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Abstract: In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural
model of a space object from its multi-view images captured by a visible sensor. Given an image
sequence, this framework first estimates the relative camera poses and recovers the depths of the
surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo
(PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising
from the symmetric structure and repeated textures of space objects, a new strategy is introduced,
in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the
structural prior knowledge that most sub-components of artificial space objects are composed of basic
geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction
framework is tested on both simulated image datasets and real image datasets. Experimental results
illustrate that the recovered point cloud models of space objects are accurate and have a complete
coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out
by the refinement, resulting in an distinct improvement of the structure and visualization of the
recovered points.

Keywords: space object; 3D structural model; 3D reconstruction; structure from motion; point
cloud refinement

1. Introduction

Detecting, tracking, cataloging and identifying man-made objects orbiting Earth comprise one of
the fundamental requirements of space surveillance [1]. More and more states are pursuing such space
surveillance systems to develop their space surveillance capabilities [2]. In recent years, space-based
surveillance systems [3–5] and high-performance optical imaging sensors have been rapidly developed.
Visible sensors used by space-based surveillance systems can avoid the impact of atmospheric
turbulence, which severely influences traditional ground-based systems. Meanwhile, space-based
surveillance systems can also provide higher spatial resolution image data at a closer distance.

Object categorization, recognition and pose estimation of space objects are the main tasks in the
fields of space exploitation and surveillance. In terms of pose estimation, Zhang et al. [6] presented
a vision-based method. Zhang et al. [7] proposed an improved pose estimation algorithm based
on 2D-3D correspondences between the input image and the 3D model of space objects. For space
object recognition, different features and clustering algorithms were studied [8–11]. To handle the
tasks of both recognition and pose estimation in one vision-based framework, methods based on
kernel regression [12] and homeomorphic manifold analysis [13] were proposed. However, all of these
methods require, directly or indirectly, the prior 3D models of space objects. For example, the method
of [7] needs the 3D model to provide 2D-3D correspondences, and those of [6,8–13] need images from
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multiple or full viewpoints, which are difficult to access without prior models of the targets. Thus,
obtaining 3D models is important for vision-based tasks in space surveillance.

In this paper, we address the problem of recovering space object models by reconstruction from
images captured by space-based visible sensors. Compared to model generation by laser scanning,
image-based 3D reconstruction is economical and convenient. Moreover, it is also a non-contact and
noninvasive measurement, which is suitable for space missions, especially for non-cooperative targets.
On the one hand, the recovered space object models and full-viewpoint images generated with the
recovered models are helpful for the recognition and pose estimation. Furthermore, the recovered
3D models could lead to a better result for automatic measurement and pose estimation of the
sub-components, as these 3D models do not contain the perspective projection, which must be taken
into account when handling two-dimensional images. On the other hand, the recovered 3D models
have a great application value for space missions, such as autonomous rendezvous and docking,
collision avoidance and on-orbit self-serving. Moreover, the recovered models could further reveal the
functional characteristics of space objects, which are significant for space situational awareness.

Multiple view geometry has developed rapidly since the 1990s [14], and many image-based
reconstruction systems have been proposed [15–23]. However, there are few works that focus on the
3D structural model reconstruction of space objects, which is indeed the goal of this paper. This paper
is a follow-up to the work in [24]. In this paper, traditional multi-view-image-based reconstruction
pipelines are applied, including image feature point extracting and matching, sparse reconstruction
by the structure from motion (SFM) method [14,22,23] and dense reconstruction by the patch-based
multi-view stereo (PMVS) algorithm [25]. A special modification of the strategy of adding new images
during SFM is introduced to resolve the wrong matches that arise from the symmetric structure and
the repeating textures of space objects. Additionally, a refinement method exploiting the structural
characteristic that most sub-components of space objects are made out of basic geometric shapes is
proposed to improve the visualization of the recovered point cloud model. The experimental results on
both simulated image datasets and real image datasets have demonstrated the reconstruction ability
and accuracy of this framework.

This paper is organized as follows. A brief introduction of the framework is given in Section 2.
Details of the reconstruction and point cloud refining method are described in Sections 3 and 4,
respectively. Experimental results are shown in Section 5. At last, Section 6 provides the conclusion.

2. Overview of the Framework

The reconstruction framework for space objects consists of two parts, i.e., reconstruction of the
3D structural model from multi-view images and refinement of the reconstructed point cloud model,
as illustrated in Figure 1.

