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Abstract: Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors
powered by limited energy resources. Clustering techniques were introduced to prolong network
longevity offering the promise of green computing. However, most existing work fails to consider
the network coverage when evaluating the lifetime of a network. We believe that balancing the
energy consumption in per unit area rather than on each single sensor can provide better-balanced
power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its
Multihop version BEEM can not only extend the network longevity, but also maintain the network
coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher
degree of diversities in terms of communication abilities and user scenarios, supporting a large range
of real world applications. The IoT devices are embedded with multiple communication interfaces,
normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running
on those devices can generate various types of data. Every interface has its own characteristics, which
may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available
on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also
pressingly demanded in order to cater for differing user applications. In this paper, we present a smart
clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient
and Quality of user Experience (QoE) supported communication in cluster based IoT networks.
It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial
communication interfaces and cluster headers for data transmission. Experimental results have
proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage
sensitive longevity.
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1. Introduction

In this section, we provide the background study for our work. Firstly, we illustrate clustering
techniques for Wireless Sensor Networks (WSNs). Then we discuss the trend of transformation from
WSNs to Internet of Things (IoT). Thirdly, we clarify the need for clustering, and corresponding
challenges of applying such a technique for IoT systems, in Multiple-In-Multiple-out (MIMO) featured
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5G environments. Finally, a brief idea of our proposed solution and the structure of this paper
are presented.

1.1. Clustering for WSNs

Wireless Sensor Networks (WSNs) are networks composed of distributed micro-devices
embedded with various sensing abilities (called sensors), which are used to monitor the environment
and send the information back to a central Base Station (BS) [1,2]. WSNs typically include a large
number of sensors that are equipped with limited energy resources, but are required to operate
without recharging or replacing batteries for extended periods of time. Energy efficient communication
solutions for WSNs are highlighted by many researchers [3,4]. In order to prolong a networks longevity,
clustering techniques have been introduced to achieve energy efficient communication between sensors.
A clustering algorithm can partition sensors into different clusters/groups, as shown in Figure 1.
In each cluster, a Cluster Header (CH) is elected to be in charge of generating a transmission schedule,
gathering data from all the sensors in the cluster and transmitting the assembled data back to the BS.
Based on the clustered structure, the system can maintain a longer life by scheduling the duty cycle
between the sensors within a cluster, without harming the functionality of the network. In addition
to saving energy from scheduling, a sensor can also reduce energy consumption from communication
since it only needs to communicate with a local CH rather than a far located BS. Clustering techniques
can decompose sensors within a WSN into different clusters. After joining a cluster, a sensor normally
only needs to communicate with its own CH. A CH can communicate with the BS directly or through
other CHs, as shown in Figure 1. The routing between the sensors in the same cluster is called
intra-cluster routing. The routing between the CHs and the BS is called inter-cluster routing. The routing
scheme can be either single hop or multihop, and is dependent upon several factors, such as the
objectives of a clustering algorithm or the communication capability of the sensors.

Figure 1. An Example of Cluster-Based WSN.

1.2. From WSNs to IoT

WSNs were originally proposed for military surveillance purposes [5]. Due to its early success,
this technology was then envisioned for use in applications such as habitat monitoring [6], weather
monitoring [7], agriculture monitoring [8] and wildlife monitoring [9]. The revolution that is necessary
to ensure WSN technologies flourish in a similar manner requires more effort in simplifying design,
implementation, deployment and usability. The societal impact of WSNs is highly influenced by
the number of the users, which is itself determined by the quality and the quantity of the available
applications. Currently, there is an urgent need to inspire developers to build more useful Over The
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Top (OTT) applications to improve people’s life quality or experience. Therefore, the concepts of
Internet of Things (IoT) [10] and Internet of Everything (IoE) [11] have been proposed and popularised
through concepts such as smart buildings/home, smart cities, smart roads and connected cars [12,13].
WSNs came first, providing the enabling technological foundations for IoT.

The fundamental difference between WSNs and IoT is that the dynamics and diversities in IoT
are much higher than that in WSNs, which include the following aspects:

1. Applications: Traditional WSN applications are mainly focusing on monitoring the environment
and then collecting the data. The sensors are deployed at fixed locations in the field. The volume
of the data transmitted in the network is small. However, IoT applications can range from smart
kitchen to smart city monitoring. All the applications in these systems have specific requirements
on the network performance. For instance, the smart road lighting application in a smart road
system requires short delays. The communication for the cameras in smart monitoring systems
requires high bandwidth.

2. IoT devices: WSN systems normally have homogeneous sensors, in terms of sensing ability,
processing capability and power supply. This feature has simplified the design of the relevant
protocols, such as routing protocols. However, in IoT systems, this feature is no longer applied.
For example, in a smart home system, the fridge, the vacuuming robot and the light sensing
devices all have their own functionalities and characteristics in this system. Furthermore,
the devices in IoT systems are no longer limited to those basic sensors.

3. Communication ability: Since the features of the connected devices in IoT systems vary a lot,
their communication capabilities including communication range, communication band and
communication power consumption are all different.

4. Number of connected devices: By the end of 2020, according to Cisco, there will be over 50 billion
connected devices [11]. Managing such a large number of devices along with the generated data
is challenging in IoT systems.

5. Objectives: As mentioned, WSN systems are mainly used for monitoring the environment and
collecting data. User profile and system context are rarely discussed. One of the most important
objectives for IoT systems is to improve people’s life and their personal experience. User oriented
and context aware design is demanded in IoT systems.

From the communication perspective, each IoT device may be embedded with multiple radio
access interfaces enabling Multiple-In and Multiple-Out (MIMO) communication. Network selection
among the available interfaces has drawn many attentions from both the 3GPP organisations and
researchers [14]. However, traditional clustering strategies for WSNs typically assume the sensors in the
networks are homogeneous with only a single communication interface available. If a heterogeneous
network is considered, the degree of the diversity is still rather low (For example, some heterogeneous
networks simply assume that some sensors have doubled power supplies than others). This assumption
has become unrealistic recently, especially in IoT systems. The challenges when migrating IoT systems
to 5G platforms have been discussed a lot from a general perspective [15]. In the next section, we will
show the necessity of clustering techniques in IoT systems that are based on 5G networks.

