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Abstract: In this paper, a data compression technology-based intelligent data acquisition (IDAQ)
system was developed for structural health monitoring of civil structures, and its validity was
tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to
include a high-performance CPU with large dynamic memory for multi-input and output in a radio
frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it
to implement diverse logics needed in the process of acquiring, processing and transmitting data.
In order to utilize IDAQ system for the structural health monitoring of civil structures, this study
developed an artificial filter bank by which structural dynamic responses (acceleration) were
efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques
developed in this study have been embedded to our system. The data compression technology-based
IDAQ system was proven valid in acquiring valid signals in a compressed size.

Keywords: data compression technology; embedded software technology; artificial filter bank;
band-pass filter optimizing algorithm; peak-picking algorithm; reconstruction error; compressive ratio;
spectrum error; structural health monitoring

1. Introduction

In general, infrastructure is always exposed to unexpected weather conditions and consequent
possibility of damage and strain as well as natural aging, and so its life span decreases [1,2]. As the
size of structures is recently becoming larger, casualties and property damage could be accordingly
larger in the event of an accident. In order to be well prepared for such threats and secure structural
safety, there have been many studies on structural health monitoring (SHM) which makes it possible
to inspect structural conditions on a regular basis and detect damage early for an effective preparation
against an unexpected disaster or situation [3–8]. On a long-term basis, SHM technology can reduce the
time and efforts required for the maintenance of structures [9]. For these reasons, it has recently been
introduced to the construction of large bridges, skyscrapers and other major infrastructure. Examples
of the application of the SHM technology to bridge construction include the Great Belt East Bridge [10]
in Denmark, the Bill Emerson Memorial Bridge [11] in the U.S. and the Hakucho Bridge [12] in Japan.
Examples of the application of the technology to skyscrapers are a 17-story building at the UCLA in
the U.S. [13] and Republic Plaza [14] in Singapore.

In order to inspect structural conditions and early detect any damage using SHM technology,
a decent SHM system must be developed. According to previous studies, most of SHM systems
use wired sensor and measuring systems to secure a vast number of structural response data from
sensors of various types [15] The wired SHM system, using cables for transmitting structural responses
from sensors, is advantageous in acquiring data in a stable manner. Since data loggers are expensive,
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however, the system requires a large amount of initial cost for its installation. In addition, since power
equipment and sensor location are mostly determined at the stage of design and construction, it is not
easy to adjust or change the system later. In the case when new sensors need to be installed or old
ones relocated, they all must be re-cabled, making the wiring complicated. If sensors are installed at a
distance, then noise should also be considered. To overcome these practical and economic limitations of
conventional wired SHM systems, Spencer [16] and Lynch [17] proposed a wireless SHM system based
on a wireless sensor network. For example, Nagayama [18], Rice et al. [19] and Park [20] developed
the wireless sensor node ‘Imote2’ through ANCRiSST and applied it for SHM and assessment of
the structural state of a real bridge. In addition, Kurata et al. [21] developed ‘Narada’ using solar
panels and sub-networks and applied it to New Carquinez Bridge in the U.S. for the purpose of SHM.
Those examples proved that the wireless SHM system was effective in acquiring structural responses
from multiple points on a large structure using wireless sensor nodes and wireless networks. Despite its
various obvious advantages, conventional wireless SHM systems are not easy to restructure for either
extension or simple change because they are designed and developed with limited resources to carry
out only the sensor node-targeted functions. As each sensor node has an independent controller, it also
requires a lot of time and efforts if a measuring logic is updated (micro-programmed). Its capacity
could be additionally limited in processing consecutive measurement data on a real time basis. To make
SHM efficient, therefore, there should be a user-friendly, high-performance SHM system which can:
(i) acquire and process a large amount of diverse data on a real-time basis; (ii) easily edit measuring
logic quickly and accurately and expand its functions and (iii) provide system safety and data quality
up to the level of the commonly used (wired) measuring system even with the proven RF method. For
these purposes, a software design technology-adopted, embedded software technology (EST)-based
data acquisition (DAQ) system could be an alternative, overcoming the limitations of the conventional
hardware-based wired and wireless measuring systems.

The EST-based DAQ system can adopt diverse RF systems in a flexible manner and easily expand
multi-input/output channel (I/O) for multiple kinds and amounts of measurement. With the memory
as large as a high-performance personal computer and with a high-performance CPU included, it is
effective in acquiring, computing, processing and storing large data on a real-time basis. If necessary,
it can be converted into a standalone system and operated as a sub-SHM system. Thanks to the
adoption of the EST, in particular, the system can design and develop diverse logics (e.g., function,
algorithm, etc.) which are needed in the acquisition, process and transmission of structural response
signals and embed it within the DAQ system. Furthermore, the embedded logic can be operated
under the real-time operating systems (RTOS). After all, this kind of EST-based DAQ system can
effectively improve the weakness of the conventional hardware-based wired and wireless SHM system
and considerably reduce time and efforts needed to develop a user-centered, high-performance SHM
system which is directly applicable to actual structure.

Meanwhile, even though the EST-based DAQ system is capable of acquiring and storing a
large amount of data, bottlenecks, data losses, or data delays can occur because RF protocols (e.g.,
Bluetooth, Zigbee, Wi-Fi, etc.) are technologically limited in receiving and transmitting data. The RF
for a real-time SHM is supposed to work well under long distance, high speed and multi-channel
conditions, but it is not so advanced yet. To develop a SHM system by overcoming these RF limitations,
Peckens et al. [22] proposed a data compressing technology, a hardware filter bank imitating the human
hearing mechanism. However, the hardware filter bank designed and developed for data compression
for one particular infrastructure would not be valid anymore when the SHM system is applied to other
structures, so a new hardware filter bank would have to be designed and fabricated [23,24]. When the
bandwidth of dynamic responses (acceleration) changes in another SHM target structure, the SHM
system with this kind of hardware filter bank would become inefficient from a practical standpoint.
Such a weakness can be effectively improved through a design and development of a software type of
filter bank which can edit/change its logic in a flexible manner. Especially, a digital type of software
filter bank can be embedded into the DAQ system by coding the conventional hardware filter bank’s
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logic into high-level language, and thus it is basically different from the an analogy type of H/W filter
bank in the wireless SHM in terms of filter band design method.

