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Abstract: A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide
and chitosan functional membrane-modified glassy carbon electrode was proposed for the
simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR),
transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional
characterization of the membrane materials. The prepared electrode was utilized for the detection of
guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations
ranging from 0.1 to 120 µM and 0.2 to 110 µM, respectively. The detection limits were found to be
0.1 µM and 0.2 µM, respectively. Moreover, the modified electrode could also be used to determine G
and A in calf thymus DNA.

Keywords: aminated reduced graphene oxide; adenine; guanine; electrochemical detection;
glassy carbon electrode

1. Introduction

Adenine (A) and guanine (G) are vital constituents of deoxyribonucleic acids. They are very
important in storing genetic information. Measuring the levels of A and G is important in bioscience
and clinical diagnosis, because their quantities can act as important indicators for the diagnosis of
various illnesses [1–5].

Numerous technical means are used for such analyses, including chemiluminescence [6], isotope
dilution mass spectrometry [7], HPLC [8,9], capillary zone electrophoresis [10], and calorimetry [11].
Among these, the electrochemical methods have many merits compared with the traditional methods
including real-time application, high sensitivity, fast response, and low cost [12,13]. However, the
analytical sensitivities are usually very low, due to the irreversible adsorption and weak direct electron
transfer capacity for both A and G on the surface of conventional electrodes.

In order to overcome the aforementioned shortcomings, many materials are used
to modify electrodes, including the carboxylation of multi-walled carbon nanotubes [14],
mesoporous carbon [15], and TiO2 nanobelts [16]. Recently, different functional membranes,
such as graphene–ionic liquid–chitosan composites [17], graphene–Nafion composite membranes [18],
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pyridinedicarboxylic acid-graphene composite films [19], ionic liquids coated nanocrystalline
zeolite materials [20], ruthenium hexachloroplatinate (RuPtCl6) inorganic membranes [21],
titanium dioxide nanofibers-graphene oxide nanosheets nanocomposites [22], multi-walled
carbon nanotubes-Fe3O4-polydopamine-Ag nanocomposites [23], carboxymethyl cellulose-halloysite
nanotubular-carboxyl-functionalized multi-carbon nanotubes composites [24], and bimemtallic
nanoparticles [25,26], are becoming more favorable as they achieve better electrochemical properties.

Recently, graphene oxide, nanofibers, fullerenes, carbon nanotubes, and other carbon allotropes
have become important research objects for the improvement of electrochemical biosensing systems.
Among them, graphene oxide (GO), combined with its finite dimension and unique structure, has
demonstrated various properties such as superior mechanical flexibility, stability, and electrochemical
conductivity. These unique properties make it a promising candidate for the fabrication of biosensors
used for the detection of desired biomolecules [27,28]. Reduced graphene oxide (RGO) is the chemically
reduced form of GO. RGOs possess improved electrical conductivity, and could be applied for the
functionalization of desired biomolecules [29–32]. The main problem now is how to make an evenly
dispersed graphene derivative that exhibits its proper performance in the fabrication process for
a biosensor.

In the present study, a new electrochemical sensor based on Nafion (NF), aminated reduced
graphene oxide (ARGO) and chitosan (CHT) functional membrane was proposed for the simultaneous
detection of A and G. ARGO is a reduced graphene oxide covalently linked with piperazine, and is
homogeneously dispersed in the membrane. CHT would be helpful to disperse the ARGO in the
membrane, increase the surface area, and improve the electrochemical properties for CHT-ARGO
compared with ARGO alone. The negatively charged NF may adsorb more positively charged guanine
and adenine molecules to enhance the oxidation signals. Finally, the functional membrane-modified
glassy carbon electrode (GCE) showed high electro-catalytic properties for the measurement of G and
A (Scheme 1).
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Scheme 1. The preparation processes of NF/CHT-ARGO/GCE and the TEM images of ARGO (a),
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graphene oxide.

2. Materials and Methods

2.1. Reagents

CHT (0.5% in water), Adenine (A), Guanine (G), Cytosine (C), Thymine (T), NF (5% in a mixture
of alcohols (methanol, ethanol, isopropanol) and water), disodium hydrogen phosphate (Na2HPO4),
sodium dihydrogen phosphate (NaH2PO4), and calf thymus DNA were purchased from Sigma
(Saint Louis, MO, USA). Aminated reduced graphene oxide (ARGO) was from Shenzhen Nanotech
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Port Ltd. Co. (Shenzhen, China). All other chemicals were of analytical grade. All solutions were
prepared in double-distilled deionized water.