1.3. Clustering for IoT in 5G Scenarios

Currently, the 3GPP organisations, mobile operators and academics are trying to realise 5G by the
end of 2020. 5G, which is an enabler for Machine-to-Machine (M2M) type communication, has features
such as 1 to 10 Gbps speed, 1 millisecond latency, 100% coverage and reliability. It aims to provide
support for good Quality of user Experience (QoE) for a large range of applications and usages.
Cellular involved backhaul is becoming a popular approach adopted by many systems in order
to provide full connectivity. A novel two-stage re-clustering algorithm has been introduced in [16] to
reduce high load on cells in hotspot areas and in turn to improve user satisfaction. Smart coordinating
multiple access points can improve the overall spectral efficiency.



Sensors 2017, 17, 1574 4 of 23

In such a 3GPP involved IoT backhaul, we indicate that clustering techniques are still necessary
and beneficial for the following reasons:

1. Energy efficiency: In IoT systems, many sensors/devices are still deployed requiring a lifetime
measuring in terms of years. 5G aims to provide M2M communication, allowing devices to have
up to 10 years’ battery life. Therefore, energy efficiency still is a challenging problem in IoT
systems regarding of Quality of Service (QoS) [17]. In addition, from the perspective of green
computing, with 50 billion connected devices, if every single device could reduce 1% energy
consumption, it can significantly reduce the total electricity bill.

2. Distributed processing: In the last 10 years, big data has been a really hot topic and people
generally expect treasures in the data. However, not all the data is useful. Treasure hunting
in massive amounts of meaningless data can be costly. Furthermore, data transmission through
the network and data maintaining on the server are also expensive. It is essential to filter out
worthless or redundant data from the source, rather than transmitting it back to the core network.
This task can be assigned to CHs.

3. Management hierarchy: As we have discussed, the major difference between WSNs and IoT
is the diversities—from the devices themselves to the OTT applications. Besides, with such a large
number of devices, an extensible and dynamic hierarchical structure can achieve effective and
efficient management.

1.4. Our Proposed Solution—BEE(M) and Smart-BEEM

In this paper, we propose a Balanced Energy-Efficient clustering algorithm, named as BEE. It can
elect CHs according to both energy consumption and sensor distributions. It not only extends the
networks longevity, but also maintains the network coverage. We also provide another version
of BEE, called Multihop BEE (BEEM), which can support multihop inter-cluster communication.
BEEM can further improve the network coverage comparing with BEE through reducing high energy
consumption and long distance inter-cluster communication. Smart-BEEM is an extended work based
on BEEM. Firstly, it can elect CHs to extend the coverage sensitive longevity. Secondly, it can select
communication interface based on the user scenarios, including the available interfaces, CHs in range
and user applications. By considering those factors, Smart-BEEM can further extend the coverage
sensitive longevity without scarifying the user utility.

The rest of this paper is organised as follows: The related work is introduced in Section 2.
The motivation for BEE(M) and Smart-BEEM is delivered in Section 3. The detailed design for
BEE(M) is provided in Section 4. Based on BEEM, algorithm Smart-BEEM is proposed and analysed
in Section 5. The construction of the experimental environment for evaluation is given in Section 6 and
the experimental results are illustrated in Section 7. Future work is discussed in Section 8. Finally the
conclusions of this paper are drawn in Section 9.

2. Related Work

Low-Energy Adaptive Clustering Hierarchy (LEACH) [18] provides an elegant clustering routing
approach that has inspired many varied solutions. After the CHs are randomly selected, they will
broadcast their information to all the sensors in the network. Based on the received information,
each sensor decides which CH it wants to join. Instead of using random CH election scheme,
Hybrid Energy-Efficient Distributed (HEED) [19] can select the sensors with high battery levels
to be CHs through the proposed iteration CH election scheme. In the iteration CH election scheme,
CHs are classified into two types: tentative and f inal CHs. Some initial CHs are selected randomly
as tentative CHs. After each iteration, every sensor increases their probabilities to become a CH.
In this algorithm, they set this probability to be the CH self election threshold and the threshold value
is 1. Since the probability is increased twice after each iteration, once the probability is 1, the sensor
will claim itself as a f inal CH. For example, initially this probability for a sensor to become a CH
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is 0.3. After the first iteration, it increases to 0.6, and then after the second iteration it increases
to 1 (the real value is 1.2 but cut to 1). A tentative CH will give up being a CH if it discovers a f inal
CH in its communication range. The sensors are not covered by any f inal CHs will elect themselves
to be CHs. This iteration CH election scheme guarantees that the probability of the phenomena that
two sensors, within each other’s communication range, both become CHs is rare. Therefore, it is can
be deduced that the CHs are well distributed over the network and thus all the clusters have similar
size. HEED involves significant overhead due to the heavy broadcast in each iteration. As the number
of iterations required in the initial phase increases, the overhead and network delays are also increased.
LEACH and HEED are two typical Voronoi structure based clustering algorithms that have inspired
many other algorithms. DWEHC [20] made an improvement on HEED by using sensors’ location
information. It can achieve more balanced cluster size, and consequently achieve more balanced power
consumption on each sensor. However, the location information of the sensors used in this algorithm
is not always available. DWEHC also improved HEED by supporting multihop inter-cluster and
multihop intra-cluster communication.

In PEGASIS [21], every sensor in the network transmits its data to one of its neighbours. In this
way, the gathered data is transferred from one node to another through a chain. A designated node
(a node receives data from both sides) will send the assembled data back to the BS. PEGASIS is claimed
as a distributed algorithm. However, every single node needs to obtain the global topology map
of the network.

CCS [22] is a centralised clustering algorithm based on PEGASIS. Instead of using a single chain
structure, CCS utilises a multihop chain structure. Regarding the BS as the centre of the network,
each sensor assigns itself a level number according to the signal strength received from the BS.
Through this way, the sensors in the network are organised into a hierarchical structure. For each level,
the sensors perform transmission and fusion in the same way as that in PAGASIS. The sensor that
is elected as the CH will gather data from all the other sensors on the same level and then transmit the
assembled data to the CH in the 1-lower level. Once being assigned a level, a sensor will not change
its level unless the location of the BS changes. This structure suffers from a problem that the sensors
near the BS can die soon from forwarding packets for the sensors in the higher levels. Only total power
consumption of the network is measured to evaluate this algorithm. There is no evidence showing
a balanced power usage throughout the network.

