or movement, respectively, has been detected in the cell (see Section 4.4).

1 struct CELL {
2 model RGB;
3 model V;
4 model histogram;
5 enum threshold;
6 var transition;
7 var movement;
8 };

Figure 2. Cell data structure.

4.1. Building a Background Model: Function BS

As in many other approaches, we need an accurate and stable background to catch foreground
movements. Background subtraction (BS) is a common and widely used technique for generating
a foreground mask performing a subtraction between the current frame and a background model.
In contrast to many other approaches, we rely on a standard implementation of the background
subtraction phase processing as reported in Figure 3.

The procedure receives as input the video frame FP, and the sub-set of cells it has to manipulate
(cellSubset). For each cell in the selected set of cells cellSubset (line 1), the thread calls procedure
BACKGROUNDSUB. While coding, we are mainly interested to create the background object and not
the foreground mask (namely, a binary image containing the pixels belonging to moving objects in the
scene) generated by the method. In our tool, we use a Gaussian mixture-based background/foreground
segmentation algorithm [31,32], modeling each background pixel by a mixture of K (from 3 to 5)
Gaussian distributions. As we want to keep the system quite reactive, we set the history length to 10
frames. For example, with SIZE = 4, a refresh rate of 64, and a frame rate of 20 frame per second, each

Sensors 2017, 17, 1546 8 of 25

cell cell is refreshed every (64× 20) = 3.2 s, and a history equal to 10 implies storing all past frames up
to 32 s. Background objects are assigned to the RGB field of the CELL data structure in Figure 2 (line 2).

BS ()
Input : FP, cellSubset
Output: cell.RGB, cell.V

1 for each cell in cellSubset
2 cell.RGB = BACKGROUNDSUB (cell)
3 HSV = RGBTOHSV (cell.RGB)
4 V = channel (HSV)
5 cell.V = BACKGROUNDSUB (V)

Figure 3. Background subtraction: function BS.

From line 3 on, following Cucchiara et al. [4] and Leone et al. [5], we implement a shadow detector
performing background subtraction on the V channel of the HSV coding [38–40]. Usually, for efficiency
reasons, the shadow suppressor is activated only on cells where the luminosity level allows shadows
to be present, i.e., not on too dark or too clear cells. This means that for the V model, we automatically
update only the background model, whereas the foreground is updated only on request (lines 3–5).
Function BS finally returns the RGB and the V background models for the cells (namely, fields cell.
RGB and cell. V of Figure 2).

4.2. Dealing with Static Luminosity Information: Function SLD

Varcheie et al. [30] track movements by comparing color histograms using a threshold-based
strategy. In unfriendly open areas, where luminosity conditions may vary a lot during the day,
thresholds have to be selected in a very dynamic fashion. As a consequence, we manipulate in different
ways cells with different luminosity levels, and we use gray histograms to divide cells into classes
with similar luminosity levels (gray tones of all pixels within a cell are stored in the histogram model,
introduced in Section 4).

Figure 4, shows a few examples on how we use gray histograms to discriminate among isomorphic
luminosity classes. On all histograms, the three smaller vertical lines represent the cell average value
and the variance on all bins (the green and red lines, respectively, on color printing). All other (higher)
vertical lines identify our classes with isomorphic luminosity. We define those classes as black, dark,
dim, sunrise, bright, sunny, and heat. To have the highest possible representativity, they do not have
the same size. For example, the first and the last classes are smaller than the other ones because they
represent extreme working conditions for the video camera (with very low or high luminosity). At the
same time, the central classes (named dim, sunrise and bright) are the most representative for standard
conditions in our videos. Function THRESHOLD (line 5) selects the class to which a cell belongs to,
comparing with our thresholds the value of the variance on the right of the average value. Among
those classes, we will manipulate uniform and non-uniform cells in a different way. Notice that in our
context, the term uniform is used to indicate small luminosity variance within the same cell.

Sensors 2017, 17, 1546 9 of 25

0 50 100 150 200 255

b
l
a
c
k

d
a
r
k

d
i
m

s
u
n
r
i
s
e

b
r
i
g
h
t

s
u
n
n
y

h
e
a
t

(a)
0 50 100 150 200 255

b
l
a
c
k

d
a
r
k

d
i
m

s
u
n
r
i
s
e

b
r
i
g
h
t

s
u
n
n
y

h
e
a
t

(b)
0 50 100 150 200 255

b
l
a
c
k

d
a
r
k

d
i
m

s
u
n
r
i
s
e

b
r
i
g
h
t

s
u
n
n
y

h
e
a
t

(c)

Figure 4. Gray histograms for: (a) a uniform dark cell, (b) a uniform bright cell, (c) a non-uniform
dark cell. Vertical lines represent average (green) and variance (red) on all bins.

Figure 5 reports the pseudo-code dividing cells into classes based on their static luminosity.
The procedure receives as input the video frame FP, the sub-set of cells to manipulate (cellSubset), and
the cell RGB model (cell.RGB) computed by function BS. It produces for each cell a gray histogram
and a luminosity threshold level as follows. Function SLD converts the RGB representation of
the background into a gray scale (line 4). The gray value is an integer value (in the range [0, 255])
representing the pixel gray level. Then, it builds a gray histogram for each cell (stored in the local
variable histogram) where each bin represents the number of pixels (out of 30× 40) with the same gray
tone. At the same time, as the histogram may be represented as a discrete Gaussian curve, it computes
its average and variance values. Those values are then used to divide cells into classes of isomorphic
luminosity (line 6).

SLD ()
Input : FP, , cellSubset, cell.RGB
Output: cell.threshold

1 for each cell in cellSubset
2 model = cell.RGB
3 gray = RGB2GRAY (model)
4 histogram = HISTOGRAM (gray)
5 cell.threshold = THRESHOLD (histogram)

Figure 5. Static luminosity: function SLD.

4.3. Dealing with Dynamic Luminosity Information: Function DLD

In this section, we describe how we take care of rapid luminosity modifications, such as the ones
caused by rapid weather changes.

As described by Boreczk et al. [33], the histogram of the difference between the current RGB pixel
value and the model computed during the background subtraction phase can be used by module
DLD to detect dynamic luminosity changes. Unfortunately, when there are rapid and uniform
changes in luminosity those changes can generate false movement detections. To avoid false detection,
Figure 6 illustrates how the histogram behaves when there is a rapid luminosity transition without
any foreground movements. Figure 6a shows cases in which there are no notable alterations of the
background, whereas Figure 6b represents a situation in which there is a rapid luminosity change.
The average value is larger for more abrupt changes. Notice that when the transient DLD histogram
response is finished and we are back to a steady state, the histogram configuration moves back to the
one of Figure 6a. During the transitional period the module DLD essentially issues a warning on the
cell or set a timer to a specific value indicating that movements have to be evaluated after a few frames
with larger thresholds.