2.2. Fabrication of NF/CHT-ARGO Modified GCE

The procedure for the preparation of the GCE was as previously described [33–35]. The GCE was
mechanically burnished with alumina (particle sizes: 1 µm, 0.3 µm, and 0.05 µm, respectively). After a
electrochemical treatment in 0.2 M sulfuric acid, the GCE was inserted in a phosphate buffer solution
(PBS, 50 mM, pH 7.0), and was treated at 1.7 V for 4 min. Then, the GCE was cleaned with water
and dried with dry N2 at 25 ◦C. Afterwards, 3 µL of the equal volume mixture of CHT and ARGO
(4 mg/mL) and 2 µL NF were successively added to the electrode surface and dried, respectively.

2.3. Instruments and Detections

An electrochemical workstation (CHI650C, CH Instrument, Austin, TX, USA) was used for
electrochemical investigations. A Pt wire, an Ag/AgCl-saturated KCl, and a GCE 3 mm in diameter
(CH Instrument, Austin, TX, USA) were used as counter, reference, and working electrodes, respectively.
The electrochemical measurements were performed in N2-saturated PBS (phosphate buffer solution,
50 mM pH 7.0) at 25 ± 1 ◦C.

Fourier transform-infrared spectroscopy was recorded on a Spectrum Two Fourier transform
infrared spectrometer (FTIR) (PerkinElmer, Beaconsfield, UK) with a KBr plate.

Electron micrograph images of the samples were evaluated using a TEM (JEM-1400, JEOL, Tokyo,
Japan) operating at 80 kV.

2.4. Preparationof the Calf Thymus DNA Sample

The quantity of G and A was determined for the calf thymus DNA hydrolysates [17]. First, 10 mg
of the calf thymus DNA was digested with 1 M HCl (3 mL) in a sealed glass bottle. Then, the sample was
incubated at 90 ◦C for approximately 80 min. After adjusting the pH value to 7.0 with 1 M NaOH, 5 mL
of the prepared solution was injected to the electrochemical cell for further electrochemical analysis.

2.5. HPLC Analysis on the Real Sample

These analyses were carried out on an HPLC instrument (Waters 1515, Parsippany, NJ, USA)
equipped with a UV/Visible Detector Waters 2489. A C18 HPLC column (4.6 × 250 mm, 5 µm
particle size) was used as a stationary phase. Sample peaks were analyzed using the Breeze
software. The mobile phase was a mixture of methanol 4%-sodium acetate 0.6 M for isocratic
elution. All solutions, including the ATGC (four bases) mixed standard samples and calf thymus DNA
samples were filtered (0.22 µm filter) before use. The filtered samples (20 µL) were injected into the
chromatographic column for analysis. The analysis temperature was maintained at 30 ◦C, the flow
rate was kept constant at 1.0 mL/min, and the wavelength was set at 260 nm for detection [10,11,36].

3. Results

3.1. Microscopic and Structural Studies

The TEM images of ARGO, CHT-ARGO, and NF-CHT-ARGO are shown in Scheme 1a–c,
respectively. The ARGO was homogeneously dispersed in CHT (b) and NF-CHT (c), which could help
maintaining a larger surface area on the GCE. The effective surface area was significantly increased
after being modified with CHT-ARGO compared with ARGO.

The FTIR spectra of ARGO, CHT, NF, and NF-CHT-ARGO are shown in Figure 1 (curves a,
b, c, and d, respectively). ARGO exhibited a group of characteristic peaks at around 3203 cm−1,
1550 cm−1, 1432 cm−1, and 1006 cm−1. The presence of the amino groups was evident by the weak
peaks at 1432 cm−1 and 1550 cm−1 due to N–H bending (curve a). The abundance of –OH and –NH2

groups, around 3425 cm−1, 1072 cm−1 due to O–H and 1650 cm−1, 1591 cm−1 due to N–H, makes CHT
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(curve b) a prefect biocompatible material. The characteristic peaks of the –SO3
− group of NF at around

1220 cm−1 and 1150 cm−1 appeared in both NF (curve c) and NF-CHT-ARGO (curve d) [17,31,37].
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Figure 1. FTIR spectra of ARGO (curve a), CHT (curve b), NF (curve c), and the mixture of
NF-CHT-ARGO (curve d).