In a spectrum structure based network, the sensors are partitioned based on both the distance
and the angle to the BS. The angle is captured from a scanning sweep from the BS at a specific time.
S-WEB [23] is a spectrum structure based clustering algorithm. The first step in S-WEB is similar
to CCS. All sensors are partitioned into layers based on their distance (measured but signal strength)
to the BS. Then the BS does a 360-degree scanning sweep by sending out signal at one angel at a specific
time. Sensors are clustered into cells based on the layer number and scanning angle. In each cluster cell,
the sensor with the highest residual energy will be elected as the CH. All the sensors are responsible
for forwarding packets. The cluster structure of the network is fixed after performing S-WEB. It is not
adaptive to the dynamic changes in the network, like node failure. The evaluation of S-WEB is only
based on the comparison with a non-cluster routing solution—Direct Routing.

In Table 1, we summarise the characteristics of 6 existing clustering algorithms. Few of the
clustering algorithms consider network coverage.

Furthermore, we have reviewed most of the existing survey papers for clustering in WSNs
for the last decade. There are many overlapping studies and investigations. Many of them
lack deep analysis and comprehensive introduction. These four selected survey papers shown
in Table 2 ([24–27]) are good to start with when researchers are about to explore in this area.
The selected survey papers in Table 2 include a large number of clustering algorithms. There are
also some new studies in recently two years (2015 and 2016) on clustering that are not covered by
the existing reviewing papers, such as RINtraR [28], SenCar [29], FL-LEACH [30], BEEM [31] and
PathQuality [32]. The common analysis topics include: convergence time, node mobility, cluster
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overlapping, location awareness, energy efficiency, failure recovery, balanced cluster/cluster size,
cluster stability, cluster count, load balancing, deliver delay, intra/inter routing schemes, objectives
and complexity, etc. However, besides energy efficiency, other discussed metrics are mostly about
network topology.

Table 1. Comparison of 6 Existing Clustering Algorithms and BEE(M).

Algorithm Cluster Distributed Node CH Data TPC Energy Cluster Sensing Simulation Compared
Structure Density Rotation Fusion Aware Size Abilities with

LEACH Voronoi Yes No Yes Yes Yes No No None MATLAB Direct MTE, Static

HEED Voronoi Yes Yes Yes Yes Yes Yes Yes Energy MATLAB LEACH

DWEHC Voronoi Yes Yes Yes Yes Yes Yes Yes Location Energy NS-2 HEED

PEGASIS Chain Yes No Yes Yes No Yes No Location MATLAB Direct LEACH

CCS Chain No No Yes Yes No Yes No Location Energy MATLAB PEGASIS

S-WEB Spectrum No No No No No Yes No Location Energy MATLAB Direct

BEE(M) Voronoi Yes Yes Yes Yes Yes Yes Yes Energy MATLAB LEACH HEED

As we can see, most existing studies are for transitional WSNs and limited work has shown
interests in highly diverse IoT systems. Even fewer clustering algorithms consider the impact from 5G
communication, especially the MIMO communication features. Communication abilities of different
sensors or IoT devices vary greatly in IoT networks. The heterogeneous networks we are talking
nowadays are no longer limited to the scenarios with just several super nodes. Supporting context
aware clustering is missing in such a context.

Table 2. Summaries for Selected Existing Survey Papers on Clustering for WSNs.

Survey Major Contributions

Ameer [24] 2007

1. Earlier clustering work before LEACH mainly addresses node failure problem.
2. Clustering algorithms after LEACH start to focus more on energy efficiency.
3. Multihop intra-cluster topology is rare.
4. Multihop inter-cluster communication is well applied.

Afsar [26]

1. Energy efficiency/maxing lifetime is the dominate objective for clustering.
2. No reviewed clustering algorithm can operate in a heterogeneous network.
3. Multihop intra-cluster communication is rarely supported.
4. Multihop inter-cluster communication is well applied.
5. The CH is only in charge of data aggregation and transmission.
6. Device mobility is hardly concerned in existing solutions.
7. Distributed implementation is the mainstream in clustering.

Liu [25,27] 1. Algorithms have small deliver delays tend to have low energy efficiency.
2012 2. Distributed implementation is the mainstream in clustering.
2015 3. Tree and train based implementations have lower scalability than grid based ones.

3. Motivation

Based on the analysis on existing work for clustering in Section 2, we can see that two challenges
need to be addressed. One is how to extend networks lifetime and meanwhile maintain networks
coverage. The other one is how to adapt to and utilise the MIMO feature enabled in 5G scenarios.
This section clarifies our motivation from two perspectives: (1) balanced energy consumption and (2)
context awareness in 5G networks.

3.1. Motivation for Balanced Energy Efficiency

Most existing clustering algorithms focus on maintaining the number of sensors that are still
alive to extend the longevity, ignoring the distribution of the sensors. The coverage of a network
is highly determined by the sensor distribution and it is crucial in most systems, like wildlife
monitoring or battlefield sensing. Most existing work assumes that a sensor’s sensing range is the
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same as its communication range. Therefore, the sensing coverage area is the same as communication
area. Once the network is still connected, the network coverage is also guaranteed. This can simplify
the connectivity problem and the coverage problem into one. However, this assumption is not
true in reality. A sensor or an IoT device can have short distance communication and also long
communication abilities. Even for classic clustering algorithms like LEACH and HEED, they only
discussed communication connectivity problem, ignoring the fact that the network coverage could
change during the network operations. To expose the network coverage problem in current work, three
communication schemes are examined: direct routing, general LEACH and HEED. The experiment
settings are the same as in HEED, shown in Table 9 in Section 6 Experimental Construction. In HEED,
each CH is set to use a single hop to communicate with the BS. The number of nodes still alive after
each round in the network is shown in Figure 2. LEACH and HEED performed significantly better
than the direct transmission approach. However, the comparison between LEACH and HEED requires
careful analysis. The first node died earlier in HEED than that in LEACH. After the first node died in
LEACH, all the sensors run out of power in a short period of time. Therefore, the last node died later
in HEED than that in LEACH. Depends on the definition for network lifetime (from the system starts
till the first or the last node dies), LEACH and HEED can have different performances.

Figure 2. Number of sensors still alive in the network.

However, in this paper, we aim to evaluate the network lifetime from another perspective. We argue
that the number of nodes left in the network cannot present the QoS of a system. In Figure 2, around
450 round, we can see that LEACH and HEED almost have the same number of nodes in the network.
The snapshots of the sensor distribution at 450 round for both protocols are shown in Figure 3. With the
same number of sensors left in the network, we can see that LEACH has a better distribution as the
sensors still alive can cover a slightly larger area than HEED. Depending on the emphasis of a system,
the way to measure the lifetime of a network is not unique. When the first node or the last node dies is
not the most important issue in term of the network coverage. The coverage of the network should be
considered when measuring the lifetime from a QoS perspective. Since different systems have different
requirements, simply evaluating the network lifetime by the number of sensors is not convincing.