Figure 1. Framework for the reconstruction of space objects. PMVS, patch-based multi-view stereo.

The theoretical principles of 3D reconstruction are well defined, and general reconstruction
pipelines, especially the SFM, are also widely used. Therefore, to recover the 3D structural model from
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multi-view images, our framework employs a general feature point-based multi-view reconstruction
procedure, which consists of three steps:

(a) Detect feature points in each image and match the feature points between each pair of images.
(b) Estimate the relative poses of each view and recover the depths of the detected points,

i.e., the SFM step.
(c) Taking the results of SFM as inputs, use the PMVS algorithm [25] to generate a dense

3D point cloud.

Due to the structure symmetry and repeated textures of space objects, there might be enormous
error matches between symmetrical viewpoints, which meet the geometrical conditions while
disagreeing with the actual imaging configurations. These error matches would further lead to
overlap and failure of the reconstruction. To handle such mismatches, a special modification is made
on the strategy of adding new images during the SFM step. This paper assumes that the space
objects are mainly composed of planar solar wings and a cuboid/cylinder main body, and the datasets
used in our experiments basically satisfy this assumption. Small and thin functional/non-functional
components, such as antennas, imaging sensors, nozzles and trusses, are all ignored (actually treated
as outliers) in our refinement processing. However, such simplified general models are still sufficient
for most space applications.

3. 3D Reconstruction from Multi-View Images

In this paper, a general linear pinhole camera model is adopted. The intrinsic parameter matrix K
of the camera is modeled as:

K =

 f 0 cx

0 f cy

0 0 1

 , (1)

where f denotes the focal length in pixels,
(
cx, cy

)
represents the image coordinate of the principal

point, i.e., the point where the principal axis of the camera intersects the image plane. Since there is
little distortion in our simulated images, a single ideal camera with a fixed focal length is adopted
rather than a more complex distorted one. Due to the development of calibration methods, it is easy
to calibrate the intrinsic parameters with high precision. Thus, a given intrinsic parameter matrix K,
which could be calibrated in advance, is required to simplify the problem.

3.1. Feature Point Detecting and Matching

The scale-invariant feature transform (SIFT) keypoints [26] are extracted for each image as feature
points because of their stability and invariance to image transformations. In addition to the keypoint
locations, the SIFT detector also provides a 128-dimensional local descriptor for each keypoint, which
can be used for the primary match with an approximate nearest neighbor search method. A point m pi
(the i-th point in the m-th image) in image Fm is matched to a point n pj (the j-th point in the n-th image)
in image Fn when two conditions are satisfied: (a) among all of the feature points in Fn, the descriptor
of n pj has the closest distance (e.g., the Euclidean distance) d1st to that of m pi; (b) d1st is much smaller
than the second closest distance d2nd, i.e., d1st < λd2nd, 0 < λ < 1. Then, for point matches {m pi, n pj}
between image pair Fm and Fn, to remove the outliers, the random sample consensus (RANSAC)
algorithm [27] is used, in which the epipolar constraint is employed, i.e.,

m piE n pj = 0, (2)

where m pi and n pj denote the homogeneous normalized coordinate vectors of a point pair between
image frame Fm and Fn. Here, the normalization means conversion from image coordinate to camera

coordinate, i.e., p ≡ p̂ = K−1
[

x y 1
]T

, where (x, y) is the image coordinate. E = [t]× R is the
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essential matrix, which can be parameterized by rotation matrix R and translation vector t, and [•]×
denotes the skew-symmetric matrix, such that [a]× x = a× x.

The essential matrix E, with a non-zero scale factor, is simultaneously estimated by a robust
method, such as the eight-point algorithm [28], during the RANSAC iteration. A more accurate
estimation of E can be achieved by non-linear refinement after the iteration.

3.2. Structure from Motion

Structure from motion begins with the relative camera pose estimation of an initial image pair.
Such an initial image pair is selected with certain rules, for instance the image pair that has the largest
number of point matches and a large baseline, as proposed in [22]. Assume F0 and F1 are the initial
image pair. Since the essential matrix E1 between F0 and F1 has already been found in Section 3.1,
the rotation matrix R1 and translation vector t1 of F1, referring to the camera coordinate of F0, can be
further extracted from E1 by SVD-based techniques. Then, the 3D locations of the matched point pairs
between F0 and F1 can be recovered by triangulation, yielding an initial 3D point set M1. To refine
both the estimated camera pose (i.e., the rotation matrix R and translation vector t) and the recovered
3D point set jointly, bundle adjustment is used. The goal of bundle adjustment is to minimize the
reprojection errors through optimizing the positions of both the cameras and the observed points, i.e.,

min
Pj∈Mn ,Rn ,tn

n

∑
i=0

mi−1

∑
j=0
‖i pj − [Ri|ti]Pj‖, (3)

where Mn = {Pj} is the last updated 3D point set with a size of mi. Ri and ti are the rotation matrix
and translation vector, which indicate the camera pose of image Fi. i pj is the projection point of the
recovered 3D point Pj in image Fi. Here, n = 1 for the initial pair.