In this study, a software type of filter bank named ‘artificial filter bank (AFB)’ was developed for
data compression. The AFB can selectively compress only the acceleration signals. Then, the developed
AFB was completely embedded into the EST-based DAQ system, and an RF-based SHM system was
developed and named an ‘intelligent data acquisition (IDAQ)’ system. To assess its validity, finally tests
were conducted based on a random signal (the El-Centro seismic waveform). From the tests, it was
found that the IDAQ system having AFB was valid in acquiring dynamic responses (only acceleration)
for the SHM in a compressed size, successfully substituting the conventional hardware-based wired
and wireless SHM system. In addition, it was confirmed that the system would be available as a
user-centered SHM system because the measuring logic requested in a software design system can be
easily and quickly developed and embedded.

2. The IDAQ System for Structural Health Monitoring

For efficient SHM on structures, this study develops an IDAQ system which is distinguished
from a conventional hardware-based wired and wireless SHM system in the following features
and advantages:

First, this study adopts the leading EST ‘Windows Embedded Standard 7 (WES7)’ and the TROS
‘LabVIEW Real-Time 2012 (LabRT2012)’ as shown in Figure 1a. The adoption of WES7 makes it possible
to code the requested logics and functions in high-level language and embed them into the DAQs
system. With the adoption of LabRT2012, the DAQ system can likewise be operated in a standalone
manner. Then, the targeted structural response can be acquired and processed on a real-time basis,
using the diverse logics and functions coded in the LabVIEW. After all, the introduction of EST and
RTOS can innovatively reduce time and efforts needed to establish and operate the system and to
develop and implement the measuring logics and functions needed for efficient SHM.

Second, this study employs a high-performing CPU such as 32 GB memory, 2 GB RAM and Intel
core i7 as shown in Figure 1b. Thanks to the introduction of this kind of high-performing PC-level
controller, a user is able to efficiently save, compute and process large measurement datasets for SHM.
After all, optimum measuring conditions can be provided for efficient SHM.

Third, this study adopts a Wi-Fi communication module which enables high-speed mobile
communication as shown in Figure 1c. The introduction of Wi-Fi-based access points (APs) makes it
possible to transmit large data at high speed and expand to multiple channels. If necessary, a wireless
network could be configured for high-speed mobile communication even at a distance by adding
low cost APs. In addition, practicality-considered RF communication functions are secured to enable
closed-operation (e.g., feedback vibration control, etc.) based on structural response according to
users’ purpose and demand through two-way communication. Mobile communication-aimed AP is
also configured as an independent hardware from the IDAQ system so that the AP of other wireless
communication systems (e.g., Zigbee, Bluetooth, etc.) can be easily changed or adopted depending on
user demand.

Fourth, this study takes in a Multi-I/O by which it can expand channels according to a type of
sensor, as shown in Figure 1d. With the introduction of Multi-I/O, various data needed for SHM
can be measured and operated in an integrated manner using the IDAQ system. In particular, it
fundamentally solves the problems of conventional SHM—high initial cost for system development
and data synchronization.

Lastly, this study adopts a data compressing technology of dynamic responses, ‘AFB’, as illustrated
in Figure 1e. Here, the AFB is developed to acquire effective dynamic responses in a compressed
size and wholly embedded into the IDAQ system. The introduction of this kind of AFB helps the
IDAQ system effectively reduce a large volume of dynamic responses needed for SHM. In addition,
more efficient data transmission is expected than in the RF system. Therefore, this system can be a
great alternative for the RF-based real-time SHM. As stated above, the IDAQ system is compared to
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the conventional wired and wireless SHM system. Its structure can be represented in a diagram as
shown below:
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3. An Artificial Filter Bank (AFB) for the IDAQ System

In this study, the IDAQ system is developed for efficiency. As described in Section 2 above,
the IDAQ system features a CPU and memory capacity as high as the latest high-performance personal
computer allows. It also has the following: WES7 based on EST, LabRT2012 based on RTOS, multi
I/O for diverse/multiple measurement in an integrated manner, Wi-Fi AP for high-speed mobile
communication, AFB (data compression technology of dynamic responses (only acceleration)). In this
section, the mechanism of AFB developed for the IDAQ system is described. The AFB can selectively
compress only the acceleration signal. AFB’s specific technologies band-pass filter optimizing algorithm
(BOA) and peak-picking algorithm (PPA) are also briefly explained. The index such as reconstruction
error (RE), compressive ratio (CR) and spectrum error (SE) by which the AFB’s performance is assessed
are also described.

