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Abstract: The gravity gradiometer is widely used in mineral prospecting, including in the exploration
of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring
precision of rotating accelerometer-based gravity gradiometers. Several strategies have been
investigated to address the imbalance of accelerometers in gradiometers. These strategies, however,
complicate gradiometer structures because feedback loops and re-designed accelerometers are needed
in these strategies. In this paper, we present a novel matching method, which is based on a new
configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was
introduced between the measurement direction of the accelerometer and the spin direction. With the
introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating
disc. Matching was realized by updating the scale factors of the accelerometers with the help of
centrifugal acceleration. Further simulation computations showed that after adopting the new
matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other
matching methods, our method is more flexible and costs less. The matching accuracy of this new
method is similar to that of other methods. Our method provides a new idea for matching methods
in gravity gradiometer measurement.
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1. Introduction

Spatial variations in gravity are reflected by the gravity gradient tensor, which is the second-order
spatial derivative of gravitational potential. Compared with traditional gravity signals, the gravity
gradient includes signals with smaller spatial extend, which are used for the determination of the
short-to-medium wavelengths of the gravity field [1]. Gravity gradient signals can provide the
small-scale features of sources, such as oil, gas and mineral resources buried in the ground [2].
As a high-accuracy, high-resolution signal of the gravity field, the gravity gradient has an important
role in hydrocarbon or mineral exploration, geophysics and inertial navigation [2–11]. With the Euler
deconvolution as an example, more detailed information and more accurate results could be obtained
through gravity gradient data [6]. In addition, gravity gradient data also make a contribution to
calculate the depths of particular sources directly [7]. For example, salt keels in the Gulf of Mexico have
been mapped using marine gravity gradiometry combined with 3D seismic data. Airborne gravity
gradiometry has been used in kimberlite exploration in Canada [12]. As an important remote sensing
technique, gradient data also provided a new way to map the GaraDjebilet iron ore region, which is one
of the most important regions in southwestern Africa. Furthermore, the assistant navigation for Inertial
Measuring Units (IMU) is another approach to use high-resolution gravity gradient data [10,11,13].

Many types of high-precision gravity gradient instruments, for obtaining gravity gradient data,
have been developed based on different principles. The first gravity gradiometer is the Loránd Eötvös’
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torsion balance, which was designed by Hungarian physicist Baron von Eötvös. Although it is useful
in oil and gas exploration, the use of this bulky terrestrial gradiometer has been practically phased out
because of its low measurement efficiency [14,15]. Since the 1970s, many novel gravity gradiometers
have been developed, such as:

• Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), which is a satellite gravity
gradient instrument launched by the European Space Agency. It has three pairs of ultra-sensitive
accelerometers mounted at the end-points of three orthogonal axes. The noise of these
accelerometers is approximately 1–11 pm s−2/

√
Hz [14,16].

• Full Tensor Gradiometer (FTG; based on rotating accelerometers), which was designed
and manufactured by Lockheed Martin, is now widely used in hydrocarbon and mineral
exploration [17].

• Airborne gravity gradiometer (Falcon Group Inc., Bloomfield Hills, MI, USA) (also based on a
rotating accelerometer), which is a partial tensor system of BHP Billiton [18].

• Exploration Gravity Gradiometer, an ARKeX gradiometer (ARKeX, Cambridge, UK), was
specifically designed for high dynamic survey environment. It has a target sensitivity resolution
of 1E

(
1E = 10−9s−2)/√Hz [19].

• High-Definition Airborne Gravity Gradiometer (Gedex Inc., Mississauga, ON, Canada) will
be used in airborne geophysical surveys and the exploration of mineral, oil and gas deposits.
This gradiometer has a pair of balance beams to measure the gravity gradient. Each balance beam
is centered on a pivot spring. Its target sensitivity resolution is 1E/

√
Hz in the bandwidth range

of 0.001 Hz to 1 Hz [20].
• VK-1, an airborne gravity gradiometer, was developed by the University of Western Australia

(UWA) based on two crosswise bars. The performance objective of the instrument is 1E/
√

Hz [21,22].
• GREMLIT (French Aerospace Lab, Palaiseau, France), a compact planar gravity gradiometer

based on four ultra-sensitive electrostatic planar accelerometers (inherited from technologies
specifically developed for the GOCE and Gravity Recovery and Climate Experiment missions),
was designed by the Onera-French Aerospace Lab and is used for airborne surveys [14].

• AI (Earth Observation Programmes, European Space Agency, Noordwijk, the Netherlands) are
gravity gradiometers that are based on cold-atom interferometry-based accelerometers and used
to measure all diagonal elements of the gravity gradient tensor. The accuracy of the cold-atom
interferometry-based accelerometer is approximately 10−12 m/s2. These gradiometers provide
absolute measurements and do not require calibration prior to use. The European Space Agency
has proposed a space-borne gravity gradiometer concept based on cold-atom interferometers; the
proposed gradiometer has a sensitivity of 3.5mE/

√
Hz [23,24].