Sensors 2017, 17, 1546 10 of 25

 0 50 100 150 200 250

(a)
 0 50 100 150 200 250

(b)

Figure 6. Difference histograms for: (a) a cell with no notable background alteration, (b) a cell with a
rapid luminosity transition. In the second case there are no Gaussian points in the origin. Vertical lines
represent average (green) and variance (red) on all bins.

Figure 7 reports the pseudo-code of our implementation of the DLD module. The procedure
receives as input the video frame, the sub-set of cells it has to manipulate, and the RGB model for each
cell (cell.RGB). For each cell, it computes the difference between the RBG representation of each pixel of
the current video frame and the representation of the background model (line 2). After that, it converts
the previous difference (diff) into gray tones (gray, line 3) using function RGB2GRAY. The gray tones are
integer values included in the [0, 255] range. After that, it computes the histogram of such differences
(line 4) using function HISTOGRAM [41]. Finally, if this histogram stores any value larger than 0 in the
first 5 bins (function LIGHT, line 5), the procedure sets the transition field of that cell (cell.transition)
equal to the integer value TIME (line 6). This indicates that the cell is in a transient luminosity condition.

DLD ()
Input : FP, cellSubset, cell.RGB
Output: cell.histogram, cell.transition

1 for each cell in cellSubset
2 diff = cell - cell.RGB
3 gray = RGB2GRAY (diff)
4 cell.histogram = HISTOGRAM (gray)
5 if (LIGHT (cell.histogram))
6 cell.transition = TIME

Figure 7. Dynamic luminosity: function DLD.

4.4. Detecting Movements on the Grid: Function MD

While all previous modules work to maintain all data updated, i.e., they work to create a proper
“soundness window” for all data, the MD module collects all previously computed information to
intercept movements.

Unlike many other algorithms, we do not work at the pixel level, instead we focus on the cells of
our grid. From the one hand, we perform a more coarse evaluation than the one available concentrating
on pixels. On the other, our process is much more stable than the pixel-based one when applied in
extreme conditions, such as the ones in which dark building shadows occupy part of the scene.
Moreover, we can be much faster in performing all necessary computations on cells than on single
pixels, and the data computed are more manageable by the higher levels of the system. Figure 8 shows
how movements can be detected in different luminosity conditions. When there is no movement
on a cell, the cell content is quite similar to that collected during the background subtraction. As a
consequence, the histogram of the differences has an average value quite close to zero and a very small
variance (as described in Figure 6a). On the contrary, when there is a movement in a cell, the histogram
of the differences tends to have much larger average and variance values.

Sensors 2017, 17, 1546 11 of 25

 0 50 100 150 200 250

(a)
 0 50 100 150 200 250

(b)
 0 50 100 150 200 250

(c)

Figure 8. Difference histograms for cells with a detected movements: (a) a dark cell, (b) a bright cell,
(c) a hot (white saturated, i.e., dazzled) cell. Vertical lines represent average (green), variance (red), and
the cell threshold (higher black line). All Gaussian curves have points in the origin.

Figure 9 reports the pseudo-code used to detect movements. The procedure receives as input the
video frame, the cell sub-set it has to manage, and several cell data fields computed (and constantly
updated), by all other modules. It sets the field movement of the analyzed cells to enable the tracking
performed by the dynamic tracking module (see Section 5). First of all, the procedure dynamically
selects a threshold (line 2) based on the class identifier (Section 4.2) and the cell transition field.
We use smaller thresholds for cells with low luminosity levels and larger thresholds for cells with high
luminosity levels. As a consequence, we set the current threshold equal to the cell threshold when
there is no warning in the transition field, whereas the threshold is increased when there is a warning
to cope with abrupt luminosity transitions. We would like to point out that the threshold value does
not change linearly, as its increments are larger in intermediate conditions (dim, sunrise, and bright),
and smaller in extreme conditions (such as black, dark, sunny, and heat). This threshold value is then
used on line 3 to set the variable result to true if the variance is higher than the threshold. At this
point we have ruled-out all noise derived from the luminosity level, but we still have to rule out false
movements coming from shadows detection. If there is a possible movement on a cell allowing shadow
problems (i.e., in dim, sunrise, and bright conditions), and we want to suppress shadow problems
(line 4), we analyze the field HSV of the cell (cell.v) by collecting (line 5) the number of pixels in the
background, in the shadow, and moving (variables background, shadow, and moving, respectively).
Then, we use those values to set the field cell.movement, which is true when the background includes
much more points (in this case we trust the static analysis), or when the moving pixels include more
points than the background or shadow sets. Actually, cell.movement is a down-counter, as the cell
where movement is detected has to remain active for a pre-defined number of frames. Then, its value
is set to the pre-defined constant when a movement is detected, it is decremented on each video frame,
and it considered to be true until it reaches zero.

MD ()
Input : FP, cellSubset, cell.RGB, cell.V, cell.threshold, cell.histogram, cell.transition
Output: cell.movement

1 for each cell in cellSubset
2 threshold = SELECTTHRESHOLD (cell.threshold, cell.transition)
3 result = MOVEMENT (cell.histogram, threshold)
4 if (result AND shadowSuppressor)
5 (background, shadow, moving) = FOREGROUND (cell.v)
6 if ((shadow+moving) < background OR moving > (background+shadow))
7 cell.movement = TRUE
8 else
9 cell.movement = result

Figure 9. Checking for movement: function MOVEMENT DETECTOR (MD).

Sensors 2017, 17, 1546 12 of 25

5. Dynamic (with Memory) Tracking

As introduced in Section 3 our dynamic tracking module executes one more concurrent thread.
This thread uses standard corner detection and optical flow algorithms, but it re-designs and optimizes
them for embedded systems, focusing only on those cells where the static tracking phase of Section 4
detects some movement (i.e., cells for which the field cell.movement is true).

To track pedestrians on multiple time frames we have to create reliable bounding boxes based on
relevant points. Statistically speaking, due to perspective changes, many points last only a few frames
before disappearing or becoming unstable. Due to this dynamic object behavior, the system creates
groups (or swarms) of points on the Region Of Interest (ROI) image computed on those cells on which
some movement has been detected.

All points belonging to the same swarm have the same identifier. Swarms are then tracked,
merged, and eventually ruled-out following the pseudo-code of Figure 10.