3.2. Characterization of Electrochemical Behavior of Different Modified GCEs

The cyclic voltammograms (CVs) of G, A, T, and C (each 1 mM) at (a) bare GCE and
(b) NF/CHT-ARGO/GCE are shown in Figure 2. The CVs of bare GCE looked no redox peak was
observed in Figure 2a. The G, A, and T were oxidized on NF/CHT-ARGO/GCE at 0.903 V, 1.247 V, or
1.407 V, respectively (Figure 2b). The oxidation peak currents were higher for NF/CHT-ARGO/GCE
than that for NF/CHT-GO/GCE or NF/CHT-RGO (data not shown). ARGO may be more suitable
for the preparation of functional membrane to detect the A and G than GO or RGO. The negatively
charged NF contributes to enhance signals probably ionic interaction with the positively charged A
and G molecules. A slightly smaller signal was observed for T, while the C oxidation was hardly
observed (Figure 2b).

The electrochemistry of G, A, or T (each 1 mM) at various decorated GCEs were also investigated
by differential pulse voltammetry (DPV), respectively, in 50 mM PBS, pH 7.0 (Figure 2c). No redox
peak was observed in the range from 0.5 to 1.5 V at bare GCE (curve a). The NF/CHT-ARGO/GCE
(curve c) gave three stronger oxidation peaks compared with NF/ARGO/GCE (curve b) at around
0.804 V, 1.084 V, and 1.288 V for G, A, and T, respectively. The peak-to-peak separation between G
and A was 0.280 V. The separation between A and T was 0.208 V. These results may be ascribed to
the high conductivity, high electrochemical activity, and the synergistic effect of the electro catalytic
property of NF, CHT, and ARGO. It should be pointed out that the NF/CHT-ARGO functional
membrane-decorated GCE can not only distinguish between G, A and T, but also can improve the
measurement sensitivity. Though the peak-to-peak spacing between G and A (or between A and T)
was 0.280 V (or 0.208 V), which was large enough to measure G, A, and T simultaneously, it may be
more suitable to detect G and A on the NF/CHT-ARGO/GCE, to improve the anti-interference ability
of the electrode.
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Figure 2. Cyclic voltammograms (CVs) of G, A, T, and C (each 1 mM) at (a) bare GCE and
(b) NF/CHT-ARGO/GCE in buffer solution (pH 7.0) at a scan rate of 50 mV/s; (c) Differential
pulse voltammograms (DPVs) of G, A, and T at bare GCE (curve a), NF/ARGO/GCE (curve b),
and NF/CHT-ARGO/GCE (curve c), respectively, in pH 7.0 PBS at a scan rate of 50 mV/s.

3.3. pH Effects Values on Determination of G and A

The pH effects on the individual oxidation of G and A, which were studied by DPVs of
NF/CHT-ARGO/GCE in the pH value range from 4 to 10 (from right to left), are shown in Figure 3a,b,
respectively. The oxidation peak potentials of G and A shifted positively with the decrease in
pH values (from 4 to 10), indicating that the electrochemical oxidation of G or A was associated
with a proton-transfer process. The relationships of the peak potentials of G and A were linear
and proportional to pH values. The slopes were 44.3 mV/pH (Figure 3a, inset) and 49.4 mV/pH
(Figure 3b, inset), respectively, which means that the numbers of electrons and protons involved in the
mechanisms of guanine and adenine might be the same [17]. The electrochemical oxidation of G and A
on NF/CHT-ARGO/GCE should be a two-electron and two-proton process, which is similar to that
on graphene–NF/GCE [18]. The oxidation peak currents of G and A decreased with the increasing pH
value (Figure 3). In consideration of the separation effects and measurement sensitivity, pH 7.0 was
chosen as the optimum value in the later investigations.
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3.4. Determination of G and A Using NF/CHT-ARGO/GCE

The oxidation of G and A in their mixture was investigated by DPV at the NF/CHT-ARGO/GCE,
respectively, when the concentration of one species changed, the concentration of the other species
remained constant. Figure 4a shows that the oxidation peak current increases linearly with the
increasing concentration of A ranging from 0.2 to 110 µM in 50 mM PBS, pH 7.0 containing G (25 µM)
(Figure 4b). obtained to be 0.2 µM (Figure 4c). A calibration equation (Equation (1)) for A was then
calculated (Figure 4b). Similarly, a linear relationship was found in the range of 0.1–120 µM with a
calibration equation (Equation (2)) (Figure 4d,e) for G, in 50 mM PBS, pH 7.0 containing A (25 µM).
The detection limit for G was 0.1 µM (Figure 4f). Table 1 shows the comparison of the behaviour of
different modified electrodes for the detection of DNA bases.