Among these gradiometers, FTG and FALCON are the only two measuring instruments that have
passed the flight test and achieved acceptable sensitivity in the field surveys with high-resolution [25].
FTG and FALCON airborne gravity gradiometer survey systems have been used in iron ore exploration
in the Bau Mine Site, Quadrilatero Ferrifero, State of Minas Gerais, Brazil [5]. Thus, unless
explicitly stated in the rest of this article, “gravity gradiometer” refers to rotating accelerometer-based
gradiometers, such as FTG and FALCON.

The rotating accelerometer gravity gradiometer utilizes differences between the outputs of
linear accelerometer pairs to extract gravity gradient signals. The gravity gradient instrument (GGI),
which is a disc mounted with accelerometers (Figure 1), is the core element of FTG and FALCON.
Two complementary pairs of accelerometers are mounted with equal spacing around the circumference
of a disc. The sensitivity axes of each accelerometer and the tangent line of the disc are parallel.
The disk rotates around its central axis.
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Figure 1. Schematic of gravity gradient instrument (GGI), which consists of four accelerometers  
(1, 2, 3, 4). The red arrow represents the direction of the sensitive axis of the accelerometer and the 

blue arrow is the tangential direction; sr is the radius of the disc; and sω is the angular velocity of 

the disc. 

The configuration of accelerometers in GGI is shown in Figure 1. With this classical 
configuration, common mode accelerations, which are generated by the motion of the carrier (such 
as aircraft, vehicle and ships) and the external environment, could ideally be canceled. The  
common-mode rejection gives GGI immunity to kinematic accelerations. Furthermore, the rotation 
of the turntable is needed to mitigate for the erratic shift of the outputs of the sensors. With the 
rotation, the gravitational gradient signal is modulated to twice the frequency of the rotation through 
the rotation of the turntable, making the gravitational gradient signal and the noise at different 
frequency bands, and aiding for the extraction of the gravitational gradient signal.  

However, the common-mode rejection performance of GGI depends on the premise that 
opposite accelerometers are precisely matched. This premise is not always satisfied. When two paired 
accelerometers do not match perfectly, the common mode acceleration cannot be completely 
suppressed. Thus, the signal-to-noise ratio (SNR) is drastically reduced, making signal extraction 
difficult. Therefore, several strategies have been investigated to address the imbalance of 
accelerometers. For instance, the electromagnetic feedback trimming technique is used in Bell’s GGI; 
the accelerometers are matched by adjusting the sensitivity of the accelerometer through a trim coil 
and a feedback loop. A proper current determined by the feedback loop is injected into the trim coil 
and the scale factor balances are then obtained [26,27]. Tu et al. developed an electrostatic  
servo-controlled trimming technique to match accelerometers. A redesigned accelerometer and 
electrostatic servo-controlled actuator was used in this technique, and the balances between a pair of 
accelerometers were realized by directly trimming the electrostatic bias voltage [25]. This problem 
also exists in GOCE. Two steps are taken to eliminate the influence of accelerometer imperfections 
on the GOCE gradiometer. The first step is to correct the non-linear terms in accelerometers by 
slightly changing the proof mass position. In the second step, 72 parameters, which describe the 
mismatch between accelerometers of the gradiometer are determined. These parameters are retrieved 
from the data obtained from the shaking of the spacecraft [28]. All these technologies are aimed to 
balance the scale factor between a pair of accelerometers using hardware method. Although, these 
techniques have contributed to gravity gradient measurement, the former two methods require the 
real-time adjustment of accelerometers, thus considerably complicating the measurement of the 
gravity gradient. For example, the electromagnetic actuator in the feedback control loop and the extra 
trimming assembly are necessary in the electromagnetic feedback trimming technique. Three 
external, remotely balanced loops and redesigned accelerometers are needed in the electrostatic 

Figure 1. Schematic of gravity gradient instrument (GGI), which consists of four accelerometers
(1, 2, 3, 4). The red arrow represents the direction of the sensitive axis of the accelerometer and the blue
arrow is the tangential direction; rs is the radius of the disc; and ωs is the angular velocity of the disc.

The configuration of accelerometers in GGI is shown in Figure 1. With this classical configuration,
common mode accelerations, which are generated by the motion of the carrier (such as aircraft, vehicle
and ships) and the external environment, could ideally be canceled. The common-mode rejection
gives GGI immunity to kinematic accelerations. Furthermore, the rotation of the turntable is needed
to mitigate for the erratic shift of the outputs of the sensors. With the rotation, the gravitational
gradient signal is modulated to twice the frequency of the rotation through the rotation of the turntable,
making the gravitational gradient signal and the noise at different frequency bands, and aiding for the
extraction of the gravitational gradient signal.