In the first section of the algorithm (lines 1–3) we track existing swarms. Every swarm already
present in the current image (line 1) is tracked using function OPTICALFLOW (line 2) derived
from [34–37]. For each swarm, the centroid of all points and the radius of the circle including those
points are computed and assigned to fields center and radius of the swarm by function TRACKING.
The average point of each swarm is used to track the swarm itself, using a Kalman filter [42] (line 3).

In the second section of the algorithm (lines 4–10) we generate new swarms. For each cell in
the video frame (line 4), if there is a movement (line 5) and there is no swarm in the cell (line 7),
the function GOODFEATURES [36,37,43,44] is used to create a new swarm (line 8) to be added in the
swarm list array. Similarly, if there is a movement (line 5) and the number of points of a swarm within
the cell is below a given threshold (line 9), the function GOODFEATURES is used to find more points to
insert in the point list of existing swarms (line 10).

DT ()
Input : FP, cell.movement<
Output: swarmList

// Swarm Tracking
1 for each swarm in swarmList
2 (swarm.center,swarm.radius) = TRACKING (swarm, OPTICALFLOW)
3 swarm.trajectory = KALMAN (swarm.center, hole)

// Swarm Generation
4 for each cell in FP
5 if (cell.movement==TRUE)
6 swarm = CHECK (swarmList)
7 if (swarm == NULL)
8 swarmList = swarmList ∪ (SWARM (GOODFEATURES(cell), hole))
9 if (swarm.point < threshold)

10 swarm.point = swarm.point ∪ (SWARM (GOODFEATURES(cell), hole))
// Swarm Merge and Elimination

11 for each swarm1 in swarmList
12 if (swarm1.point < threshold1 OR swarm1.radius > threshold2)
13 CLEAN (swarmList, swarm1)
14 else
15 for each swarm2 in swarmList
16 if (swarm2 6= swarm1 AND swarm2 ∈ swarm1)
17 swarm1 = MERGE (swarm1, swarm2)

Figure 10. Dynamic tracking (DT) function.

In the third section of the algorithm (lines 11–17) unstable swarms are excluded from the tracking
procedure. In line 11, the algorithm checks whether each tracked swarm has a number of representative
points in its support smaller than a threshold (namely threshold1), or the area it covers is larger than
another threshold (namely threshold2). In those cases, the swarm is not representative anymore
(as it is representing to few points or a too large area) and it is canceled from the set of tracked swarms

Sensors 2017, 17, 1546 13 of 25

(line 13). Otherwise, the swarm is compared with all other swarms (line 15) and if its centroid is within
the area covered by another swarm (line 16) it is merged (by function MERGE) with the new swarm.
In this case a unique swarm, whose borders include the two swarms original borders, is maintained.

Tracking Correction

Optical flow tracking, using functions OPTICALFLOW [34,35], and GOODFEATURES [43,44] is
prone to errors. A first error situation is represented by points on the scene which do not represent
any movements. Those points may be related to abrupt color or shape changes on the background
such as manhole covers, railings, etc. Points dynamically tracked may be attracted by those fixed
points, and they may become frozen themselves. A second error condition is the one in which different
swarms overlap with each other. In this situation, points belonging to a swarm may be attracted
by other swarms, changing direction. The effect of such errors is that swarms may become larger
and larger because they include points correctly belonging to the tracked object but also points not
belonging to it. One possible way to solve this problem is to analyze the swarm centroid at run time,
and ruling-out all points whose distances from the centroid are much larger that the distances average
value. This solution would be expensive to implement as it should be repeated for all swarms at
run-time. To eliminate the first source of problems, our tool creates the so-called hole model before
tracking objects, and then it uses this model in all subsequent phases to reduce tracking errors. When
building the hole model, the static movement detector (Section 4) works as usual, whereas the dynamic
tracking phase (Section 5) manipulates swarms as follows:

• We split the image frame into a cell grid, whose cells are much smaller than the ones introduced
in Section 4. We currently use cells of size w = 8 and h = 8 pixels.

• We record all activities produced by all points of the swarms running on each grid cell. Whenever
a swarm size increases beyond a certain threshold, we concentrate on points causing such a size
increment. Those points may possibly be anchors within the cell, i.e., formerly moving points,
now fixed to the background grid with a high attraction toward other moving points.

• We keep track of all problems and when they appear to be frequent enough on a grid cell, we
mark the cell as including anchor points, and, as a consequence, a possible source of tracking
errors. On the contrary, cells marked because of transient phenomenon (such as standing people)
may be reconsidered as normal cells after some time.

To eliminate all transient phenomenon happening on the video grid, the hole model generation
requires several minutes to rule-out all possible inconveniences from the video flow. When the hole
model becomes stable, it is not modified any more, and it is used by the tool during the dynamic
tracking phase (as indicated by the algorithm of Figure 10) in the following way:

• Every time we create or refresh a new swarm (lines 8 and 10 of Figure 10), we check all points
belonging to it. Whenever a point overlap an anchor we rule it out.

• During tracking (line 3 of Figure 10), if a moving point ends-up in an anchor area it is placed in
quarantine. Each point in quarantine is checked again for a few subsequent frames. If if is stuck to
the anchor, it is ruled-out; otherwise it is maintained. In other words, all points potential causing size
increments in a swarm are ruled-out from the swarm before producing any tracking problem.

• Every points not overlapping an anchor is manipulated in the standard way.

6. Experimental Results

In this section, we analyze our experimental setting and our experimental results. In more
details, Section 6.1 describes our hardware configuration and the benchmarks used for the experiments.
Section 6.2 reports considerations on how to trim the tool for tracking accuracy and time efficiency.
Section 6.3 discusses our tracking error correction system. Section 6.4 reports data regarding time
efficiency. Finally, Section 6.5 presents some comparisons with state of the art tools on publicly available
and annotated benchmarks.

Sensors 2017, 17, 1546 14 of 25

6.1. Hardware Configuration and Benchmarks

The adopted hardware configuration includes the following devices:

• In each grid node, a video camera Logitech HD Pro Webcam C920. This is a full HD
(up to (1920× 1080) pixels) camera with H.264 video compression, and automatic low-light correction.

• In all nodes there are CuBox-i4Pro embedded systems [45]. The CuBox-i is a compact
micro-computer (a cube of 2” size) with an ARM Cortex quad-core processor, a RAM of 2 GB,
a GC2000 GPU, and an external memory (on micro-SD) of 4 GB. In our application it runs the
Linux (Ubuntu 16.04-LTS) operating system.

• In the central unit, there is a reference workstation with an Intel i7 860470/2010, 8 MB cache
memory, a clock speed of 2.8 G Hz, 4 cores, 8 threads, 8 GBytes of main memory DDR III 1333,
and a Windows 7 operating system. We use it to run base-line comparison tests and to collect data
coming from different nodes of the embedded intelligence grid.