3.1. Artificial Filter Bank (AFB) Mechanism

In the field of signal processing, a filter bank is defined as a special filtering arrangement that
filters certain frequency elements (information) of interest only based on input signal standards.
It handles a series of processes such as classifying input signals by frequency, reconfiguring and
printing them. That is, it arranges input signals into each appropriate area of frequency and outputs
the rearranged ones. The process of rearrangement means a ‘decomposition of signals’ by decision
of each filter, and that of output becomes a ‘synthesis of signals’ occurring during filtering. Such a
filter bank can be differently designed depending on purposes and frequency levels. As the number
of band-pass filters in the filter tank increases and they become denser, filtering signals get more
accurate than the input signal. However, data operating and processing efficiency declines when the
number of band-pass filters increases. Therefore, there is a need to optimize the filter bank. To optimize
a filter bank, primary design factors such as number of band-pass filters, bandwidth and spacing
should be considered. Here, the optimization of filter bank is to determine the three design factors
to build the best reproduction capability based on the targeted input signal. For this, numerical and
repetitive operations are required under different combinations of the three design factors. Meanwhile,
the signals (Figure 2b) decomposed by passing through the band-pass filter in the filter bank and also
its synthesized and reconstructed ones (Figure 2c) include only certain frequency information shown
as in Figure 2a. Therefore, even though the filter bank can be valid in data acquisition, it will have
only the same size of data with the same sampling spacing as the input signals because of the specific
features particular to band-pass filters. In other words, although certain reconstructed signals may be
selectively better acquired than input signals, the size of the acquired data remains the same. After all,



Sensors 2017, 17, 1620 5 of 22

it turns out to be not so efficient in terms of RF communication-based transmission and management
of acquired data.

Therefore, to efficiently acquire the dynamic response of structure using the limited capacity of
RF communication, data compressing technology is required. What is of most concern in developing
a data compression technology for dynamic responses is to reflect frequency information just like
the filter bank above. Based on several design factors and considerations, this study developed an
AFB by combining the BOA aimed to optimize the filter bank with the PPA designed to compress
the reconstructed signals obtained from the filter bank. The mechanism of the AFB developed for the
IDAQ system is shown in Figure 2 below:
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3.2. Band-Pass Filter Optimization Algoritnm for AFB

The reconstructed signals in Figure 2c can be expressed in a form of combining individual filtering
signals which the filter bank passes, as stated in Equation (1) below. Then, the filter bank selects some
data of certain frequency among the original (raw) signals of diverse frequency, and classifies them
into several parts for filtering and output. Here, in order that the reconstructed signals sufficiently
reflect initial input signals, it is required to design the filter bank in an optimum manner. With a goal
of optimizing the filter bank, this study develops a BOA to determine three design conditions (number
of band-pass filters, bandwidth and spacing) in the band-pass filter.

The BOA’s calculation process can be divided into the following four steps: First, reconstruction
errors are comparatively numbered with the assumed number of band-pass filters based on the initial
input signal. Second, the number of band-pass filters is set as the optimum condition at the point
where the slope of the reconstruction error is inflected. Third, a reconstruction error is calculated by
changing the bandwidth and the central frequency interval, on the basis of the number of band-pass
filters. Fourth, optimal is the bandwidth and mean frequency interval which have the minimum
reconstruction error.

In this study, the RE, which is required for BOA’s calculation process to optimize the filter bank,
is defined as shown in Equation (2) from the concept in Figure 3 below. The RE defined in Equation (2)
is represented by the relative difference of absolute values between original and reconstructed signals.
As the RE is close to ‘0’, it means the original signal is successfully simulated and further, the filter
bank is judged to have excellent reconstruction ability:

u(t) ≈ y(t) =
N

∑
i=1

yi(t) (1)



Sensors 2017, 17, 1620 6 of 22

RE =

∫ T
0 |u(t)− y(t)|/|u(t)|

T
=

∫ T
0 |δi|/|u(t)|

T
(2)

where, u(t) is an original signal by response time while y(t) and T represent a reconstructed signal
by response time and a total length (s) by response time, respectively. Even though Peckens and
Lynch [22] used l2 − norm for RE, it is a scale for the comparison of the RE’s total energy against the
original signal. To clearly express the reconstruction effect of the time response of the reconstructed
signal including peak values, this study states the reconstruction signal’s error against original signals
on absolute scale.
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3.3. Peak-Picking Algorithm Based on the Central Difference Method

As mentioned above, to efficiently acquire the dynamic responses of structure using RF
communication technology with limited performance, data compression technology is required besides
selective sorting of data. For this, this study develops a PPA to reduce the size of the acquired data
while including information of certain frequencies of interest pertaining to the characteristics of the
dynamic responses. The developed PPA derives peak values from reconstructed signals, not from
original signals. Then, the calculation process for data compression can be dramatically reduced by
deriving peak values based on the reconstructed signal, a set of filtering signals, not the peak value of
the filtered signal.

The PPA’s calculation process can be summarized as follows: first, calculated reconstructed signal
is read from the optimized filter bank. Second, the reconstructed signal is classified into three (3)
data groups. Third, each group’s derived function is calculated based on three data in each group.
Fourth, peak values (time and measuring data) are derived by assessing the slope (sign) of each group’s
derived function.

In this study, a central difference method is used as a way to extract peak values while PPA is
calculating. Here, the difference method is classified into backward difference, central difference and
forward difference under the assumption that the relation among neighboring data is linear. If the
neighboring data is spaced suitably enough to meet the assumption, a derived function with the lowest
error can be calculated using the central difference method. Figure 4 above reveals the central difference
method’s conceptual diagram, and a derived function can be calculated through Equation (3):

f ′(x(i)) =
f (x(i + 1))− f (x(i− 1))

x(i + 1)− x(i− 1)
(3)

Based on the size of the reconstructed data determined through the Equation (1) above, the effects
of data compression through PPA can be defined by comparing a relative data size with the extracted
peak value. For this, this study defines data CR as stated in Equation (4) below:

CR =
NS0 − NSC

NS0
(4)
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where, NSC is the number of compressive signal data while NS0 refers to the number of reconstructed
signal data. If the CR gets closer to ‘0’, the compression effect increases. Here, the defined CR is used
for the assessment of the compression effects against reconstructed signal.
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4. Artificial Filter Bank (AFB) Optimization

The previous chapter defined AFB as a data compressing technology of dynamic responses
to acquire the efficient dynamic responses (only acceleration) of structures using the IDAQ system
by combing both BOA and PPA. In this chapter, the AFB is optimized based on a random signal
(the El-Centro seismic waveform) which is commonly used in the construction industry to assess the
IDAQ system’s applicability for SHM on large architectural structures.