In a system, we believe that some of the sensors in the network are more important than the others
on network coverage level. An extreme case is shown in Figure 4: area A has a higher node density than
the rest of the sensing field. The nodes in area A have less impact on the coverage of the network than
the nodes outside this area. The sensors that do not have a significant impact on the coverage of the
network are allowed to die sooner than the others. To implement multihop communication manner, the
sensors can be partitioned into layers to adopt similar strategy in CCS or S-WEB. This has motivated
us to provide a distributed clustering algorithm that can not only extend network lifetime, but also
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guarantee the coverage of the network. The name of the algorithm is Balanced Energy-Efficient (BEE)
clustering algorithm and another version supporting multihop inter-cluster communication is called
Multihop BEE (BEEM).

(a) (b)

Figure 3. Distribution of nodes still alive after 450 rounds. (a) LEACH; (b) HEED.

Figure 4. Non-uniform distributed WSN.

3.2. Motivation for Context Awareness

As we have discussed in Section 1, clustering techniques are required and beneficial even for
highly dynamic IoT systems. With 3GPP standard infrastructure, the deployment for IoT becomes
more flexible and the connectivity problem can be solved straightway. When migrating IoT systems
to 5G networks, several critical problems in clustering still need to be addressed.

The first challenge comes from the fundamental nature of IoT systems—the high degree
of diversity. The things in the field are highly heterogeneous and some of the nodes can be extremely
advanced. Comparing with traditional WSN, IoT systems are more complex and comprehensive.
Traditionally the sensors in a WSN are mainly in charge of environment sensing, data collection
and transmission. However, the applications in IoT systems are no longer just designed for those
simple tasks. For example, the smart cameras deployed in intelligent monitoring systems are required
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to transmit high quality video stream to the control centre. Nowadays, in advanced IoT systems,
we need to consider more complicated scenarios and user cases. The requirements for the network have
raised in terms of network bandwidth and network delays. Besides, if MIMO is realised, each device
will have multiple choices on communication interfaces for data transmission. Being aware of the high
level application requirements and the low level hardware capabilities is essential to provide QoE
supported services.

The second challenge is the cost for transmission. The energy cost is still a critical concern in IoT
systems when deployed in 5G networks. In practice, LTE can be used as the default communication
means. If possible (the CH is in range and the user requirements can be satisfied), some of the devices
can switch to Bluetooth or ZigBee, which are much more energy efficient solutions.

Clustering techniques, in order to adapt to 5G and more complicated scenarios in IoT systems,
the above challenges need to be solved. The corresponding research in those directions should
be further investigated. In order to utilise MIMO 5G platform and facilitate communication in advanced
IoT systems, BEEM protocol will be enhanced with a context aware feature to adapt to MIMO scenarios.

4. Balanced Energy-Efficient Clustering (BEE) and Multihop BEE (BEEM)

In this section, firstly we introduce the BEE protocol, which is proposed based on HEED.
Then its multihop version BEEM supporting multihop inter-clustering routing is also provided.

4.1. Improved Iteration CH Election

In HEED, the initial probability that a sensor elects itself to be a CH is

CHprob = Cprob ×
Eresidual

Emax
(1)

Cprob is the initial CH probability (Both LEACH and HEED set it to be 5%). Emax is the initial energy
for all the sensors. Eresidual is the remaining energy on the current sensor. If a sensor is not covered
by any CHs, it will elect itself as a tentative CH when a random generated number is smaller than
the value of CHprob. After each iteration, CHprob is increased twice (maximal value is 1). Once CHprob
reaches 1, a tentative sensor will declare itself as a f inal CH. If a sensor is not covered by any f inal
CHs, it will declare itself as a f inal CH when its CHprob = 1. A sensor will terminate the iteration
process when its CHprob = 1. To void really small value for CHprob, it is set to the bigger value between

Cprob × Eresidual
Emax

and Pmin = 10−4. Otherwise the number of iterations can be unnecessarily large. Since
Cprob starts from 5%, a high energy sensor still needs at least 6 iterations to have a chance to declare
itself as a f inal CH (0.05 × 2Ntier−1 can be bigger than 1 only when Niter ≥ 6 where Niter presents the
number of iterations required). As Eresidual of a sensor decreases, it needs more iterations to terminate
the CH election process.

To address the first issue highlighted in Section 3, two improvements are made in the CH election
process in BEE.

1. Number of iterations: The number of iterations to terminate the CH election process has a significant
impact on the network latency and congestion. Therefore, reducing the number can reduce the
overhead of the iteration CH election process.

2. Node density: Sensors in a high-density area are allowed to die sooner than the sensors
in a low-density area for the purpose of maintaining the coverage of the network. In BEE,
we believe that if a sensor’s node degree is high, it is reasonable to assume that the node density
around this sensor is high. The node degree of a sensor is referred as the number of sensors in its
communication range.
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Based on HEED, in BEE, considering local density, CHprob should be calculated as:

CHprob = Cprob ×
Eresidual

Emax
× min

(
Node Degree

Davg
, 1
)

(2)

where Davg is the average density of the network and it is calculated as:

Davg = πR2 × Numsensors

Area
(3)

R is the default communication range of the sensors (normally it is set to the cluster radius), Numsensors

is the total number of sensors in the network and Area refers the area of the sensing field. Davg is also
the value for average node degree.

To reduce the number of iterations, we separate the factors in Formula (2) into three parts: Cprob,

Cen = Eresidual
Emax

and Cde = min
(

Node Degree
Davg

, 1
)

. Three conditions that are used to determine whether
a sensor can elect itself as a f inal or tentative CH are:

1. C1=
〈

Random (0, 1) ≤ Cprob

〉
2. C2 =

〈
Eresidual

Emax
≥ 1

〉
3. C3 =

〈
Node Degree

Davg
≥ 1

〉
As in HEED, Cprob is set to be the optimal CH ratio—5%. After each iteration, the value of Cen

and Cde are both doubled. A sensor will terminate its own CH election thread when either Cen or Cde
reaches 1. By separating the factors, we aim to decrease the number of iterations CH election process to
construct the CH set. The status of the CH depends on which conditions are true as shown in Table 3.
If two of the three conditions are true, the sensor will elect itself to be a f inal CH. If a sensor cannot
communicate with any other sensors, it will elect itself to be a CH directly without executing the
iteration CH election process.