Next, the image that observes the largest number of recovered points in Mn−1 is added into
the n-th iteration. Let Mn−1 be the recovered 3D point set after adding the (n − 1)-th image
Fn−1. The rotation matrix Rn and translation vector tn are then estimated from the 2D-3D point
correspondences between Fn and Mn−1. Next, point matches between the new added image Fn

and all of the previous images Fm (m = 0, 1, . . . , n− 1), but having no corresponding point in Mn−1,
are recovered, resulting in the increase of size from Mn−1 to Mn, i.e., a more complete reconstructed
structure. At last, the bundle adjustment is applied to optimize Rn, tn and Mn. This procedure is
repeated until there is no image remaining.

Artificial space objects, in common with most industrial products, are designed with symmetric
structures and have repeating textures. These characteristics might cause point matches between
images that are seen from opposing viewpoints, as shown in Figure 2a. Then, a wrong camera pose
would be estimated from such unexpected matches and further influence the rest of the estimations of
camera poses. As shown in Figure 2b, the recovered camera viewpoints are approximately located on
a half of circle, while in fact, the test images are taken from viewpoints uniformly located on a full circle.
The final point cloud recovered is incorrect, as shown in Figure 2c. To solve this problem, we modify
the original strategy where only the number of point correspondences is considered. Since the inputs
in our cases are image sequences, i.e., the images are well sorted in imaging order, the overlaps
between neighboring images should ensure enough point matches. Therefore, to avoid the unexpected
matches between images from opposing viewpoints and ensure enough correct matches between the
newly-added image and recovered points, as well, our modified strategy is to add the images only in
the order that they are captured. The correct reconstruction result with our modified image adding
strategy is shown in Figure 3, where both the viewpoints and structural model are correctly recovered.
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(a) (b) (c)

Figure 2. Incorrect reconstruction caused by symmetric structures and repeated textures. (a) Matches;
(b) poses; (c) point cloud.

(a) (b) (c)

Figure 3. Correct reconstruction with modified image adding strategy. (a) Poses; (b) point cloud
(sparse); (c) point cloud (dense).

3.3. Dense Reconstruction

Through SFM, we can estimate the relative camera pose of each image and recover the 3D location
of feature points, but such reconstruction of the feature points is not enough to reveal the structure
of the target due to the poor surface coverage. Therefore, to improve the reconstruction coverage,
the PMVS algorithm [25] is employed. The space object images, in which the backgrounds are not
cluttered and the object is usually prominent, are fine inputs for PMVS, as it could be relatively
straightforward to extract the contours. After the iterations of the matching, expanding and filtering
procedure, PMVS can output a dense set of rectangular patches covering the object surfaces that are
visible in the input images. Each patch is defined by a combination of a center point and a normal
vector.

4. Point Cloud Refinement

The main body of the space object might be a cuboid or symmetric with respect to its major
axis, and the solar panels are always flat and could be treated as rectangles when ignoring their
thickness. With this structural prior information that most sub-components are in basic geometric
shapes, refinements for planes and rotationally-symmetric structures are introduced respectively.
Although the precise refinement operations for these two structures are various, they all follow the
same procedure. Specifically, the basic geometric structure is first detected, then points belonging to
this structure are discriminated, and finally, an adjustment is done to each point.