4.1. Reference Signal for AFB Optimization

It is well known that El-Centro, Kobe and Northridge are the leading random seismic waveforms
used in the construction industry. They represent an unexpected circumstance which may be occur
when designing, constructing and managing structures. To assess the applicability of the IDAQ system
for SHM into large structures, therefore, the ‘El-Centro’ seismic waveform was chosen as an original
signal for the optimization of AFB among the random seismic waveforms mentioned above. Figure 5
below shows the El-Centro seismic waveform (SAC Name: LA02 (1940, SE)) used as an original signal,
which is expressed in time and frequency responses. According to Figure 5a, a seismic situation lasts
for a short period of time (approximately one minute in the case of the El-Centro event). In Figure 5b,
diverse frequency factors are distributed across the frequency bands. In particular, the frequency of
interest is concentrated in less than 10 Hz. Here, if the seismic situation in Figure 5 is assumed, the
dynamic responses of the target structure are measured as a type which includes the target structure’s
own frequency factors in the conventional seismic waveform’s random frequency factors.

For SHM on structures, after all, the target structure’s original frequency factors in the random
frequency factors should be fully discovered. Because large structures in the construction industry
usually have relatively flexible behavioral characteristics, the range of the target mode needed for SHM
can be limited to a certain range of frequency (e.g., below 10 Hz). From this perspective, the El-Centro
seismic waveform selected as an original signal could be used as a reference response which can
wholly express the large structure’s rage of frequency concerned (below 10 Hz). Under the assumption
that an El-Centro seismic situation has these frequency characteristics, this study designs the AFB in
an optimum manner based on the El-Centro seismic waveform (total time length: 50 s, delta T: 0.02 s,
total frame length: 2500).
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Figure 5. El-Centro seismic waveform for reference signal of AFB: (a) Time domain; (b) Frequency domain.

4.2. Optimizing Desing of AFB Using a BOA

To derive the optimum conditions for a filter bank, this study attempts to determine three design
factors (number of filters, bandwidth and spacing) for the band-pass filter which would be used in the
filter bank. First, to determine the number of band-pass filters, a RE was calculated using Equation (2)
by changing the number of filters from 3 to 20 (18 cases in total) through the BOA. Figure 6 below
presents the RE results by the number of band-pass filters for the 18 cases. According to the figure,
when the number of band-pass filters is less than 10, the RE largely depends on the filter conditions.
When it is 10 or more, on the contrary, the RE is small depending on the filter conditions. In addition,
the fluctuation in RE is large when the number of band-pass filters ranges from 3 to 10. When it is 10
or more, in contrast, the fluctuation is relatively small. To design an efficient filter bank, after all, it is
advantageous to reduce a RE by decreasing the low number of band-pass filters. Therefore, the number
of band-pass filter is set to ‘10’ in this study.

Then, to determine bandwidth and spacing, a RE by the bandwidth and spacing is calculated
using the 10 band-pass filters. The bandwidth for the band-pass filter is divided into 20 categories
(0.1 to 2.0 Hz, increase by 0.1 Hz). In addition, spacing for the band-pass filter is classified into 12
conditions (0.2 to 2.4 Hz, an increase by 0.2 Hz). Based on the bandwidth and spacing conditions,
REs on a total of 240 cases are iteratively calculated, and the results are stated in Table 1 below. In
addition, they are illustrated in Figure 7. According to Table 1 and Figure 7, when 10 band-pass filters
are used, the bandwidth for the band-pass filter with a minimum RE is 0.7 Hz. Then, the spacing for
the band-pass filter is 1.0 Hz. In conclusion, the conditions of the band-pass filter in the filter bank for
the optimum acquisition of El-Centro seismic waveforms in Figure 5 are determined as follows: 10
filters, 0.7 Hz in bandwidth and 1.0 Hz of spacing.
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Table 1. RE values for a filter bank with 10 filters.

Bandwidth of Filters (Hz)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Filter
Spacing

(Hz)