To reduce all experiments to a common denominator, we implemented a base movement tracking
algorithm (BMTA) based on OpenCV corner detection and optical flow analysis. This algorithm
manipulates all pixels on each video frame using the GOODFEATURESTOTRACK [36,37,43,44] function
plus a few algorithmic optimization presented in [11,30]. We use this tool as a reference point for all
comparisons. In this way, we avoid to manually tag and inspect very long video sequences.

As far as video sequences are concerned, we use home-made generated video sequences to
analyze and trim our system, and both home-made and publicly domain benchmarks to evaluate
it. Regarding publicly domain benchmarks, we focus on scenarios taken from the BIWI Walking
Pedestrians dataset by Pellegrini et al. [46,47], the Crowds-by-Example dataset by Lerner et al. [48,49],
and others such as the ones from Roth et al. [50] or Riemenschneider [51]. Even if those videos are
based on different standards and formats, we transformed and manipulated all of them as VGA videos
with 640× 480 pixels. Figure 11 shows two typical working scenarios for our application in which a
camera, placed at the second floor of a building, it is framing a pedestrian intersection area. The one on
the left-hand side is home-made, and it is a quite heterogeneous, as it includes two buildings and a long
white canopy. Notice that the two buildings have different colors, and the one on the right-hand side
of the picture is covered by reflecting dark glasses. The one on the right-hand side is taken from [49]
(the UNIVERSITY STUDENTS dataset), and it includes very crowded areas. Both pictures highlight
all main (six overall) pedestrian flows, partially overlapping and hidden by other artifacts, and the
grid generated by our divide-and-conquer strategy and used in all application phases. Those flows
can be used by function SELECT (see the beginning of Section 4) to optimize our divide-and-conquer
strategy. The same area of Figure 11a appears in Figure 12 with very dark building shadows (a),
extreme luminosity conditions (b), and large and light shadows for all moving objects (c). Figure 12d
(taken from the SEQ_HOTEL data set of [47]) shows moving trees and branches which partially occlude
the analyzed area. Again in the same scenario, Figure 13 shows a situation in which the weather is
changing very rapidly (notice the same party of two people talking at the corner of the white canopy)
from a slightly somber overcast situation to a highly bright and shaded condition. The system has to
adapt to this change to balance the rumors, that shadows and bright lights, add to the scene.

Sensors 2017, 17, 1546 15 of 25

(a) (b)

Figure 11. Two typical working scenarios for our application ((a) home-made, (b) taken from [49]),
highlighting six main pedestrian flows which can be used to optimize the divide-and-conquer
procedure represented by the grid overlapping both pictures.

(a) (b)

(c) (d)

Figure 12. A few working scenarios with different weather conditions and occlusions. (a) Very dark
building shadows, (b) extreme luminosity conditions, (c) large and light shadows for all moving objects,
and (d) tree occlusions.

Sensors 2017, 17, 1546 16 of 25

(a) (b)

(c) (d)

Figure 13. Working conditions with abrupt weather change: From dim (a), to sunrise (b), bright (c).
and heat (d).

6.2. Parameters Setting

In this subsection, we mainly analyze the effects of our divide-and-conquer strategy on a video
sequence including 15, 000 frames (about 10 min).

Table 1 shows how we select the value of N and M to partition the image frame F into the
partitioned frame FP (see Figure 1). The table reports some statistics as a function of N and M,
using in all cases the maximum possible refreshing rate (i.e., SIZE = N × M). Column CELLS

reports the number of cells (out of N ×M) on which the tool detects movement, column # PIXELS

the corresponding area in terms of pixels, and column % PIXELS the ratio between this last number
and the total number of pixels in the image. Finally, column % IDENTIFICATION ERROR reports
the error of the static tracking phase, i.e., the percentage number of frames in which the tool fails to
report a movement detected by the BMTA algorithm. Notice that those errors are further reduced by
the dynamic tracking and error correction system. If we analyze column % PIXELS, we realize that from
N = M = 10 to N = M = 20 the algorithm has a quite steady behavior and it detects all moving
pixels (about 50% overall) within the working area. For larger cells, it overestimates the number of
pixels belonging to cells on which a movement has been detected. For smaller cells, it underestimates
it, because the cells include so little information that module DLD produces useless histograms. At the
same time, column % IDENTIFICATION ERROR shows how movement detection errors tend to reach a
minimum around N = M = 16. Those considerations motivate our decision to select N = M = 16 for all
subsequent experiments.

Table 2 shows the impact of the refreshing rate (i.e., SIZE) in our computations. As previously
described, columns SIZE and REFRESHING RATE indicate the refreshing rate (i.e., with SIZE = 1
every cell is manipulated every 256 frames, whereas with SIZE = 256 every cell is manipulated at
every frame). Column % CELL ACTIVATION DETECTION shows the ratio between the movement as
detected using our cell strategy and the one detected by the reference algorithm BMTA. For example,

Sensors 2017, 17, 1546 17 of 25

with the maximum refreshing rate of SIZE = 256, the tools detects 94.9% of BMTA movements (i.e.,
100%− 5.1%, which is the error reported by Table 1 for N = M = 16), whereas with SIZE = 16 it
detects only the 87.5%. This column shows that the tool is able to catch almost all grid movements
with a SIZE larger than 16. At the same time columns CPU TIME and FPS show how CPU times
(in milliseconds) and frame-per-seconds vary as a function of the refreshing rate. To have a more
intuitive and graphical representation of the relationship among the cell activation and the refreshing
rate, Figure 14 plots the first a function of the last one. Figure 14a concentrates on standard weather
conditions, whereas Figure 14b focuses on more adverse conditions. Table 2 and Figure 14 show that
the best compromise is reached for a refreshing rate equal to 8 frames (SIZE = 32), which is also the
value we use in our standard setting.

Table 1. Number of moving pixels (cells) detected as a function of the partitioning thresholds N and M.

N M # CELLS # PIXELS % PIXELS % IDENTIFICATION ERROR

4 4 10 192,000 62.5 22.4
8 4 19 182,400 59.3 18.8
8 8 37 177,600 57.9 14.3

10 8 45 172,800 56.2 13.1
10 10 58 165,888 54.0 10.2
14 10 78 157,248 51.1 6.8
16 16 128 153,600 50.0 5.1
20 16 162 155,520 50.6 6.2
20 20 209 160,512 52.2 8.4
28 20 272 143,616 46.7 11.0
32 32 459 137,700 44.8 19.4
40 40 687 131,904 42.9 22.8
64 48 1250 125,000 40.6 36.1

Table 2. Cell activation detection error as a function of the refresh rate.