IA(µA) = 0.0555 CA(µM) + 0.0515 (R2 = 0.994) (1)

IG(µA) = 0.0596 CG(µM) + 0.5242 (R2 = 0.993) (2)

Table 1. Comparison of the performances of different chemically modified electrodes for the detection
of DNA bases.

Working Electrode Analyte Detection Limit (µM) Linear Range (µM) Technique Reference

NF/CHT-ARGO/GCE
A 0.2 0.2–110

DPV This workG 0.1 0.1–120

GMC/GCE
A 0.63 25-200

DPV [15]G 0.76 25–150

GS/IL/CHT/GCE
A 0.45 1.5–350

DPV [17]G 0.75 2.5–150

Graphene-NF/GCE A 0.75 8–150
DPV [18]G 0.58 4–200

Nano-ZSM-5/IL
A 9.5 10–300

DPV [20]G 4.8 10–300

TNFs/GONs/SPCE
A 1.71 × 10−3 0.1–10

DPV [22]
G - -

MWCNT-Fe3O4@PDA-Ag/CPE A 5.66 10–120
DPV [23]G 1.47 8–130

PANI/MnO2/GCE
A 2.9 10–100

DPV [38]G 4.8 10–100
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Table 1. Cont.

Working Electrode Analyte Detection Limit (µM) Linear Range (µM) Technique Reference

ZnS-PEDOT-RGO/GC-RDE
A 0.141 0.5–150

DPV [39]G 0.116 0.5–150

TAN-AgNP-PANT/CPE A 2.8 1–200
DPV [40]G 4 0.9–140

Pt–Pd/PSi–CNTPE
A 0.03 0.06–55.0

DPV/AMP [41]G 0.01 0.04–53.4

GCE: glassy carbon electrode; NF: nafion; CHT: chitosan; GS: graphene sheets; IL: ionic liquid; GMC: graphitized
mesoporous carbon; PANI: polyaniline; PEDOT: poly (3,4-ethylenedioxythiophene); GC-RDE: glassy carbon-rotating
disk electrode; PSi–CNTPE: mixing of Nujol oil, graphite powder, MWCNTs and polycrystalline Si powder;
TNFs: titanium dioxide nanofibers; GONs: graphene oxide nanosheets; SPCE: screen-printed carbon electrode;
TAN-AgNP-PANT/CPE: 1,3,5-Trithiane-Ag-nanoparticles decorated polyaniline nanofibers; PDA: polydopamine;
MWCNT: multi-walled carbon nanotube; DPV: differential pulse voltammetry; AMP: amperometry.

Sensors 2017, 17, 1652  7 of 11 

 

ZnS-PEDOT-RGO/GC-RDE 
A 0.141 0.5–150 

DPV [39] 
G 0.116 0.5–150 

TAN-AgNP-PANT/CPE 
A 2.8 1–200 

DPV [40] 
G 4 0.9–140 

Pt–Pd/PSi–CNTPE 
A 0.03 0.06–55.0 

DPV/AMP [41] 
G 0.01 0.04–53.4 

GCE: glassy carbon electrode; NF: nafion; CHT: chitosan; GS: graphene sheets; IL: ionic liquid; GMC: 
graphitized mesoporous carbon; PANI: polyaniline; PEDOT: poly (3,4-ethylenedioxythiophene); 
GC-RDE: glassy carbon-rotating disk electrode; PSi–CNTPE: mixing of Nujol oil, graphite powder, 
MWCNTs and polycrystalline Si powder; TNFs: titanium dioxide nanofibers; GONs: graphene oxide 
nanosheets; SPCE: screen-printed carbon electrode; TAN-AgNP-PANT/CPE: 
1,3,5-Trithiane-Ag-nanoparticles decorated polyaniline nanofibers; PDA: polydopamine; MWCNT: 
multi-walled carbon nanotube; DPV: differential pulse voltammetry; AMP: amperometry. 