4.1. Refinement for Planes

The planes are first detected by Hough transform in 3D space. Assume Π is some 3D plane to
be detected, then Π can be formulated as ax + by + cz + d = 0, where (x, y, z, 1) ∈ Π is the point on
Π in homogeneous format and (a, b, c, d) is the parameter that defines Π. This formulation can also
be treated as follows: a point (a, b, c, d) is on a plane defined by (x, y, z, 1), due to the dual relation
between the plane parameter and point coordinate. Given series points in Π, the parameter (a, b, c, d)
defining Π then can be found as an intersection point of the planes that are defined by these given
points. Since (a, b, c, d) is homogeneous, any parameter (λa, λb, λc, λd) (λ 6= 0) refers to the same plane.
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To ensure uniqueness, a, b and c are fixed to one separately in three separate Hough detections, and
the other three parameters are discretized and limited in range [−1, 1]. Discretization with resolution
0.1 is illustrated as Figure 4, where all of the possible normal vectors are approximately uniformly
distributed. The plane parameters of Π then correspond with a discretized point in the parameters
space, and the final plane is picked from three candidates obtained by the three Hough detections.

After plane Π is detected, points that belong to the plane structure Π are then discriminated.
A point p is discriminated to be on Π when: (a) p is near Π; and (b) the normal vector angle between p
and Π is small. Considering that different planar components might be located on the same plane,
e.g, two symmetrically-assembled solar wings that face in the same direction, the region growing
algorithm is employed to distinguish such different components. At last, each point discriminated to
be on Π is moved to its projection on Π, and the normal vectors of these points are set to be parallel
with the normal vector of Π.

The whole procedure of the plane refinement is shown in Algorithm 1. Multiple planes are
iteratively detected, until the last detected plane is too small or the number of detected planes exceeds
a expected maximum Maxnp (Maxnp = 8 in our experiments).

Algorithm 1: Refinement for planes.
Input: The original 3D points set X0 with N0 elements.
Output: The refined 3D points set X′.
Maxnp ← the number of planes supposed to be in X0;
The number of detected planes k← 0;
X′ ← ∅;
while k < Maxnp do

((1, b1, c1, d1), v1)← Hougha=1 (Xk); // v is the number of votes;
((a2, 1, c2, d2), v2)← Houghb=1 (Xk);
((a3, b3, 1, d3), v3)← Houghc=1 (Xk);
q← arg max

i∈{1,2,3}
vi;

((ak, bk, ck, dk), vk)←
(
(aq, bq, cq, dq), vq

)
;

if vk/Nk < r then
Break from While-loop; // the area of the plane might be too small;

end
Plane Πk ← akx + bky + ckz + dk = 0;
for each point pi in Xk do

ni ← the distance between pi and Πk;
θi ← the normal vector angle between pi and Πi;
if ni ≤ n and θ ≤ θ then

pi is located on Πk, pi ∈ CΠk ;
end

end
CΠk ← do Region Grow on CΠk and pick the cluster with most points;
for each point pj in CΠk do

Move pj to its projection on Πk;
Set the normal vector of pj to be the same as Πk;

end
Xk+1 ← Xk −CΠk ;
Nk+1 ← size of Xk+1;
k← k + 1;

end
Result: X′ ← Xk + ∑k−1

i=0 CΠk .
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Figure 4. Illustration of normal vectors. All of the possible normal vectors of Π are approximately
uniformly distributed in the first octant. Here, the discretized resolution of the plane parameters is 0.1.

4.2. Refinement for Rotationally-Symmetric Structures

Parameterizing a cylinder requires more parameters than a simple plane; this increase of parameter
count would result in a geometrical growth of calculation in Hough transformation. Moreover,
rotationally-symmetric structures are not limited to the cylinder, namely the parametrization of
rotationally-symmetric structures could be complicated and vary with a specific structure. Considering
the common characteristic of all rotationally-symmetric structures, consisting of the surface normal
always intersecting the symmetry axis, the detection of such rotationally-symmetric structure could
be converted into the detection of the symmetric axis from those intersections. The 3D space is first
discretized to voxels at a suitable resolution. Next, the voxels are voted based on the surface normals
passing through them. Allowing for the existence of intersections of non-surface normals and the error
of surface normals, only voxels with enough votes are accepted as the right intersections of surface
normals. Then, principal component analysis (PCA) is used to robustly estimate the symmetry axis
from these intersections, and the votes are used as weights.

After finding the symmetry axis, the surface points are discriminated preliminarily by the rule
that a point is a surface point if the distance between its normal and the symmetry axis is short enough.
Then, the surface points are refined, and during the refinement, these points are verified again. First,
the space is re-divided into layers with a thickness of ∆d along the symmetry axis. Then, the mean
radius Ri is calculated for each layer Li. Referring to Ri, points too far away from or too near to the
symmetry axis are removed from surface points, and Ri is recalculated after this verification. At last,
each surface point in Li is moved along the radius direction to keep a distance of Ri from the symmetry
axis, and the normals of these points are set so that they will exactly intersect the symmetry axis at the
mean position of the original intersections.