2.4 0.0351 0.0328 0.0309 0.0293 0.0280 0.0266 0.0253 0.0243 0.0234 0.0225 0.0217 0.0210 0.0203 0.0197 0.0192 0.0188 0.0185 0.0183 0.0181 0.0181
2.2 0.0330 0.0306 0.0287 0.0272 0.0259 0.0247 0.0236 0.0226 0.0217 0.0207 0.0199 0.0192 0.0186 0.0180 0.0177 0.0175 0.0174 0.0174 0.0174 0.0075
2.0 0.0335 0.0302 0.0276 0.0254 0.0235 0.0220 0.0206 0.0194 0.0183 0.0174 0.0167 0.0161 0.0157 0.0154 0.0153 0.0154 0.0157 0.0160 0.0163 0.0168
1.8 0.0326 0.0295 0.0272 0.0252 0.0233 0.0216 0.0200 0.0186 0.0173 0.0162 0.0153 0.0147 0.0143 0.0141 0.0143 0.0146 0.0150 0.0157 0.0164 0.0173
1.6 0.0329 0.0298 0.0272 0.0249 0.0228 0.0207 0.0186 0.0169 0.0155 0.0145 0.0140 0.0137 0.0137 0.0141 0.0148 0.0156 0.0165 0.0176 0.0187 0.0199
1.4 0.0329 0.0296 0.0269 0.0244 0.0219 0.0194 0.0172 0.0155 0.0142 0.0135 0.0133 0.0136 0.0144 0.0154 0.0167 0.0181 0.0197 0.0214 0.0232 0.0251
1.2 0.0316 0.0279 0.0246 0.0214 0.0184 0.0159 0.0141 0.0130 0.0126 0.0131 0.0141 0.0156 0.0174 0.0194 0.0217 0.0240 0.0264 0.0287 0.0311 0.0335
1.0 0.0319 0.0271 0.0226 0.0184 0.0149 0.0127 0.0117 0.0121 0.0137 0.0160 0.0188 0.0218 0.0249 0.0281 0.0312 0.0343 0.0373 0.0403 0.0432 0.0459
0.8 0.0308 0.0253 0.0201 0.0158 0.0128 0.0120 0.0139 0.0173 0.0212 0.0256 0.0300 0.0344 0.0386 0.0428 0.0469 0.0504 0.0538 0.0572 0.0605 0.0638
0.6 0.0289 0.0221 0.0166 0.0138 0.0145 0.0187 0.0244 0.0306 0.0368 0.0429 0.0487 0.0537 0.0586 0.0633 0.0679 0.0724 0.0767 0.0809 0.0850 0.0890
0.4 0.0262 0.0182 0.0150 0.0196 0.0274 0.0360 0.0446 0.0522 0.0596 0.0666 0.0734 0.0799 0.0860 0.0919 0.0976 0.1026 0.1075 0.1122 0.1168 0.1212
0.2 0.022 0.0217 0.0323 0.0444 0.0567 0.0683 0.0791 0.0880 0.0960 0.1033 0.1099 0.1154 0.1204 0.1250 0.1292 0.1327 0.1359 0.1389 0.1417 0.1441
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Meanwhile, Figure 8 reveals a change in the bandwidth and spacing of the band-pass filter
as a consequence of the change in the number of band-pass filters. According to Figure 8, as the
number of filters increases, both bandwidth and spacing decrease. On the other hand, bandwidth and
spacing increase when the number of filters decreases. To get a maximum amount of information from
the response using a limited number of band-pass filters, then, the filter bank should be optimized.
To determine the number of band-pass filters, and also bandwidth and spacing at the same time,
iterative calculation is required.
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Figure 8. Bandwidth and filter spacing for different numbers of filters.

4.3. Data Compression Using a PPA

In Section 3.2, the optimum conditions of a filter bank (number of band-pass filters, bandwidth
and spacing) are derived based on the BOA. The optimized filter bank produces reconstructed signals
which can simulate original signals most closely. If a filter bank is optimized using a BOA, after all,
the most accurate reconstructed signal is expected, even for random original signals. Meanwhile,
even though the reconstructed signal which the optimized filter bank passes has the minimum RE
with original signal, the reconstructed signal’s size is the same as that of the original signal in terms
of sampling rate. For SHM on large structures, in particular, there might be a high demand for a
multi-channel-based precision measurement with a high sampling rate. Because the large dynamic
responses acquired on a real-time basis is transmitted using the RF with limited performances, it can
cause a data loss because of bottleneck. To get large dynamic responses based on the RF, a data
compressing technology is essential.

For data compression, this study develops a PPA, using a central difference method mentioned in
Figure 3 and Equation (3). For a reference signal for the detection of the peak value, a reconstructed
signal which the filter bank passes is used. Then, the reconstruction sign’s peak values are determined
through changes in negative and positive signs on the derived function of the reconstruction signals
calculated in sequence. Figure 9 below reveals CR results by the bandwidth and spacing in which the
RE reaches the lowest level when the number of band-pass filters in Figure 6 changes:

According to the Figure 9 above, CR is 0.8176 when the number of band-pass filters is 3. The ratio
drops to 0.788 when the number of band-pass filters increases to 20. Here, fluctuations in the CR over
changes in the number of band-pass filters are minor. In particular, when the number of bass-pass
filters is 10 (the optimum condition for the filter bank), the CR is 79.44, anticipating about 80% of data
compressing effects.
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Figure 9. CR results for number of filters.

4.4. Development of AFB

In this study, prior to the IDAQ system’s test, an AFB logic which would be embedded into the
IDAQ system is developed, and whether or not the AFB could be normally operated is examined.
Then, the AFB can program band-pass filters using commercial programming language (e.g., C, C++,
Matlab, JAVA, etc.). In this study, to develop an AFB, the Matlab M-code is adopted. In addition, the
El-Centro seismic waveform is applied into the AFB. Then, filtering signals are estimated from each
band-pass filter and compared to each other. Figures 10 and 11 below are the time and frequency
responses of the filter-bank of the determined optimum conditions where the number of band-pass
filters is 10, bandwidth is 0.7 Hz, and spacing is 1.0 Hz. These two figures show that the filter bank is
optimally designed using the determined conditions.
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Figure 10. Time domain response of optimal condition AFB: (a) filter 1 data; (b) filter 2 data;
(c) filter 3 data; (d) filter 4 data; (e) filter 5 data; (f) filter 6 data; (g) filter 7 data; (h) filter 8 data;
(i) filter 9 data; (j) filter 10 data.

Sensors 2017, 17, 1620 12 of 22 

 

(g) (h) 

(i) (j) 

Figure 10. Time domain response of optimal condition AFB: (a) filter 1 data; (b) filter 2 data; (c) filter 
3 data; (d) filter 4 data; (e) filter 5 data; (f) filter 6 data; (g) filter 7 data; (h) filter 8 data; (i) filter 9 
data; (j) filter 10 data. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 11. Frequency domain responses of optimal condition AFB: (a) filter 1 data; (b) filter 2 data; (c) 
filter 3 data; (d) filter 4 data; (e) filter 5 data; (f) filter 6 data; (g) filter 7 data; (h) filter 8 data; (i) filter 
9 data; (j) filter 10 data. 