 
(a) (d)

 
(b) (e)

 
(c) (f)
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Figure 4. (a) DPVs at varying concentrations of A in the presence of G (25 µM); (b) Plot of the oxidation
peak currents versus different concentrations of A; (c) Local enlarged drawing of Figure 4b at low
concentrations of A; (d) DPVs at varying concentrations of G in the presence of A (25 µM); (e) Plot
of the oxidation peak currents versus different concentrations of G; (f) Local enlarged drawing of
Figure 4e at low concentrations of G. The DPVs were operated at a pulse amplitude of 50 mV, pulse
width of 50 ms and a scan rate of 50 mV/s, respectively.
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3.5. Potential Applications of NF/CHT-ARGO/GCE

The potential applications of the modified GCE were verified in a real DNA. The calf thymus
DNA sample was prepared as indicated in Section 2.4. The oxidation peak currents of the DNA sample
were clearly shown to be 5.310 µA and 6.000 µA on the NF/CHT-ARGO/GCE by DPV (Figure 5),
which were caused by the oxidation of G and A groups, respectively. According to Equations (1)
and (2), the concentrations of G and A for calf thymus DNA was calculated to be 80.3 ± 1.0 µM and
107.1 ± 1.0 µM, respectively. So, the ratio of G to A was determined to be 0.75, which was close to the
value (0.77) determined by the HPLC method (data not shown).
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3.6. Reproducibility, Stability and Interferences

To evaluate the reproducibility of the proposed sensor, five NF/CHT-ARGO-modified GCEs were
prepared in the same manner, and DPV responses to the mixture containing 20 µM G and 25 µM A in
50 mM PBS (pH 7.0) were investigated. The relative standard deviation (RSD, n = 5) were concluded to
be 3.45% of G and 4.33% of A, indicating that the reproducibility of the proposed electrode was good.

To evaluate the long-term stability, the DPV responses to the mixture containing 20 µM G and
25 µM A were detected for 15 days. The RSDs (n = 15) were 2.53% of G and 2.87% of A (data not
shown). The DPV responses of the prepared electrodes, which were stored at 4 ◦C, were determined
at the interval of three days. The RSDs (n = 5) were 2.82% of G and 2.69% of A (data not shown),
suggesting that the stability of the proposed electrode was high.

The anti-interference ability of NF/CHT-ARGO/GCE was evaluated by adding possible
interferents to samples containing 20 µM G and 25 µM A in 50 mM PBS (pH 7.0). As shown in
Table 2, it was found that uric acid, ascorbic acid, vitaminB1, vitaminB2, L-Lysine, Glycine and glucose
had little effect on the detection of G or A, indicating that the NF/CHT-ARGO/GCE had a good
selectivity and anti-interference ability for measuring G and A. The interference percentages (I%) were
calculated using Equation (3):

I% =

(
1 −

Ip − Ip0

Ip0

)
× 100% (3)

where, Ip is the oxidation peak current of A or G in the presence of one of the interferences, Ip0 is the
oxidation peak current of A or G in the absence of an interference. Obviously, the anti-interference
ability of the electrode would be stronger when I% value is close to 100%.
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Table 2. Influence of interferences in the determination of G and A.

Signal Change Uric Acid Glucose Ascorbic Acid Vitamin B1 Vitamin B2 L-Lysine Glycine

A 101.6% 101.5% 101.8% 104.0% 99.3% 102.3% 103.6%
G 102.2% 97.2% 101.3% 95.9% 96.6% 102.6% 97.3%

The experiments were carried out in 5.0 mL, 50 mM, pH 7.0 PBS containing 20 µM G and 25 µM A, using DPVs of
NF/CHT-ARGO/GCE. The concentrations of the interferences were 200 µM.

4. Conclusions

A new electrochemical sensor based on NF, ARGO and CHT functional membrane-modified
glassy carbon electrode was proposed for the simultaneous detection of A and G. CHT may help
to disperse ARGO homogeneously in the functional membrane and improve the electrochemical
properties of the proposed electrode. The negatively charged NF may adsorb more positively charged
guanine and adenine molecules to enhance the oxidation signals. The proposed modified electrode
could be applied to quantify G and A with high reproducibility, stability, and sensitivity.
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