Table 3. CH Self-election Table.

C1 C2 C3 CH Status

1 1 1 Final

0 1 1 Final

1 0 1 Final

1 1 0 Final

1 0 0 Tentative

4.2. BEE Algorithm Analysis

In BEE, each sensor has the same probability to become a tentative CH. The probability C1 remains
the same after each iteration. C2 and C3 are increased after each iteration. In HEED, since the
probability to become a tentative or f inal CH depends on CHprob and this value is doubled after
each iteration, more sensors tend to become tentative CHs. The total number of broadcast messages
in the network is the sum of the number of sensors who ever claim to be tentative CHs and the
number of sensors who ever claim as f inal CHs. Since a tentative CH will give up being a CH when
it discovers a lower cost CH in its communication range, tentative CH generation cannot help the
process determine quicker. Meanwhile it increases the number of broadcast activities. Therefore,
the probability to become a tentative CH should not be increased. Decomposing the probability for
a sensor to become a CH into three parts can elect CHs from three different perspectives: randomly,
residual energy and node density. If a node has a higher degree than the average, it always will
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elect itself to be a f inal CH and will die quickly, which supports our expectation that the sensors
in a high-density area are allowed to die sooner than the sensors in a low-density area.

4.3. Multihop BEE—BEEM

When the network size scales, the sensors that are far away from the BS may die much earlier
than the sensors close to the BS when using direct inter-cluster transmission. If the sensors do not
support long distance communication, the connectivity of the network is hard to guarantee. For the
above reasons, it is necessary to support multihop inter-cluster communication. Besides, multihop
inter-cluster routing can further balance the power usage on each individual sensor throughout
the network.

HEED declared that many multihop communication protocols could be used to guarantee
a connected inter-cluster overlay topology. It provided a proof on a uniformly distributed network.
However, it failed to provide the detailed implementation. Here we propose a multihop inter-cluster
communication approach specialised for WSNs.

In BEEM, we adopt the same idea that is used in CCS and S-WEB in order to organise the sensors
into layers as shown in Figure 4. The higher-layer CHs can transmit data to the 1-lower layer CHs.
The BS will broadcast a beacon signal to all the sensors in the network at the initial stage. Based on
the received single strength, the distance between a sensor and the BS can be estimated from the Log
Distance Path Loss Model [33]. Based on the distance between a sensor and the BS, every sensor
assigns itself a layer index. Supposedly the cluster range is Tr, and then the maximum value for the
distance from a CH to its nearest CH will be 2Tr. Considering the BS as the centre point, the difference
of the radius between two adjoining layers should be 2Tr. If a CH wants to transfer data back to the
BS, it will transfer the data to one of the lower layer CHs first. The CH transmission range should
be at least 2Tr to guarantee that it can communicate with its nearest CH. If R = 2Tr, the CHs at layer
n can transfer data to n − 1 layer. If R = m × 2Tr, the CHs at layer n can transfer data to n − m layer.
In BEEM, we set R = 2Tr.

5. Smart-BEEM For IoT Systems in 5G Scenarios

As presented in the previous section, BEEM has been proposed to extend coverage sensitive
longevity for WSNs. IoT systems are going to be deployed in 5G networks when this high complex
and high ability communication means can be finalised. Based on the analysis and statements in the
previous sections, a clustering algorithm that can support context aware clustering in IoT systems
in 5G scenarios is proposed. Based on the CH election scheme proposed in BEEM, a smart CH
selection algorithm is delivered here. All together we name it Smart-BEEM. It can adapt to MIMO 5G
environment and select communication interfaces and CHs according the currnt context.

5.1. Analysis on Existing Communication Interfaces

At present, many communication interfaces are available on IoT devices, including Zigbee,
Bluetooth, WiFi, LTE, etc. New machine type communication, like LTE-M, NB-IoT and DSRC are also
invented to support machine type communication. The communication interfaces all have their own
characteristics, such as frequency, data rate, transmission range and energy consumption, which will
also affect the throughput, network delay and in turn user utility. For example, Table 4 lists some
most concerned features and the documented values for several popular communication technologies.
As we can see, every single one is unique. Comparing with LTE and WiFi, Zigbee, bluetooth and
NB-LTE have lower data rate. The transmission range for Zigbee, bluetooth and WiFi is shorter than
NB-LTE and LTE. Apart from that, Zigbee has low energy consumption, supporting devices working
for years without recharging. While the energy consumption of WiFi and LTE are relevantly high, with
which IoT devices may only last for a few days.
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Table 4. Documented Characteristics for Different Communication Interfaces.

Communication Bandwidth Data Rate Transmission Energy
Means Range Consumption

WiFi (802.11a) 2.4 GHz; 5 GHz 54 Mbps 30 m Medium 15–20 dBm

Bluetooth 2.4–2.5 GHz 1 Mbps 10 m Low Days

Zigbee 868–915 MHz; 2.4 GHz 250 kbps 10–100 m Low Years

LTE 2.6 GHz Uplink: 5 Mbps <15 km 23 dBmDownlink: 10 Mbps

NB-LTE 180 kHz Uplink: 250 kbps <15 km 20–23 dBmDownlink: 170 kbps

5.2. Utilising MIMO

As shown in Table 4, when multiple communication interfaces are available, how to intelligently
select among them for data transmission is challenging. Many existing clustering algorithms
assume that all the nodes in the network are homogeneous with one single communication interface.
With MIMO available in 5G networks, this assumption is no longer held. Existing work lacks flexibility
and ignores the diversities of the sensor nodes. To improve existing algorithms, the context that a sensor
is in should be considered. For example, a sensor should be able to choose a suitable communication
interface according to its transmission requirements and its communication capability.

A new clustering algorithm that can utilise MIMO feature in 5G environment is required. Based on
BEEM, Smart-BEEM is proposed. In this paper, we assume that in the system, all the IoT devices are
capable of MIMO. If a node is selected as CH, it will turn on MIMO to receive data from different
sources through different communication channels. Then the CHs will compress the received data
and transmit the data back to the BS. Except CHs, each sensing node either transmits small volume of
data or video stream (In this paper, we use the term—“Data” to present small volume of traffic, such
as temperature or humility information; while we use the term—“Video” to present large volume of
traffic requiring high network bandwidth, such as video stream). A sensing node will only select one
communication interface and a CH for transmission through Smart-BEEM algorithm.