0 10 20 30 40 50
-5

0

5

Time(sec)

A
cc

el
er

at
io

n(
g)

 

 
raw data
Filter7 data

0 10 20 30 40 50
-5

0

5

Time(sec)

A
cc

el
er

at
io

n(
g)

 

 
raw data
Filter8 data

0 10 20 30 40 50
-5

0

5

Time(sec)

A
cc

el
er

at
io

n(
g)

 

 
raw data
Filter9 data

0 10 20 30 40 50
-5

0

5

Time(sec)

A
cc

el
er

at
io

n(
g)

 

 
raw data
Filter10 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter1 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter2 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter3 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter4 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter5 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter6 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter7 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter8 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter9 data

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Filter10 data

Figure 11. Frequency domain responses of optimal condition AFB: (a) filter 1 data; (b) filter 2 data;
(c) filter 3 data; (d) filter 4 data; (e) filter 5 data; (f) filter 6 data; (g) filter 7 data; (h) filter 8 data; (i) filter
9 data; (j) filter 10 data.
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Here, it can be confirmed that the AFB is successfully designed under the determined optimum
conditions (six band-pass filters, 0.6 Hz in bandwidth and 1.0 Hz of spacing). In addition, time and
frequency information is more implicated in the filters 1 through 6. As a result, it is confirmed that the
AFB-added IDAQ system optimized in the El-Centro seismic waveform is effective for the acquisition
of dynamic responses and SHM on large and relatively flexible structures which have a range of
frequency less than 6 Hz. If the AFB is designed with a random reference signal, not with the El-Centro
seismic waveform, however, optimum conditions can differ. Then, a user can configure the AFB
optimally by determining the reference signal for the purpose.

5. Estimation of the IDAQ System

In this chapter, the IDAQ system is completed by embedding the AFB developed under the
optimum conditions into the EST-based DAQ system. Based on the El-Centro seismic waveform
(SAC Name: LA02 (1940, SE)), then, the IDAQ system’s test is performed. As for the test, it is done
through the IDAQ system’s input by forming the El-Centro seismic waveform using the LabVIEW’s
function generator. Then, the AFB’s output signals (reconstructed signal, compressive signal, etc.)
embedded in the IDAQ system was acquired wirelessly from the host PC. Finally, whether or not the
IDAQ system properly carries out a series of targeted operations (real-time acquisition, decomposition,
reconstruction, compression and transmission of dynamic responses (acceleration)) for SHM is assessed
in a standalone manner. Figure 12a below reveals the logic of the AFB programmed based on the
optimal conditions mentioned earlier, while Figure 12b shows the IDAQ system’s controller used for
embedding the programmed AFB's.
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(optimal conditions).

In this study, NI’s cDAQ-9139 controller is used to completely embed (systematize) the developed
AFB into the Matlab M-code. The cDAQ-9139 controller has a 1.33 (max: 2.4 GHz) dual core Intel i7
processor, 2 GB of RAM and 32 GB of data storage space in the stand-alone chassis to accomodate
the IDAQ system mentioned in Section 2. Therefore, it offers a dramatically improved system
environment for acquisition, processing and storage of high-speed and large data on a real-time
basis. In addition, it features WES7 and Linux-based RTOS which guarantee the embedded system’s
stability and real-timeness. Therefore, the developed AFB logic can be completely embedded and
operated on a real-time basis. In addition, a MOXA SWK-3121 AP module designed for multi I/O is
applied for an integrated multiple (various) measurement and high-speed and two-way RF (Wi-Fi)
communication. Thus, the IDAQ system in this paper is designed to carry out a series of standalone
operations for the real-time acquisition, decomposition, reconstruction, compression and transmission
of large dynamic responses (acceleration) based on the built-in AFB.
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5.1. Reconstructed Signal of the IDAQ System

To test the validity of the IDAQ system developed for the efficient SHM, a test is conducted.
Then, the output signals, coming from original signals after inputting the El-Centro seismic waveform,
are classified into reconstructed signals (a set of signals which have passed through the band-pass filter),
and compressive signals which are made after abstracting only peak values based on reconstructed
signals. Those two signals are assessed with RE in Equation (2) and CR in Equation (4) respectively.
First, the time and frequency response of the reconstructed signals are estimated from the IDAQ system
as shown in Figures 13 and 14, respectively.
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Figure 13. Time domain of the reconstructed signal from the IDAQ system: (a) Time from 0 to 50 s;
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Figure 14. Frequency domain of the reconstructed signal from the IDAQ system: (a) frequency from 0
to 25 Hz; (b) Detail 1; (c) Detail 2.

According to Figure 13, it is found that the time response of the reconstructed signals obtained
under the optimum conditions sufficiently simulates that of the original signal, by means of only 10
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band-pass filters. The estimated RE shows 0.01174, and approximately 70% of reconstruction capability
is found against total original signals. In particular, the maximum acceleration is 3.417 g at 2.14 s,
when the seismic acceleration of original signal is the highest. Then, the maximum acceleration of
reconstructed signals is 2.878 g. Therefore, the reproduction capacity turns out to be 85% at the highest
acceleration of the reconstructed signals, which is excellent.

Meanwhile, the frequency response of the reconstructed signal which passed through the AFB
embedded in the IDAQ system should reflect all range of optimized frequency information besides the
reproduction capability on time response as shown in Figure 13. To assess the frequency response’s
reproduction performances in the reconstructed signal, this study defines the reconstructed signals’
spectrum error (SE) as shown in Equation (5) from the concept in Figure 15.

SE =

∫ F
0 |u( f )− y( f )|/|u( f )|

F
=

∫ F
0 |δMi|/|u( f )|

F
(5)

Sensors 2017, 17, 1620 15 of 22 

 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Frequency domain of the reconstructed signal from the IDAQ system: (a) frequency 
from 0 to 25 Hz; (b) Detail 1; (c) Detail 2. 