SIZE REFRESHING RATE % CELL ACTIVATION DETECTION CPU TIME [MS] FPS

1 256 78.5 46.15 22
2 128 81.7 47.19 21
4 64 82.9 49.25 20
8 32 84.4 55.93 18

16 16 87.5 57.51 17
32 8 93.9 58.11 17
64 4 94.2 73.31 13
128 2 94.6 88.97 11
256 1 94.9 105.33 9

Sensors 2017, 17, 1546 18 of 25

 75

 80

 85

 90

 95

 100

1 2 4 8 16 32 64 128 256

%

C
e
l
l

a
c
t
i
v
a
t
i
o
n

d
e
t
e
c
t
i
o
n

Refresh Rate

video 1

video 2

video 3

video 4

video 5

(a)

 70

 75

 80

 85

 90

 95

 100

1 2 4 8 16 32 64 128 256

C
P
U

T
i
m
e

[
m
s
]

Refresh Rate

black
dark
dim

sunrise
brigth
sunny

heat

(b)

Figure 14. Cell activation detection as a function of the refresh rate: (a) Standard weather, (b) Black,
dark, dim, sunrise, bright, sunny, heat weather conditions.

6.3. Dynamic Tracking Error Correction

Table 3 shows data coming from our dynamic tracking system (Section 5), showing the impact
on result accuracy of our hole model and tracking correction system. We present some results on the
same video used in Section 6.2. As previously described, column SIZE indicates the complement
of the refreshing rate. Columns # PIXELS reports the average number of support points of each
swarm (column SUPPORT), and the number of BMTA pixels covered by the same swarm (column
COVERED). This implies that with a very small number of points (about three) each swarm is able to
represent movements described by a large number of BMTA points (up to 50). Column # SWARMS

PER POINT indicates the number of swarms which cover each single BMTA point on each video frame.
This column indicates that from SIZE > 8 each point is covered by at least one swarm for its entire life.
For the sake of exemplification, Figure 15 illustrates movement annotations (white lines), as given by
the original authors, and the swarms generated by the system (white dotted circles) on two different
video frames taken from [47,49]. It is possible to notice that many swarms cover each annotation,
whereas other are really close to them.

(a) (b)

Figure 15. Relationship between computed swarms and movement annotations, for two videos taken
from [47] (a), and [49] (b). Our swarms proved to cover annotations in a complete and constant way
along the video.

The next four columns compare data with and without the hole model. Columns 5 and 6 report
the number of swarms which have been active for at least a minimum number of video frames
(about 10), with and without our hole model, respectively. As indicated by the pseudo-code of
Figure 10 (lines 12–13) when a swarm deteriorates (i.e., its number of support points goes below a

Sensors 2017, 17, 1546 19 of 25

certain threshold or its size increases too much) it is canceled from the swarm list. As columns 6 reports
a much higher number of swarms compared to column 5, the hole model proved to be quite effective
in stabilizing swarms and point tracking. A similar consideration holds analyzing columns 7 and 8,
reporting (in percentage) the area overlap among different swarms. Again without the hole model,
swarms do overlap much more indicating a higher level of instability and redundancy, coupled with a
smaller representativity and duration (columns 5 and 6).

Following Table 3, and considering several video frames, Figure 16a plots column 3 with respect
to column 2 of Table 3, i.e., the number of covered points for each swarm versus the number of support
points. Again, as the first value is about 10 times larger than the second, we are able to represent
with a low effort a large number of moving points. Similarly, Figure 16b plots the number of swarm
points that remain “frozen”, i.e., stuck on some image key-point, with and without our error correction.
In this case, the first set of values is about 30% smaller than the second one, showing the same error
correction ability.

Table 3. Swarm statistics.

SIZE # PIXELS # SWARMS PER POINT # SWARMS SWARM OVERLAP

SUPPORT COVERED [%] NO HOLE MODEL HOLE MODEL NO HOLE MODEL HOLE MODEL

1 3.05 50.59 0.25 143 178 0.30 0.17
2 3.61 54.38 0.66 199 298 0.60 0.47
4 3.34 48.53 0.80 291 470 0.79 0.54
8 3.10 41.81 0.90 421 699 1.03 0.61

16 2.91 41.24 1.10 501 950 1.14 0.75
32 3.00 39.71 1.35 540 1143 1.48 0.97
64 2.86 38.69 1.37 648 1357 1.67 1.08

128 2.75 33.60 1.33 758 1557 1.91 1.12
256 2.68 33.45 1.44 817 1711 1.97 1.20

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

#

C
o
v
e
r
e
d

P
o
i
n
t
s

Support Points

(a)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

#

F
r
e
e
z
e
d

P
o
i
n
t
s

(
h
o
l
e

s
u
p
p
o
r
t
)

Freezed Points (no hole support)

(b)

Figure 16. (a) Number of support points versus number of base movement tracking algorithm
(BMTA)-represented points by a single swarm. (b) Number of frozen points with no hole support
versus number of frozen points with hole support.

6.4. Time Efficiency

In this sub-section we present the running times of our application using different settings.
Figure 17 compares the “wall-clock times” of the reference strategy (BMTA) while running on our

desktop workstation with the one adapted to run on our embedded system. Notice that the wall-clock
time is the time necessary to a (mono-thread or multi-thread) process to complete its job on a new
input image, i.e., the difference between the time at which an image is completely handled and the
time at which this task started. For this reason, the wall-clock time is also known as “elapsed time”.
The plot shows that the embedded system is about three times slower than the workstation to run
the same reference algorithm, and it is able to deal with a single video frame in a time ranging from
about 140 to about 240 milliseconds ([ms]). The slowest time entails about 5 frames per seconds which,

Sensors 2017, 17, 1546 20 of 25

as stated right in the introduction, are not adequate for a real-time application and motivate our work.
The workstation requires from about 60 to 100 milliseconds per frame, allowing at least 10 frames
per second.

Figures 18 and 19 demonstrate the impact of our divide-and-conquer strategy in terms of time
efficiency. Figure 18 plots the wall-clock times required by our application when running on the
embedded system in sequential mode (i.e., with multi-threading disabled) as a function of the
refreshing rate. As before, all CPU times are expressed in milliseconds. Figure 18a concentrates
on standard weather conditions, whereas Figure 18b focuses on more adverse weather conditions, and
crowded contexts, requiring larger times. The two graphs prove that the divide-and-conquer strategy
may reduce elapsed times by a factor of 2. As previously described, to obtain the right balance between
time efficiency and detection accuracy, we selected a refresh rate equal to 32 cells per frame. Figure 19a
compares our tool using this refreshing rate with the highest possible one. The graph shows a gain of a
factor of about 2. Figure 19b relates wall clock-times of the multi-threaded implementation with the
ones of the sequential version, both of them running with a refresh rate of 32. The concurrent version
(running 5 threads) is about two times faster on average.