5.3. Smart-BEEM Algorithm Design

The two main objectives of Smart-BEEM are to (1) improve QoE and (2) reduce power
consumption for IoT systems. Unfortunately, in most scenarios, those two objectives cannot be achieved
simultaneously. In this paper, Smart-BEEM currently is designed to take QoE as the highest prioritised
task. Meanwhile if possible, it will also try to reduce power consumption. For example, if a node
aims to transmit temperature data back to the BS, it currently can communicate with one CH through
Zigbee and another CH located further with Direct-WiFi. Since the bandwidth values for Zigbee and
Direct-WiFi are both enough for temperature data, choosing Zigbee can significantly reduce energy
consumption for communication. On the other hand, if the node aims to transmit video stream back
to the BS and currently Direct-WiFi and Zigbee are both available, even though using Direct-WiFi will
consume more energy, it will still be prioritised over Zigbee due to QoE concerns.

Each node will rank the available communication interfaces by its own preference. The ranking
algorithm is described as below. If transmitting simple data, all communication interfaces are allowed.
If transmitting video stream, only interfaces with NAIr

i > xr are allowed, where NAIr
i is transmission

data rate for the ith Network Access Interface (NAI) and xr is the data rate requirement from the
application running on Node x. Then the preferred interfaces can be ranked by dividing the square of
energy consumption.

Rankingi =
NAIr

i(
NAIe

i
)2 (4)
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NAIi
e is the energy consumption for NAIi over one unit transmission distance. The ranking for

interface NAIi is rankingi. Supposedly Node x can receive CH information from m CHs. Then it can
construct a communication table as below in Table 5:

Table 5. Communication Table for Node x.

Communication CH1 CH2 ... CHmInterface

NAI1 QoE1,1 QoE1,2 ... QoE1,m
NAI2 QoE2,1 QoE2,2 ... QoE2,m

... ... ... ... ...
NAIn QoEn,1 QoEn,2 ... QoEn,m

The QoE for communication between Node x and connect CHj through network interface NAIi
is defined as below:

QoEi,j =

0 if Node x cannot communication with CHj by NAIi
rankingi
distancex,j

otherwise
(5)

where distancex,j is the distance between Node x and CHj. By checking this table, node x will pick the
pair of NAI and CH with the highest value of QoEi,j.

In order to perform this algorithm, we need to do a normalisation on the features of the
communication interfaces. Taking Table 4 as an example, the data rate will be classified into Low
(value = 1) or High (value = 2). The energy consumption will be rated as High (value = 3), Medium
(value = 2) or Low (value = 1). Any available network accessing interface in 5G communication can
be added into this normalisation table.

5.4. Smart-BEEM Algorithm Analysis

Our former work BEEM is focusing on CH election to construct the structure for the
inter-clustering communication. It elects CHs not only based on the residual energy level, but also the
node density. Through this algorithm, not only the power consumption will be reduced, but also the
coverage of the network can be maintained longer. However, BEEM has not specified the CH selection
scheme. A Node will just choose to join the nearest CH.

Based on BEEM, Smart-BEEM proposes a CH selection by adapting to MIMO features for
intra-cluster communication. Based on the communication features and requirements, each sensor
will have its own preference on the network access interfaces. Firstly, a node should fulfil its
responsibilities and obligations in the network. If it is supposed to transmit Video and then it should
select an interface that has high bandwidth. On the other hand, if it is designed to transmit Data, it can
have a larger range of selections for network interfaces. Meanwhile, the nodes also should reduce
energy consumption and hence extend coverage sensitive longevity further comparing with BEEM.
Hence low power consumption communication interfaces should always be prioritised when QoE is
guaranteed. However, three factors should be considered before the nodes makes the final decision:
(1) Application requirements on the network. (2) Transmission range of the access interface. (3) Distance
between the nodes and CHs. The node itself can have its own preference on the network interfaces
even only concerning its own characteristics. In this case, we refer this scenario as self-concerned
approach. However, in order to select a suitable CH, the context of the CHs also should be considered.
For example, considering its own interest, a node prefers to use Zigbee to transmit data. However, in
its Zigbee communication range, no CHs are available. Therefore, this node has to select the secondary
choice for interfaces, which has longer communication range. In another case, this node finds a CH
in its Zigbee communication range. However, considering distance, the energy cost for using Zigbee
is even higher than that of using NB-LTE (This might be an extreme case). At the end, NB-LTE overall
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may be a better choice than Zigbee. This algorithm aims to make decisions based on the requirements
from the nodes themselves and the context of the network.

6. Experimental Construction

The proposed BEE, BEEM and Smart-BEEM algorithms will be evaluated in MATLAB simulation.
In this section, the experimental settings and analysis are presented.

For different technologies in the network, we will have a normalised feature table like Table 6.
In our simulation, we assume five different interfaces are available. NAIi can be instanced to any
technologies in Table 4 or new technologies that have not been invented yet. In the experiments,
without losing generality, we use the symbolised name for the network access interfaces. There are
two reasons supporting this temptation: (1) This approach makes the algorithm scalable for new
network access interfaces that can be included flexibly. (2) In the future work, we will consider more
complexed heterogeneous nodes, in which circumstance each node will have its own set of network
access interfaces.

Table 6. Normalised Feature Values for Different Communication Interfaces.

Communication Data Rate Transmission Energy
Means Range Consumption

NAI1 Low 10 m Low
NAI2 Low 20 m Low
NAI3 Low 40 m Medium
NAI4 High 25 m High
NAI5 High 1 km High

LEACH claims that different assumptions about the radio characteristics will affect the
performance of a protocol. Two most referenced clustering algorithms, LEACH and HEED, adopted
different models to compute energy consumption for long distance communication. As shown
in Table 7, in LEACH, the calculation of transmission power consumption is simplified as:

ETx = Eelec ∗ k + εamp ∗ k ∗ d2 (6)

where k is message length measured in bits and d is the distance from the transmitter to the
receiver. In the further work, LEACH research team has provided an advanced study on radio
power consumption in [34]. The calculation is specified as:

ETx = Eelec ∗ k + εamp ∗ k ∗ dn (7)

when d < d0, εamp = 10 pJ/bit/m2 and n = 2. When d > d0, εamp = 0.0013 pJ/bit/m4 and n = 4.
The value of d0 is a constant distance that is determined by the surrounding environment. HEED has
adopted this power consumption model.

Table 7. Energy Dissipated for LEACH and HEED.