 

Figure 15. Concept of spectrum error (SE). 

Also, the SE on the originally targeted frequency range (less than 10 Hz) is found to be 0.00928, 
showing about 91% of spectrum reconstruction capability, therefore the reconstructed signal 
estimated under the optimum conditions through the AFB can sufficiently simulate the original 
signal’s frequency response with 10 band-pass filters only. Specifically, it simulates all information 
on the original signal’s frequency range (less than 10 Hz). Based on the results above, the IDAQ 
system in this study works successfully with the AFB’s logic optimized in the El-Centro seismic 
waveform. It is also found to be effective in estimating reconstructed signals including mode 
information concerned which meets the AFB’s optimum conditions. 

5.2. Data Compression of the IDAQ System 

To test the validity of the IDAQ system developed for the efficient SHM, then, the data 
compression ability was assessed. The reconstructed signal’s time response derived in Figure 13 is 
about 70% against the original signal while the reconstructed signal’s frequency response from 
Figure 14 is about 83% against the original signal in terms of reconstruction ability. Even so, the size 
of the estimated reconstructed signal’s time response is the same as the data size of original signal. 
To carry out SHM by acquiring a great number of dynamic response data (acceleration) using the 
limited RF, data compression technology is needed. For this, this study develops a PPA using the 
central difference method. Here, the PPA is designed to extract peak values only based on 
reconstructed signals. Figure 16 below reveals the peak-picking results of the reconstructed signal 
from the IDAQ system. 

0 5 10 15 20 25
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Recon. data

0 2 4 6 8 10
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Recon. data

1 1.5 2 2.5 3
0

1

2

3

Frequency(Hz)

M
ag

ni
tu

de

 

 
raw data
Recon. data

Figure 15. Concept of spectrum error (SE).

Here, u( f ) is the original signal’s frequency response while y( f ) refers to the reconstructed
signal’s frequency response. In addition, ‘F’ represents the total length (Hz) of the spectrum estimated
through the fast fourier transform (FFT) analysis. Then, if the SE in Equation (5) gets closer to ‘0’,
the reconstruction effect on the reconstructed signal’s frequency response is excellent, just like the RE
defined in Equation (2). The reconstructed signal’s SE from the frequency response of the reconstructed
signal in Figure 14 is 0.01725. Compared to the total original signal’s frequency response, about 83% of
spectrum reconstruction ability is found.

Also, the SE on the originally targeted frequency range (less than 10 Hz) is found to be 0.00928,
showing about 91% of spectrum reconstruction capability, therefore the reconstructed signal estimated
under the optimum conditions through the AFB can sufficiently simulate the original signal’s frequency
response with 10 band-pass filters only. Specifically, it simulates all information on the original signal’s
frequency range (less than 10 Hz). Based on the results above, the IDAQ system in this study works
successfully with the AFB’s logic optimized in the El-Centro seismic waveform. It is also found to be
effective in estimating reconstructed signals including mode information concerned which meets the
AFB’s optimum conditions.

5.2. Data Compression of the IDAQ System

To test the validity of the IDAQ system developed for the efficient SHM, then, the data
compression ability was assessed. The reconstructed signal’s time response derived in Figure 13
is about 70% against the original signal while the reconstructed signal’s frequency response from
Figure 14 is about 83% against the original signal in terms of reconstruction ability. Even so, the
size of the estimated reconstructed signal’s time response is the same as the data size of original
signal. To carry out SHM by acquiring a great number of dynamic response data (acceleration)
using the limited RF, data compression technology is needed. For this, this study develops a PPA
using the central difference method. Here, the PPA is designed to extract peak values only based on
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reconstructed signals. Figure 16 below reveals the peak-picking results of the reconstructed signal
from the IDAQ system.
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Figure 16. Peak-picking results of the reconstructed signal from the IDAQ system: (a) Time from 0 to
50 s; (b) Detail 1; (c) Detail 2.

In Figure 16, the central difference method-based PPA is able to pick up only the reconstructed
signal’s peak values. A total of 520 peak values are derived. The CR against 2500, the number of
reconstructed signals for fifty seconds, is 0.7920. When PPA is combined with the AFB, about 80% of data
are expected to be compressed under the conditions optimized with the El-Centro seismic waveform.
Based on the results above, it is found that the IDAQ system operates well based on the AFB’s logic which
is added to the PPA developed using the central difference method. Among the reconstructed signal’s
time responses, then, only the peak values which represent frequency information (periodicity) are picked
up so that it is proven valid in estimating compressed dynamic responses.

5.3. Compressive Signal of the IDAQ System

To test the validity of the IDAQ system developed for the efficient, only the peak values (Figure 16)
picked up from the IDAQ system are transmitted using the RF, and the test is performed to have
them stored in the host PC. Then, the peak values stored in the host PC is to be restored into a
signal-analyzable type for future SHM. In this study, the signals restored with peak values only are
defined as ‘compressive signals’. For SHM, compressive signals of the same size (time length) as the
spacing (delta t) equivalent to the original sampling rate are required. To crate compressive signals
using the peaks only, which are acquired and stored based on irregular spacing, linear interpolation is
used. This method can preserve peak values determined from the original PPA and create compressive
signals which are the same in terms of reconstructed signal and spacing within the peak range.
Figures 17 and 18 below show the time and frequency domains of compressive signals restored using
the linear interpolation, respectively.
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to 25 Hz; (b) Detail 1; (c) Detail 2. 
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Figure 17. Time domain of compressive signal using peak-picking values: (a) Time from 0 to 50 s;
(b) Detail 1; (c) Detail 2.
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Figure 18. Frequency domain of compressive signal using peak-picking values: (a) frequency from 0 to
25 Hz; (b) Detail 1; (c) Detail 2.