The whole refinement procedure for rotationally-symmetric structures is shown in Algorithm 2,
and the adjustment of the surface points is shown in Figure 5.
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Algorithm 2: Refinement for rotationally-symmetric structures.
Input: The original 3D points set X0.
Output: The refined 3D points set X′.
X′ ← ∅;
for each point pi in X0 do

Vote for every voxels that the normal of pi passes through;
end
m← half of the max votes;
(ux, uy, uz)← the mean location of voxels whose votes are no less than m;
(nx, ny, nz)← the principal component of the distribution of voxels whose votes are no less
than m by PCA;

The symmetry axis N is defined as
[
ux, uy, uz

]T
+ λ

[
nx, ny, nz

]T ;
for each point pi in X0 do

di ← the distance between the normal of pi and N;
if di ≤ d then

Accept pi as surface point;
end

end
Divide the space into layers with thickness of ∆d along N;
for each layer Li do

for each surface point pij in Li do
rij ← distance between pij and N;

end
Ri ← trimmed mean of rij;
for each surface point pij in Li do

if rij > (1 + α)Ri or rij < βRi then
Remove pij from surface points;

end
end
for each verified surface point pij in Li do

rij ← distance between pij and N;
lij ← where the normal of pij intersects N;

end
Ri ← trimmed mean of rij;
Si ← trimmed mean of lij;
for each verified point pij in Li do

Adjust pij so that rij =
Ri
|rij| rij;

Reassign the normal of pij so that the normal of pij intersects N at Si;
end

end
Result: X′ ← refined X0.
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Figure 5. Illustration of point adjustment for rotationally-symmetric structures. For layer Li, move the
point at rij along the radius direction to r′ij, and set its normal as n′ij = Si − r′ij, where Si is the trimmed
mean location of {lij}.

5. Experiments and Analyses

In this section, the proposed space object reconstruction framework is tested on the datasets
in Section 5.1. Note that the reconstruction procedure in our framework is implemented based on
Bundler [22], where the image addition mechanism is modified. To quantitatively verify the feasibility
and accuracy of the refinement method, experiments are conducted on both simulated images and
real images.

5.1. Data Collection

The image data used in the experiments include the following image sets:

1. Images of spacecraft Shenzhou-6 and Tiangong-1 from the ground imaging simulation experiment.
In the ground imaging simulation experiment, a dark room covered with cloth absorbing
light inside and cloth reflecting light outside is established to simulate the space environment.
Parallel light is used to simulate the sun light. Camera is fixed pointing at the scaled model of
the space object, which is put on a one-degree-of-freedom turntable and rotated along with the
turntable. One frame is taken every 10◦ of rotation of the turntable. The supporter and turntable
in images are erased later, as shown in Figure 6.

2. Rendering images of CAD models of a box and a cylinder: The virtual camera is fixed pointing at
the model, and the geometric models are attached with different textures. One hundred frames
are rendered during a 360◦ rotation of the model, i.e., one frame is taken every 3.6◦ the model
rotates, as shown in Figure 6.

3. Real images taken from two packages separately: The chosen packages are a packing box of
a printer cartridge and a packing canister for badminton, respectively, representing a standard box
and a standard cylinder. The package is put on the one-degree-of-freedom turntable and rotated
along with it, and the camera is fixed pointing at the package. One image is taken every 2◦ of
rotation. The supporter and turntable in the images are erased later, as well, as shown in Figure 6.
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Figure 6. Samples of image data used in our experiments. From top to bottom: image samples of
Shenzhou-6 (the first row) and Tiangong-1 (the second row), rendered images of two 3D CAD models
(the third row) and real images taken from two actual packages (the fourth row).

5.2. Parameter Determination for Point Cloud Refinement

In the point cloud refinement, several thresholds are used, including distance thresholds and angle
thresholds. Since the reconstructed 3D point cloud model is up to a scale factor in size, the distance
thresholds are relative as well. Thus, to determine such distance thresholds, factor a, which can be
regarded as a measurement unit, is first defined based on the overall size of the reconstructed point
cloud. In our experiments, a is adaptively defined as 1% of D3, where D3 is the dimension along
the last eigenvector (λ1 ≥ λ2 ≥ λ3) of the covariance tensor of these 3D points. The discretization
resolutions of the 3D space for the detection of both planes and rotationally-symmetric structures are a.
A set of a-based thresholds that can contribute to a fine performance are determined by experience,
as listed in Table 1.