Protocols Transmission/Receiving (Eelect) Transmit Ampilier (εamp)

LEACH 50 nJ/bit 100 pJ/bit/m2

HEED 50 nJ/bit
10 pJ/bit/m2 (d < d0)

0.0013 pJ/bit/m4 (d > d0)

Based on the power consumption model in LEACH and HEED, in this paper, three power
consumption modes are defined as in Table 8. For BEEM, since only one communication interface
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is considered, Low and High power consumption modes are used for the default communication.
For Smart-BEEM, Low, Medium and High power consumption modes are adopted, where d0 = 40 m.

Table 8. Energy Dissipated For BEEM and Smart-BEEM.

Power Consumption Mode Transmission/Receiving (Eelect) Transmit Amplifier (εamp)

Low Power Consumption 50 nJ/bit 10 pJ/bit/m2 (d < d0)

Medium Power Consumption 50 nJ/bit 15 pJ/bit/m2 (d < d0)

High Power Consumption 50 nJ/bit 0.0013 pJ/bit/m4 (d > d0)

The performance of a clustering algorithm is highly related to the parameter settings in the
simulation. For example, if broadcast packet has the same size as data packet, heavy broadcast will
significantly undermine the performance. Besides, node density also affects the impact of broadcast.
We set our simulation parameters to be the same as in HEED, shown in Table 9. 300 nodes are randomly
deployed in a (0, 0) ∼ (100, 100) field with a BS located at (50, 175).

Table 9. Simulation Parameters.

Type Parameters Values

Network

Network area From (0, 0) to (100, 100)
Sink At (50, 175)

Number of Sensors 300
Initial Energy 0.5 J

Application

Default cluster radius 25 m
Data packet size 100 bytes

Broadcast packet size 25 bytes
Data header size 25 bytes

Each round 5 TDMA frames
CH data compress rate 0.8

Simulation Duration 1000 rounds
Default acess interface NAI5

7. Experimental Results

In this section, firstly, we compare BEE with existing classic clustering algorithm LEACH and
HEED. Then the comparison between BEE and BEEM is illustrated. At the end, we investigate the
performance of Smart-BEEM.

7.1. Original BEE

When evaluating a clustering algorithm, power consumption is normally the only concerned
metric, to the detriment of other issues such as network coverage. Coverage sensitivity longevity
has been proposed to evaluate network lifetime rather than number of nodes. Network coverage
is determined by the distribution and sensing range of the sensors. Some of the sensors in the
network are more important than the others in terms of network coverage. The sensors that do not
have a significant impact on the coverage of the network are allowed to die sooner than the others.
The experimental results for original BEE are shown below.

7.1.1. Network Distribution

Figure 5c shows after 450 rounds performing BEE, the snapshot for the distribution of the sensors
still alive in the network. Comparing with the distributions for LEACH and HEED, BEE can provide
better coverage at 450 round, with the same number of nodes as LEACH and less number of nodes
comparing with HEED. The exact value for coverage is will be discussed in detail later.
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(a) (b) (c)

Figure 5. Sensor distribution after 450 rounds using LEACH, HEED and BEE. (a) LEACH; (b) HEED;
(c) BEE.

7.1.2. CH Rate

Comparing the CH percentage in Figure 6, we can see that BEE has similar number of CHs
as HEED. In HEED, the CH percentage increased to 1 at the end. This is because all the sensors still alive
were no longer in each other’s cluster range and then every sensor was required to be CH to transmit
data directly to the BS. It has been proved that in HEED the elected CHs can be well distributed
in the network and cover the whole sensing area. The case that two CHs in each other’s cluster range
is rare. Since BEE does not need more CHs than HEED, the CHs elected through improved iteration
CH election process in BEE can also cover the whole sensing area.

7.1.3. Clustering Iterations

The number of iterations in the clustering forming phase determines the overhead of the algorithm.
Reducing the number of required iterations in each round can reduce (1) the clustering delay and
(2) the number of broadcast packets. The comparison of the number of iterations in each round
is shown in Figure 6b. By separating CHprob into three parts, the number of iterations in each round
was significantly reduced in BEE. At the end, for HEED, the number of iterations suddenly dropped
to 0 because no sensor was still alive in the network. The number of iterations of HEED can increase
from 6 to 15. When the battery level is high, as we mentioned in Section 4.1, 6 iterations are necessary
since Cprob = 5%. When the battery level is low, it takes 15 iterations as Pmin = 10−4. However,
the number of iterations for BEE will not increase significantly as the sensor batter level decreases.

(a) (b)

Figure 6. Cont.
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(c)

Figure 6. Comparison between HEED and BEE. (a) CH percentage; (b) The iterations required in each
round; (c) Number of sensors still alive.

7.1.4. Longevity

The number of sensors still alive sensors in the network is shown in Figure 6c. In the period from
0 to 450 round, more sensors died in BEE than in HEED and LEACH. After 600 round, BEE had more
sensors left in the network. In long term, BEE has longer network lifetime than HEED and LEACH.
In the next section, we will prove that the sensors died at the beginning have little impact on the
coverage of the network.

7.1.5. Network Coverage

The cluster radius in both BEE and HEED is set to be 25 m. The sensing radius is set to be 10 m.
To simplify our problem, we partition the network area into grids of the size 10 m × 10 m rather than
circles. Through this way, the sensing field is partitioned into 100 cells. In each cell, if there is a sensor
still alive, we assume this area can be monitored by system. To guarantee the network coverage,
a clustering algorithm should be able to cover the cells maximally. Since the sensors are randomly
deployed in the network, the initial coverage with 300 sensors is 93 cells, as shown in Figure 7.
The coverage of the network after each round is shown in Figure 8.

We can see from Figure 6c that nodes started to die around 100 round for BEE. However, in Figure 8,
BEE started to lose coverage around 180 round. It means that the sensors started to die from 100 round
till 180 round did not have any impact on the sensing coverage of the network. For long term, BEE can
provide better coverage than HEED and LEACH.

Figure 7. Sensing grid of the network at the initial state.
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Figure 8. Network sensing coverage.

7.1.6. Multihop Inter-Clustering Supported BEE (BEEM)

The communication between the CHs and the BS is called inter-cluster communication. When the
network size scales, if the sensors do not support long distance communication, the connectivity
of the network is hard to guarantee without multihop routing. Because of that, supporting multihop
inter-cluster communication is essential. Furthermore, multihop inter-cluster routing can further
reduce energy consumption through reducing long distance communication between the CHs and the
BS. The experimental results for BEEM are shown in Figure 9. The energy cost of forwarding packets
is set to be 10 pJ/bit/m2. As we can see, BEEM can provide better network coverage and longer overall
lifetime than BEE.