 50

 100

 150

 200

 250

 50 100 150 200 250

E
m
b
e
d
d
e
d

[
m
s
]

Workstation [ms]

Figure 17. Reference algorithm: Comparing running times on the desktop workstation against the
ones gathered on the embedded system.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 32 64 128 256

W
a
l
l
-
c
l
o
c
k

t
i
m
e

[
m
s
]

Refresh Rate

video 1

video 2

video 3

video 4

video 5

video 6

video 7

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 4 8 16 32 64 128 256

W
a
l
l
-
c
l
o
c
k

t
i
m
e

[
m
s
]

Refresh Rate

black
dark
dim

sunrise
bright
sunny

heat

(b)

Figure 18. Computation times of our implementation (with no multi-threading) as a function of the
refresh rate on the embedded system. Standard (a), and extreme (black, dark, dim, sunrise, bright,
sunny, heat) weather conditions (b).

Sensors 2017, 17, 1546 21 of 25

 60

 80

 100

 120

 140

 60 80 100 120 140

R
e
f
r
e
s
h

R
a
t
e

3
2

[
m
s
]

Refresh Rate 256 [ms]

(a)

 30

 40

 50

 60

 70

 30 40 50 60 70

M
u
l
t
i
-
T
h
r
e
a
d
e
d

[
m
s
]

Sequential [ms]

(b)

Figure 19. Comparing computation times on the embedded system: (a) The sequential implementation
with two different refresh rates, and (b) The multi-threaded version versus the sequential one.

Finally, Figure 20 compares BMTA with our multi-threaded strategy with the selected cell size
and refreshing rate. In Figure 20a the reference version runs on the desktop workstation whereas our
implementation runs on the embedded system. Our implementation proved to be about 1.9 times faster.
In Figure 20b both the reference and our tool run on the desktop workstation. In this case, representing
the final apple-to-apple comparison, our implementation is about 4–5 times faster. This definitely
enables run-times embedded applications.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 30 40 50 60 70 80 90 100 110

O
u
r

t
o
o
l

o
n

e
m
b
e
d
d
e
d

[
m
s
]

BMTA on workstation [ms]

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 30 40 50 60 70 80 90 100 110

O
u
r

t
o
o
l

o
n

w
o
r
k
s
t
a
t
i
o
n

[
m
s
]

BMTA on workstation [ms]

(b)

Figure 20. Comparing computation times: BMTA running on a desktop workstation versus our
divide-and-conquer concurrent approach running on the embedded system (a), and the desktop
workstation (b).

6.5. Comparison with the State-of-the-Art Tools on Standard Benchmarks

In this section we compare our results, on publicly available benchmarks, with the performance
of some prior state-of-the-art techniques.

We use the following data-sets: BIWI Walking Pedestrians data-set by Pellegrini et al. [46,47]
(SEQ_ETH and SEQ_HOTEL), and Crowds-by-Example by Lerner et al. [48,49] (ZARA01, ZARA02, and
UNIVERSITY STUDENTS). All these sequences are captured from a more or less aerial and oblique views.
Those benchmarks have been used by many authors [52–58] for different purposes from tracking to
human behavior prediction in crowded scenes.

We compare the accuracy (in terms of pedestrians tracked in the video sequence) and speed
(in terms of frames per second) of the following online algorithms: Online Boosting [59], KMS [60],
SMS [61], ASLA [62], Frag [63]. and AdaPT [54]. Table 4 reports our data. The first row indicates the
total number of pedestrians in the corresponding video sequence. All other rows report the accuracy,

Sensors 2017, 17, 1546 22 of 25

and the maximum number of frame per seconds, for all strategies. For our method, we show both the
workstation and the embedded system frame rates (the accuracy values are the same).

Table 4. Accuracy (in terms of pedestrians tracked in the video sequence) and speed (in terms of
frames per second) of the following online algorithms: Our Method compared to Online Boosting [59],
KMS [60], SMS [61], ASLA [62], Frag [63], and AdaPT [54].

SEQ_ETH SEQ_HOTEL ZARA01 ZARA02 UNIVERSITY STUDENTS
ACC FPS ACC FPS ACC FPS ACC FPS ACC FPS

Total Number of Pedestrians 367 420 148 204 434
Our Method (on Workstation) 258 59 295 57 104 58 143 58 303 53
Our Method (on Embedded) 27 26 26 27 21
Online Boosting 241 26 258 27 61 27 65 27 278 25
KMS 259 7 287 7 69 7 72 7 291 7
SMS 98 33 112 35 32 35 33 35 226 32
ASLA 201 16 220 16 54 16 57 17 294 15
Frag 262 8 265 8 68 7 70 7 224 7
AdaPT 178 20 156 19 36 21 32 19 281 18

In summary, we can make the two following observations. First of all, it can be noticed that
our implementation obtains comparable (if not better) results in terms of accuracy. This is somehow
unexpected, and it may be due to the fact that all other methods are all not properly trimmed for
the analyzed scenarios. This consideration can be partially supported by the relative low detection
rate, even if this can be balanced by the complexity of those scenarios. Secondly, our tools proved
to be much faster then all other techniques, especially when comparing the version running on the
workstation. This is somehow not surprising, time efficiency being one of the main targets of our work.
Moreover, the advantage of the workstation with respect to the embedded system is somehow not as
high as expected, and this is partially due to the fact that the application was born, and it has been
explicitly optimized, for the embedded system.

7. Conclusions

This work presents a system for moving object exposure, focusing on pedestrian detection,
in external, unfriendly and heterogeneous environments. The system orchestrates well-known robust
and efficient detection and tracking techniques to obtain good results in diversified scenarios, and
its power relies more on the overall receipt than on specific algorithmic details. The application is
designed to work with fixed and inexpensive off-the-shelf video cameras mounted at a few meters from
the ground, and to run on embedded systems with finite computational resources. Experimental results
on several video sequences show robustness and accuracy of the overall detection strategy beyond
current state-of-the-art approaches, and enables real-time applications on inexpensive embedded units
of those technologies.

Acknowledgments: This work has been supported in part by a grant from Telecom Italia. Grateful
acknowledgment is hereby made to Telecom Joint Open Lab (Torino) and Telecom Italia Future Centre (Venezia).

Author Contributions: Alessandro Garbo developed the tool. Alessandro Garbo and Stefano Quer conceived
and designed the experiments and analyzed the data. Stefano Quer wrote the paper.

Conflicts of Interest: The authors declare any conflict of interest.