In the compressive signal’s time response derived from Figure 17, the RE is 0.00756, compared to
the reconstructed signal. As a result, the compressive signal is well able to restore data compared with
the reconstructed signal (the restoration ability is approximately 81%). Specially, the reconstructed
signal’s peak values picked up from the PPA are properly reflected and simulated. Nevertheless an
RE occurs because a section of the empty time data without peak values is linearized in restoring the
compressive signal’s time response using the linear interpolation. Because the peak values of time
response are used as one of major interest information in executing SHM, the linear interpolation-based
compressive signal restoration technology accomplishes the design goal.

While the reconstructed signal remarks especially mode information about frequency range of
original signal (1 to 10 Hz) in Figure 14, the compressive signal expresses it all across the total frequency
range of reconstructed signals as in Figure 18 because the peak values, the reference data of compressive
signals, are derived throughout the reconstructed signal’s response time. The estimated compressive
signal’s frequency response shows 0.01445 of SE, compared to the reconstructed signal. In comparison
with the total original signal’s frequency response, about 85% of spectrum reconstruction ability is
observed. Based on the results above, therefore, the compressive signal’s frequency response properly
simulates all information throughout the reconstructed signal’s frequency range. Lastly, to test the
validity of the IDAQ system developed for efficiency, the compressive signal’s time and frequency
responses are shown in Figures 19 and 20, respectively as the final results of the test based on the
originally targeted original signals.
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Figure 19. Time domain of raw signal vs. compressive signal: (a) Time from 0 to 50 s; (b) Detail 1;
(c) Detail 2.
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Figure 20. Frequency domain of raw signal vs. compressive signal: (a) frequency from 0 to 25 Hz;
(b) Detail 1; (c) Detail 2.

In Figure 19, the compressive signal’s time response generated based on the reconstructed signal’s
peak values sufficiently simulates the original signal’s periodicity. The RE with the original signal is
0.01702, showing about 60% of reconstruction ability against the reconstructed signal. Unlike the case
in Figure 17, a relatively large error is observed in the compressive signal’s time response against the
original signal. It appears that it originates from the reconstructed signal’s RE against the original
signal. As a way to overcome the compressive signal’s RE, a user can increase the number of filters
against the RE, as described Figure 6, after measuring the efficiency in configuring the filter bank.
In Figure 20, just like the characteristics of the reproduction of the reconstructed signal’s frequency
response against the original signal shown in Figure 14, the compressive signals intensively simulate
the mode information on the original signal’s frequency range (less than 10 Hz).

Compared to the original signal, the estimated compressive signal’s frequency response is 0.03598
in terms of the SE, showing about 63% of spectrum reconstruction ability against the total original
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signal’s frequency response. In particular, the SE on the originally targeted frequency range (less
than 10 Hz) is 0.02831, showing about 71% of spectrum reconstruction ability. Based on the results,
even though only several band-pass filters are used through the BOA, the AFB-added, the data
compression technology-based IDAQ system developed in this study turns out to be effective in
acquiring effective dynamic responses which can sufficiently express the targeted original signal’s
time and frequency information by acquiring compressed peak values only through the PPA. In the
restoration of compressive signals using peak values only, in addition, linear interpolation is effective
in creating compressive signals within the complete peak value section while preserving conventional
peak value information.

6. Conclusions

This study develops a data compression technology-based IDAQ system for the efficient by
overcoming the limitations of the conventional hardware-based wired and wireless SHM system and
adopting the latest measuring system and technology. To test the validity of the developed IDAQ
system, the test is carried out. Then, the study results are as follows:

1. The BOA developed for the AFB highlights only the signals of the frequency range including the
mode of interest among random signal’s broad frequency factors. The reconstructed signal reveals
70% and 83% of reconstruction effects in time and frequency responses against the original signal
respectively. In particular, when the AFB is optimized using the El-Centro seismic waveform, it
could be available as a filter technology needed to acquire dynamic responses in large flexible
architectural structure (less than 10 Hz).

2. The central difference method-based PPA developed for the AFB selectively resamples only peak
values including effective modal information among the reconstructed signals. Then, about 80%
of data compression effects are expected. This kind of data compressing technology can overcome
the limitations of RF communication and be available as a technology for efficient operation and
management (big-data problem) of database at a long-term monitoring.

3. The AFB developed by using high-level language is embedded into the IDAQ system in a fast
and accurate manner. As a result, it is able to acquire compressed effective dynamic responses
on a real-time basis, specially, because the AFB can add or deduct diverse logics and functions
depending on a user’s needs and easily edit and add the filter bank’s logic when response changes.
Therefore, it can innovatively improve the conventional hardware-based filter bank’s design and
implementation method in terms of efficiency and economy.

4. The linear interpolation applied for the restoration of the compressive signal is found to be
effective in creating compressive signals for SHM by keeping the conventional reconstructed
signal’s peak values intact. Then, in time and frequency responses against reconstructed signals,
the compressive signal reveals 81% and 85% of expected reconstruction effects, respectively.
This kind of linear interpolation can enhance the IDAQ system’s practical availability.

5. The IDAQ system overcomes the conventional hardware-based wired and wireless SHM
system’s limitations by adopting high-performance hardware, multi-input/output channel (I/O),
high-speed RF module, EST and RTOS based on the latest measuring system and technology. With
the addition of AFB, in particular, it can substitute the conventional hardware-based filter bank,
showing a possibility as a brand-new SHM system which enables efficient dynamic responses
acquisition from structures.

6. In further studies, the IDAQ system would be continuously upgraded and applied to actual
structures with a goal of evolving into a bio-inspired structural system equipped with intelligent
sensing, judgment and response capabilities.
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