Among these threshold parameters, the verification thresholds, i.e., n and θ for planes, and d for
rotationally-symmetric structures, are the primary factors that affect the results, since they are used to
decide whether a point is a surface point. Experiments are conducted based on the rendered images
of CAD models to evaluate the influence of these verification thresholds. Results of plane detection
with different verification thresholds n and θ are shown in Figure 7. Small n has little robustness
to the distance deviation and is more likely to result in repeated detection of the same plane, while
small θ has little robustness to the normal deviation. Thus, a moderate combination of n = 2a and
θ = 30◦ is used. Figure 8 shows the results of rotationally-symmetric structure detection with different
verification thresholds d. Similarly, small d has little robustness to the normal deviation, while large d
would abate the filtering effects. Thus, an appropriate small d = 10a is finally used.
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Table 1. Definition of thresholds used in point cloud refinement.

Geometry Thresholds Definition Value

Plane

r Percentage threshold to decide if the proposal plane
is big enough to be a plane component. 0.015~0.02

n Distance threshold to decide if a point is on
the plane. 2a

θ Angle threshold to decide if a point fits the plane. 30◦

Rotationally-
Symmetric
Structure

m Count threshold to decide if the proposal
intersection is a intersection of the surface normals. Max/2

d
Distance threshold between the normal a point
and the symmetry axis to decide if the point is
a surface point.

10a

∆d The thickness resolution of layers divided along
the axis. a/2

α
The max radius (1 + α)R for a surface point in
consideration of errors. 0.5

β
The min radius βR for a surface point in
consideration of errors. 0.2

Figure 7. Results of plane detection with different verification thresholds n (rows) and θ (columns).
Maxnp in Algorithm 1 is six. Multiple planes are detected with different colors; point clouds at the
lower left corner are the points filtered out.
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Figure 8. Results of rotationally-symmetric structure detection with different verification threshold
d. Point clouds at the lower left corner, which are rendered with normals, are the points filtered out.
The bar chart below the point cloud shows the histogram of the angle error of these filtered points,
along with a horizontal bar indicating the average and RMS.

5.3. Reconstruction of Objects with Basic Geometry

The results of reconstruction and refinement for the box model and packing box are displayed
in Figure 9a,b, where the faces that are visible in the input images are recovered, and the points that
have a greater error are filtered out by refinement. Note that, since the simulated images lack good
views of the upper face (i.e., viewing above the model), the upper faces of both the box model and
packing box are relatively poorly reconstructed. Meanwhile, uniform areas of the packing box cannot
be recovered because no stable feature points can be extracted in such areas. Quantitative analysis is
shown in Table 2, where the number of recovered points is counted, and the normal vectors of surfaces
are calculated, as well. Angles between the normal vectors are {90.6◦, 90.6◦, 90.5◦} and {89.1◦}, which
are close to the ground truth of 90◦.

Results of reconstruction and refinement for the cylinder model and packing canister are displayed
in Figure 9c,d. An incorrect recovered part can be found at one end of the packing canister, as shown
in Figure 10, that is exactly where the supporter and turntable are erased. The ratio of the length to the
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radius is calculated for quantitative analysis. The length of the cylinder is directly measured from the
outline of the reconstructed points, which is generated with the mean radius R in each layer along
the symmetry axis L, as shown in Figure 11. The mean value of the outlines is calculated as the final
radius. The final measurement results are shown in Table 3; deviations from their ground truths are all
less than 5%.

Figure 9. Results of reconstruction and refinement for the box model (a), the packing box (b), the
cylinder model (c) and the packing canister (d). From left to right (top to bottom): the recovered point
cloud, point cloud after being refined and points filtered by refinement.

Table 2. Analysis for reconstruction of box objects.

Object N1 * N2 ** Normal Vector of Surfaces

Box Model 41,337 32,761
(0.09, 0, 1)

(1,−0.01,−0.1)
(0, 1,−0.01)

Packing Box 27,173 15,266 (1,−0.04,−0.94)
(0.97,−0.01, 1)

* Number of recovered point clouds; ** Number of point clouds after being refined.

Figure 10. Incorrect reconstruction caused by the erasure of the supporter and turntable.

(a) (b)

Figure 11. Outline of the reconstructed point cloud for (a) cylinder model and (b) packing canister.
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Table 3. Relative size estimation for space objects.