References

1. Bergeaud, F.; Mallat, S. Matching Pursuit of Images. In Proceedings of the International Conference on
Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 1, pp. 53–56.

2. Jain, A.K.; Karu, K. Learning Texture Discrimination Masks. IEEE Trans. Pattern Anal. Mach. Intell.
1996, 18, 195–205.

3. Phillips, P.J. The design of matching pursuit filters. Network 1998, 9, 1–17.

Sensors 2017, 17, 1546 23 of 25

4. Cucchiara, R.; Grana, C.; Neri, G.; Piccardi, M.; Prati, A. The Sakbot System for Moving Object Detection and
Tracking. In Video-Based Surveillance Systems: Computer Vision and Distributed Processing (Part II—Detection
and Tracking); Kluwer Academic Publishers: Berlin, Germany, 2001; pp. 145–158.

5. Leone, A.; Distante, C. Shadow Detection for Moving Objects Based on Texture Analysis. Pattern Recogn.
2007, 40, 1222–1233.

6. Zivkovic, Z.; van der Heijden, F. Efficient Adaptive Density Estimation Per Image Pixel for the Task of
Background Subtraction. Pattern Recogn. Lett. 2006, 27, 773–780.

7. Zivkovic, Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction. In Proceedings
of the 17th International Conference on Pattern Recognition (ICPR’04), Cambridge, UK, 26 August 2004;
IEEE Computer Society: Washington, DC, USA, 2004; Volume 2, pp. 28–31.

8. Lempitsky, V.; Zisserman, A. Learning To Count Objects in Images. In Proceedings of the 23rd
International Conference on Neural Information Processing Systems (NIPS’10), Vancouver, BC, Canada,
6–9 December 2010; Curran Associates Inc.: Red Hook, NY, USA, 2010; pp. 1324–1332.

9. Rodriguez, M.; Laptev, I.; Sivic, J.; Audibert, J.Y. Density-aware person detection and tracking in
crowds. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain,
6–13 November 2011; pp. 2423–2430.

10. Shu, G.; Dehghan, A.; Oreifej, O.; Hand, E.; Shah, M. Part-based multiple-person tracking with partial
occlusion handling. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 16–21 June 2012; pp. 1815–1821.

11. Dehghan, A.; Idrees, H.; Zamir, A.R.; Mubarak, S. Automatic Detection and Tracking of Pedestrians in
Videos with Various Crowd Densities. In Pedestrian and Evacuation Dynamics 2012; Springer International
Publishing: Cham, Switzerland, 2014; pp. 3–19.

12. Bottino, A.; Garbo, A.; Loiacono, C.; Quer, S. Street Viewer: An Autonomous Vision Based Traffic Tracking
System. Sensors 2016, 16, 813.

13. Viola, P.; Jones, M.J.; Snow, D. Detecting pedestrians using patterns of motion and appearance. In Proceedings
of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 2,
pp. 734–741.

14. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: A benchmark. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009;
pp. 304–311.

15. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05), San Diego, CA,
USA, 20–25 June 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 886–893.

16. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively
Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645.

17. Ouyang, W.; Wang, X. Single-Pedestrian Detection Aided by Multi-pedestrian Detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 3198–3205.

18. Yan, J.; Zhang, X.; Lei, Z.; Liao, S.; Li, S.Z. Robust Multi-resolution Pedestrian Detection in Traffic Scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 3033–3040.

19. Anwer, R.M.; Vázquez, D.; López, A.M. Opponent Colors for Human Detection. In Proceedings of the 5th
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2011), Las Palmas de Gran Canaria,
Spain, 8–10 June 2011; Vitrià, J., Sanches, J.M., Hernández, M., Eds.; Springer: Berlin/Heidelberg, Germany,
2011; pp. 363–370.

20. Xu, J.; Ramos, S.; Vázquez, D.; López, A.M.; Ponsa, D. Incremental Domain Adaptation of Deformable
Part-based Models. In Proceedings of the British Machine Vision Conference 2014, Nottingham, UK,
1–5 September 2014.

21. Viola, P.; Jones, M. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154.
22. Paisitkriangkrai, S.; Shen, C.; van den Hengel, A. Efficient pedestrian detection by directly optimize the

partial area under the ROC curve. arXiv 2013, arXiv:1310.0900.

Sensors 2017, 17, 1546 24 of 25

23. Costea, A.D.; Nedevschi, S. Word Channel Based Multiscale Pedestrian Detection without Image Resizing
and Using Only One Classifier. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2393–2400.

24. González, A.; Villalonga, G.; Xu, J.; Vázquez, D.; Amores, J.; López, A.M. Multiview random forest of local
experts combining rgb and lidar data for pedestrian detection. In Proceedings of the 2015 IEEE Intelligent
Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 356–361.

25. Ouyang, W.; Wang, X. Joint Deep Learning for Pedestrian Detection. In Proceedings of the IEEE International
Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2056–2063.

26. Luo, P.; Tian, Y.; Wang, X.; Tang, X. Switchable Deep Network for Pedestrian Detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 899–906.

27. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection. arXiv 2015, arXiv:1506.02640.

28. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Alexander, B. SSD: Single shot multibox
detector. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 21–37.

29. Mason, M.; Duric, Z. Using histograms to detect and track objects in color video. In Proceedings of the AIPR
2001 30th Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 10–12 October 2001;
pp. 154–159.

30. Varcheie, P.D.Z.; Sills-Lavoie, M.; Bilodeau, G.A. An Efficient Region-Based Background Subtraction
Technique. In Proceedings of the Canadian Conference on Computer and Robot Vision (CRV),
Windsor, ON, Canada, 28–30 May 2008; pp. 71–78.

31. Stauffer, C.; Grimson, W.E.L. Adaptive Background Mixture Models for Real-Time Tracking. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), Fort Collins, CO, USA,
23–25 June 1999; pp. 2246–2252.

32. Bouwmans, T.; Baf, F.E.; Vachon, B. Background modeling using mixture of gaussians for foreground
detection—A survey. Recent Pat. Comput. Sci. 2008, 1, 219–237.

33. Boreczky, J.S.; Rowe, L.A. Comparison of video shot boundary detection techniques. J. Electron. Imaging
1996, 5, 122–128.

34. Bouguet, J.Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the
algorithm. Intel Corp. 2001, 5, 4.

35. Lucas, B.D.; Kanade, K. An iterative image registration technique with an application to stereo vision.
In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada,
24–28 August 1981; pp. 674–679.

36. Itseez. Open Source Computer Vision Library. Available online: https://github.com/itseez/opencv
(accessed on 1 June 2017).