Figure 9. Network sensing coverage comparison between BEE and BEEM.
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7.2. Comparing between BEEM, Self-Concern Solution and Smart-BEEM

Since it is normally assumed that only one communication interface exists in the traditional
WSNs, choosing the nearest CH can maximally reduce the power consumption on the sensor nodes.
Same as most existing work, one assumption in BEEM for the network is that

All the nodes are homogeneous and have similar communication and computation capabilities.

This assumption can be seen in most studies for clustering. However, it will no longer be true
in the high dynamic IoT systems. When the sensors are able to communicate through MIMO channels,
we must be able to modify BEEM to adopt to this feature. In this section, we will illustrate the benefit
for utilising this feature. Three approaches are analysed and compared:

1. Original BEEM: Ignoring the MIMO feature, the sensors always use the communication interface
with the highest bandwidth to guarantee the QoE for both Video and Data transmission. The nodes
still choose the nearest CH to join. If no CHs are in the default cluster radius range, the nodes
will transmit date back to the BS directly.

2. Self-concerned BEEM: In this approach, the nodes are aware of the multiple communication
interfaces. However, each node will only choose its most preferred communication interface.
If no CH in the range of this communication interface is available, it will halt the CH
selection process and transmit data back to the BS directly using high power long distance
communication (NAI5).

3. Smart-BEEM: BEEM algorithm is carried out firstly to elect CHs. Based on Smart-BEEM
algorithm, each node selects a communication interface and CH with the highest QoE value.
If no CHs are in range, same as above, the node will transmit data back to the BS directly though
the default interface—NAI5.

As described before, Self-Concerned BEEM and Smart-BEEM are both based on BEEM. BEEM
is focusing on CH election. Self-concerned BEEM and Smart-BEEM aim to facilitate IoT nodes
to select communication interfaces and CHs according the current context. As we can see from
Figure 10a, Self-Concerned BEEM can maintain the number of alive sensors better than the original
BEEM. Furthermore, Smart-BEEM exceeds both original BEEM and Self-Concerned BEEM in terms
of maintaining the number of alive sensors. Figure 10b has shown that Self-Concerned BEEM has
maintained the coverage slightly better than the original one. Smart-BEEM has significantly increased
the coverage at each round comparing with the other two solutions. When applying the original BEEM
clustering algorithm in the network, the MIMO feature was ignored by the applications. In order
to guarantee QoE, communication interfaces with high bandwidth were always prioritised. Since some
of the sensors were only transmitting simple data information, energy consumption can be reduced
through using low energy consumption interface if the sensors could be aware of the MIMO feature.
Self-concerned BEEM can be aware of the requirements from the application and also the MIMO
features. It can select suitable interface based on its own requirements. Therefore, its performance
was better than the original BEEM. Further improved based on Self-BEEM, Smart-BEEM can also
be aware of the context of the network. It can outperform Self-BEEM by selecting more suitable
CHs for more energy efficient routing. The experimental results have proved our point of view—the
ability of context awareness can further improve QoS and QoE When a sensor is aware of (1) the
application requirements, (2) the MIMO feature and (3) network context, it can make the best decision
for data transmission.
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(a)

(b)

Figure 10. Comparison between BEEM, Self-Concerned and Smart-BEEM. (a) Number of sensors still
alive; (b) network coverage.

8. Future Work

There are several perspectives that our design can be further advanced to cater for heterogeneous
IoT systems. Firstly, in this paper, the IoT devices in the network are assumed with the same level
of energy storage. This is normally not true in most real systems. The CH election process in BEEM
has counted node energy level as one factor. When the nodes selecting CHs, their own energy levels
should also be considered. Some of the nodes in the IoT systems are even rechargeable or pre-deployed
with unlimited power supply, which should affect the design of the algorithm.

Secondly, in our current study, all the IoT devices have equipped with the same 5 communication
interfaces. In the future work, each sensor is assumed to have a random ability for network access
interfaces. The combination can be {NAI1, NAI5}, {NAI2, NAI4, NAI5} or {NAI5}. NAI5 is a default one
for every node. Furthermore, other communication interfaces with characteristics that are different
from the above 5 ones can also be considered. With the fast development for radio technologies,
new interfaces are highly expected in the future. For example, an interface that allows low rate and
high communication range can also be considered in our solution.

Thirdly, the price policy for different communication technologies can be another concern.
Data transmission on licensed bands normally more expensive than that on unlicensed bands.
User requirements on financial cost can also have influence on the interface selection.
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Fourthly, in this paper, user utility has the highest priority when selecting CHs and communication
interfaces. However, in real systems, power consumption and user utility should be balanced well.
In some specific circumstance, user utility may be sacrificed to gain more energy efficiency.

9. Conclusions

Clustering techniques are proposed to provide a platform for network topology management
to extend network lifetime. Since most existing clustering algorithms overlook the importance
of network coverage when evaluating the performance, firstly we have introduced a new metric
to measure network lifetime—coverage sensitive longevity. Then we have proposed a Balanced
Energy-Efficiency clustering algorithm (BEE) to extend coverage sensitive longevity. Its multihop
version supporting mutihop inter-cluster communication, called multihop BEE (BEEM) is also
provided. It can maintain coverage notably comparing with classic clustering algorithms—LEACH
and HEED.

Secondly, we have also presented the development trend from traditional WSNs to advanced IoT
systems, especially in future network scenarios. In order to cater for dynamic IoT systems deployed
in 5G communication environment, we have further enhanced BEEM algorithm with smart intra-cluster
routing scheme and named it as Smart-BEEM. Smart-BEEM can adapt to the MIMO communication
feature to further improve QoS and QoE. It can facilitate advanced IoT devices to select communication
interfaces and CHs based on the network context, including characteristics of the network access
interfaces, the current user usage and the details of the available CHs. The experimental results have
shown that Smart-BEEM can better maintain the number of alive nodes and the network coverage
comparing with BEEM.

At the end, we have delivered a discussion on the future work that can further improve our
algorithm in order to be deployed in more realistic systems from the following perspectives: (1) Diverse
energy storage situation. (2) Heterogeneous communication interfaces on nodes. (3) Financial cost and
(4) Balancing between energy efficiency and QoE.
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