Object Length Radius λ * λGT ** Deviation (%)

Cylinder Model 0.62 0.12 2.58 2.5 3.2
Packing Canister 2.09 0.17 6.15 5.90 4.2

Shenzhou-6 0.52 0.21 1.238 1.24 0.1
Tiangong-1 4.57 0.75 3.047 3.10 1.7

* Ratio of the length to the radius; ** Ground truth of the ratio of the length to the radius.

5.4. Reconstruction of Space Object

The results of reconstruction and refinement for Shenzhou-6 and Tiangong-1 are displayed in
Figure 12. The 3D point cloud structures of both Shenzhou-6 and Tiangong-1 are well recovered;
the outliers and points that are recovered with severe errors in position and direction are filtered
after refinement. Highlights, mirror image and darkness might appear in the same area of the object
as the view point changes. This might result in incomplete reconstruction due to not enough stable
matches, such as the left solar wing of Tiangong-1 shown in Figure 12. The outlines of the recovered
objects are shown in Figure 13, and the results of relative size measurement are shown in Table 3. Since
Shenzhou-6 has an orbital capsule, a re-entry capsule and a propelling capsule, which have different
radii, only the length-to-radius ratio of the orbital capsule is estimated. The deviations are still very
small.

Figure 12. Results of reconstruction and refinement for Shenzhou-6 and Tiangong-1. From left to right:
the recovered point cloud, the point cloud after being refined and points filtered by refinement.

(a) (b)

Figure 13. Outline of the reconstructed point cloud for (a) Shenzhou-6 and (b) Tiangong-1.
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6. Conclusions

In this paper, we proposed a reconstruction framework for recovering the structure models of
space objects using a visible sensor. Given multi-view images of the target object, which could be
captured by a visible sensor on space-based surveillance systems, our framework can recover a 3D point
cloud model of the target. Such a model can be used to generate full-viewpoint images of the target and
is helpful for further estimation and recognition studies. Furthermore, the reconstructed model has
an important practical value, as it can be applied to space missions, such as autonomous rendezvous
and docking, collision avoidance and on-orbit self-serving. To resolve the incorrect reconstruction,
which is caused by the symmetric structure and repeated textures of space objects, we modify the
SFM procedure to avoid the unexpected point matches. Meanwhile, a point cloud refinement utilizing
the structural prior is introduced to improve the visualization. Experimental results demonstrate
that the proposed reconstruction framework can effectively recover a point cloud model of the space
object with both a complete coverage and a fine accuracy, and the visualization of the recovered model
can be also obviously improved after refinement. In the future, further performance evaluation and
improvement will be made for the consideration of the degrading factors, such as noise and blur
caused by relative orbital motion. Automatic measurement and recognition of the key components in
the reconstructed point cloud, e.g., solar wings, are also topics worth researching.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China
(Grant No. 61501009, 61371134 and 61071137), the National Key Research and Development Program of
China (2016YFB0501300, 2016YFB0501302), the Aerospace Science and Technology Innovation Fund of CASC
(China Aerospace Science and Technology Corporation)and the Fundamental Research Funds for the Central
Universities.

Author Contributions: H.Z. and Z.J. conceived of and designed the methods and experiments. Q.W. performed
the experiments. H.Z. and Q.W. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cefola, P.; Alfriend, K. Sixth US/Russian Space Surveillance Workshop. In Proceedings of the AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, Keystone, CO, USA, 21–24 August 2006; pp. 1677–1693.

2. Jaramillo, C. Space Security 2010; Pandora Press: Kitchener, ON, Canada, 2010.
3. Guilmain, B.D. The Midcourse Space Experiment (MSX). In Proceedings of the 1996 IEEE Aerospace

Applications Conference, Aspen, CO, USA, 3–9 February 1996; Volume 1, pp. 205–216.
4. Stokes, G.; Vo, C.; Sridharan, R.; Sharma, J. The space-based visible program. In Proceedings of the Space

2000 Conference and Exposition, Long Beach, CA, USA, 19–21 September 2000.
5. Watson, J.; Zondervan, K. The Missile Defense Agency’s space tracking and surveillance system.

In Proceedings of the SPIE 7106, Sensors, Systems, and Next-Generation Satellites XII, 710617, Cardiff, UK,
15 September 2008.

6. Zhang, H.; Jiang, Z.; Elgammal, A. Vision-Based Pose Estimation for Cooperative Space Objects. Acta Astronaut.
2013, 91, 115–122.