37. Itseez. The OpenCV Reference Manual, 2.4.9.0 ed.; Open Source Computer Vision Library; Available online:
http://ecee.colorado.edu/~siewerts/extra/ecen5763/ecen5763_doc/opencv2refman.pdf (accessed on
30 June 2017).

38. Trivedi, M.; Mikic, I.; Kogut, G. Distributed Video Networks for Incident Detection and Management.
In Proceedings of the 2000 IEEE Intelligent Transportation Systems, Dearborn, MI, USA, 1–3 October 2000;
pp. 155–160.

39. Mikic, I.; Cosman, P.C.; Kogut, G.T.; Trivedi, M.M. Moving Shadow and Object Detection in Traffic
Scenes. In Proceedings of the 15th IEEE International Conference on Pattern Recognition, Barcelona, Spain,
3–7 September 2000; Volume 1, pp. 321–324.

40. Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A. Detecting moving Objects, Ghosts, and Shadows in Video
Streams. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1337–1342.

41. Patel, U.; Shah, P.; Panchal, P. Shot detection using pixel wise difference with adaptive threshold and color
histogram method in compressed and uncompressed video. Int. J. Comput. Appl. 2013, 64, 4.

42. Maybeck, P.S. Chapter The Kalman Filter: An Introduction to Concepts. In Autonomous Robot Vehicles;
Springer: New York, NY, USA, 1990; pp. 194–204.

43. Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the Fourth Alvey Vision
Conference, Manchester, UK, 31 August–2 September 1988; pp. 23.1–23.6, doi:10.5244/C.2.23.

https://github.com/itseez/opencv
http://ecee.colorado.edu/~siewerts/extra/ecen5763/ecen5763_doc/opencv2refman.pdf

Sensors 2017, 17, 1546 25 of 25

44. Shi, J.; Tomasi. Good features to track. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 21–23 June 1994; pp. 593–600.

45. The CuBox-i. Available online: http://www.axis.com/global/en/products/axis-p13-series/ (accessed on
15 September 2015).

46. Pellegrini, S.; Ess, A.; Schindler, K.; van Gool, L. You’ll never walk alone: Modeling social behavior for
multi-target tracking. In Proceedings of the IEEE 12th International Conference on Computer Vision,
Kyoto, Japan, 29 September–2 October 2009; pp. 261–268.

47. CVL Computer Vision Lab: BIWI Walking Pedestrian Dataset. Available online: http://www.vision.ee.ethz.
ch/datasets/index.en.html (accessed on 1 June 2017).

48. Lerner, A.; Chrysanthou, J.; Lischiaski, D. Crowds by Examples. Comput. Gr. Forum 2007, 26, 655–664.
49. UCY Computer Graphics Lab: “Crowds-by-Example” Data Set. Available online: https://graphics.cs.ucy.ac.

cy/research/downloads/crowd-data/ (accessed on 1 June 2017).
50. Roth, P.M.; Sternig, S.; Grabner, H.; Bischof, H. Classifier grids for robust adaptive object detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 2727–2734.

51. Riemenschneider, H. Yet Another Computer Vision Index to Datasets (YACVID). Available online:
http://riemenschneider.hayko.at/vision/dataset/index.php?filter=+pedestrian (accessed on 1 June 2017).

52. Yücel, Z.; Zanlungo, F.; Ikeda, T.; Miyashita, T.; Hagita, N. Deciphering the crowd: Modeling and
identification of pedestrian group motion. Sensors 2013, 13, 875–897.

53. Mazzon, R.; Poiesi, F.; Cavallaro, A. Detection and tracking of groups in crowd. In Proceedings of
the 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
Krakow, Poland, 27–30 August 2013; pp. 202–207.

54. Bera, A.; Galoppo, N.; Sharlet, D.; Lake, A.; Manocha, D. AdaPT: Real-time Adaptive Pedestrian Tracking for
Crowded Scenes. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 31 May–7 June 2014; pp. 1801–1808.

55. Khan, S.D.; Vizzari, G.; Bandini, S.; Basalamah, S. Detection of social groups in pedestrian crowds using
computer vision. In Proceedings of the International Conference on Advanced Concepts for Intelligent
Vision Systems, Catania, Italy, 26–29 October 2015; pp. 249–260.

56. Liu, W.; Chan, A.B.; Lau, R.W.H.; Manocha, D. Leveraging Long-Term Predictions and Online-Learning in
Agent-based Multiple Person Tracking. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 399–410.

57. Maksai, A.; Wang, X.; Fleuret, F.; Pascal, P. Globally Consistent Multi-People Tracking using Motion Patterns.
arXiv 2016, arXiv:1612.00604.

58. Alahi, A.; Ramanathan, V.; Goel, K.; Robicquet, A.; Sadeghian, A.A.; Fei-Fei, L.; Savarese, S. Learning to
predict human behaviour in crowded scenes. In Group and Crowd Behavior for Computer Vision; Elsevier:
Amsterdam, The Netherlands, 2017; p. 183.

59. Babenko, B.; Yang, M.H.; Belongie, S. Visual tracking with online multiple instance learning. In Proceedings
of the Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009;
pp. 983–990.

60. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-Based Object Tracking. IEEE Trans. Pattern Anal. Mach. Intell.
2003, 25, 564–575.

61. Collins, R.T. Mean-shift blob tracking through scale space. In Proceedings of the 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003.

62. Jia, X. Visual Tracking via Adaptive Structural Local Sparse Appearance Model. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’12), Providence, RI, USA,
16–21 June 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 1822–1829.

63. Adam, A.; Rivlin, E.; Shimshoni, I. Robust Fragments-based Tracking Using the Integral Histogram.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR ’06), New York, NY, USA, 17–22 June 2006; IEEE Computer Society: Washington, DC, USA, 2006;
Volume 1, pp. 798–805.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.axis.com/global/en/products/axis-p13-series/
http://www.vision.ee.ethz.ch/datasets/index.en.html
http://www.vision.ee.ethz.ch/datasets/index.en.html
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data/
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data/
http://riemenschneider.hayko.at/vision/dataset/index.php?filter=+pedestrian
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works and Comparisons
	Designing the Application
	The Dispatcher
	The Static Movement Detector
	The Dynamic Tracking Module

	Static (without Memory) Movement Detector
	Building a Background Model: Function BS
	Dealing with Static Luminosity Information: Function SLD
	Dealing with Dynamic Luminosity Information: Function DLD
	Detecting Movements on the Grid: Function MD

	Dynamic (with Memory) Tracking
	Experimental Results
	Hardware Configuration and Benchmarks
	Parameters Setting
	Dynamic Tracking Error Correction
	Time Efficiency
	Comparison with the State-of-the-Art Tools on Standard Benchmarks

	Conclusions