7. Zhang, X.; Zhang, H.; Wei, Q.; Jiang, Z. Pose Estimation of Space Objects Based on Hybrid Feature Matching
of Contour Points. In Advances in Image and Graphics Technologies, Proceedings of the 11th Chinese Conference,
IGTA 2016, Beijing, China, 8–9 July 2016; Springer: Singapore, 2016; pp. 184–191.

8. Jia, F.; Li, Y.; Sun, H. The Algorithmic Research of Space Object Identification from Multi-viewpoints. J. Acad.
Equip. Command Technol. 2009, 6, 016.

9. Meng, G.; Jiang, Z.; Liu, Z.; Zhang, H.; Zhao, D. Full-Viewpoint 3D Space Object Recognition Based on
Kernel Locality Preserving Projections. Chin. J. Aeronaut. 2010, 23, 563–572.

10. Wang, X. Space Target Recognition Based on Improved Kernel FCM. Chin. Space Sci. Technol. 2012, 32, 35–42.
11. Ding, H.; Li, X.; Zhao, H. An approach for autonomous space object identification based on normalized AMI

and illumination invariant MSA. Acta Astronaut. 2013, 84, 173–181.
12. Zhang, H.; Jiang, Z. Multi-View Space Object Recognition and Pose Estimation Based on Kernel Regression.

Chin. J. Aeronaut. 2014, 27, 1233–1241.



Sensors 2017, 7, 1689 16 of 16

13. Zhang, H.; Jiang, Z.; Elgammal, A. Satellite Recognition and Pose Estimation Using Homeomorphic Manifold
Analysis. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 785–792.

14. Hartly, R.; Zisserman, A. Multiple View Geometry in Computer Vision Second Edition; Cambridge University
Press: Cambridge, UK, 2004.

15. Tomasi, C.; Kanade, T. Shape and motion from image streams under orthography: A factorization method.
Int. J. Comput. Vis. 1992, 9, 137–154.

16. Bougnoux, S.; Robert, L. Totalcalib: A fast and reliable system for off-line calibration of image sequences.
In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition,
San Juan, Puerto Rico, 17–19 June 1997.

17. Shum, H.Y.; Han, M.; Szeliski, R. Interactive construction of 3D models from panoramic mosaics.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Santa Barbara, CA, USA, 23–25 June 1998; pp. 427–433.

18. Cipolla, R.; Robertson, D.; Boyer, E. PhotoBuilder-3D models of architectural scenes from uncalibrated
images. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems,
Florence, Italy, 7–11 June 1999; Volume 1, pp. 25–31.

19. Pollefeys, M.; Gool, L.V. From Images to 3D Models. Commun. ACM 2002, 45, 50–55.
20. Pollefeys, M.; Van Gool, L.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual Modeling with

a Hand-Held Camera. Int. J. Comput. Vis. 2004, 59, 207–232.
21. Pollefeys, M.; Nistér, D.; Frahm, J.M.; Akbarzadeh, A.; Mordohai, P.; Clipp, B.; Engels, C.; Gallup, D.;

Kim, S.J.; Merrell, P.; et al. Detailed Real-Time Urban 3D Reconstruction from Video. Int. J. Comput. Vis. 2008,
78, 143–167.

22. Snavely, N.; Seitz, S.M.; Szeliski, R. Photo Tourism: Exploring Photo Collections in 3D. ACM Trans. Graph.
2006, 25, 835–846.

23. Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the World from Internet Photo Collections. Int. J. Comput. Vis.
2008, 80, 189–210.

24. Zhang, H.; Wei, Q.; Zhang, W.; Wu, J.; Jiang, Z. Sequential-image-based space object 3D reconstruction.
J. Beijing Univ. Aeronaut. Astronaut. 2016, 42, 273–279.

25. Ponce, J.; Furukawa, Y. Accurate, Dense, and Robust Multiview Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell.
2009, 32, 1362–1376.

26. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
27. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to

Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395.
28. Hartley, R.I. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 580–593.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of the Framework
	3D Reconstruction from Multi-View Images
	Feature Point Detecting and Matching
	Structure from Motion
	Dense Reconstruction

	Point Cloud Refinement
	Refinement for Planes
	Refinement for Rotationally-Symmetric Structures

	Experiments and Analyses
	Data Collection
	Parameter Determination for Point Cloud Refinement
	Reconstruction of Objects with Basic Geometry
	Reconstruction of Space Object

	Conclusions