However, the common-mode rejection performance of GGI depends on the premise that opposite
accelerometers are precisely matched. This premise is not always satisfied. When two paired
accelerometers do not match perfectly, the common mode acceleration cannot be completely suppressed.
Thus, the signal-to-noise ratio (SNR) is drastically reduced, making signal extraction difficult. Therefore,
several strategies have been investigated to address the imbalance of accelerometers. For instance, the
electromagnetic feedback trimming technique is used in Bell’s GGI; the accelerometers are matched by
adjusting the sensitivity of the accelerometer through a trim coil and a feedback loop. A proper current
determined by the feedback loop is injected into the trim coil and the scale factor balances are then
obtained [26,27]. Tu et al. developed an electrostatic servo-controlled trimming technique to match
accelerometers. A redesigned accelerometer and electrostatic servo-controlled actuator was used in
this technique, and the balances between a pair of accelerometers were realized by directly trimming
the electrostatic bias voltage [25]. This problem also exists in GOCE. Two steps are taken to eliminate
the influence of accelerometer imperfections on the GOCE gradiometer. The first step is to correct the
non-linear terms in accelerometers by slightly changing the proof mass position. In the second step,
72 parameters, which describe the mismatch between accelerometers of the gradiometer are determined.
These parameters are retrieved from the data obtained from the shaking of the spacecraft [28]. All these
technologies are aimed to balance the scale factor between a pair of accelerometers using hardware
method. Although, these techniques have contributed to gravity gradient measurement, the former
two methods require the real-time adjustment of accelerometers, thus considerably complicating the
measurement of the gravity gradient. For example, the electromagnetic actuator in the feedback
control loop and the extra trimming assembly are necessary in the electromagnetic feedback trimming
technique. Three external, remotely balanced loops and redesigned accelerometers are needed in the
electrostatic servo-controlled trimming technique [25–27]. The calibration method of GOCE works
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well, but is unsuitable for the rotating accelerometer-based gradiometer because the structures and
working environment of the two gradiometers are different.

In this paper, we propose a new matching method for general quartz-flexure capacitive
accelerometers. Our proposed method is based on GGI using a new configuration. First, we proposed
a new configuration of GGI to allow the accelerometers to directly measure centrifugal acceleration
caused by disc rotation. Second, we present a new matching method based on the new configuration.
We designed a simulation test to analyze the validity of the new method. Finally, we provide our
conclusions and suggestions for future works on accelerometer matching. The new method will help
us reduce the instability caused by the drift of time-varying scale factors and increase the precision
of measurement.

This paper is structured as follows: the basic principle of gravity gradient measurement is
introduced in the second section. In the third section, the new GGI configuration and the new
matching method are presented. The simulation test for the efficiency of the new method is discussed.
The discussion and conclusion are given in the final section.

2. Basic Principle of Gravity Gradient Measurement

Newton’s Second Law of Motion is the theoretical foundation for the rotating accelerometer-based
gravity gradiometer:

d2r
dt2

∣∣∣∣
i
= a + g (1)

where d2r
dt2

∣∣∣
i

is the acceleration of the carrier, a is the specific acceleration measurable by the
accelerometer, and g is the acceleration vector caused by gravity at the measuring point.

The basic principle of gravity gradient measurement will be analyzed in the instrument frame,
which is a moving frame fixed to the carrier as shown in Figure 2. The instrument frame has its origin
at the center of the turntable (point os). Non-rotating axes with respect to the carrier are defined by
osxs, osys, oszs, with oszs coincident with the central axis of the disc. osxs lies along the direction from
os to the initial position of the accelerometer 1.
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Figure 2. Instrument frame fixed to the carrier. The origin of the instrument frame is located at the
center of the disc.

Projecting Equation (1) into the instrument frame:

ai = am − gi (2)

where ai(i ∈ {1, 2, 3, 4}) is the specific acceleration where accelerometer i is mounted, am is the vector
of non-gravitational acceleration caused by motion and gi represents the gravitational acceleration
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where accelerometer i is mounted. For all accelerometers, am is the same because these accelerometers
are mounted on the same turntable.

The direction of the sensitive axis of the accelerometers has the following relations:

d1 = −d3, d2 = −d4 (3)

where di(i ∈ {1, 2, 3, 4}) is the direction of the sensitive axis of the accelerometer i.
Accordingly, we have:

a1 = a1 × d1 = am × d1 − g1 × d1

a2 = a2 × d2 = am × d2 − g2 × d2

a3 = a3 × d3 = −am × d1 + g3 × d1

a4 = a4 × d4 = −am × d2 + g4 × d2

(4)

where ai(i ∈ {1, 2, 3, 4}) is the reading of accelerometer i.
Adding opposite accelerometer readings, such as those of accelerometers 1 and 3:

a1 + a3 = (am × d1 − am × d1) + (g3 − g1)× d1 (5)

The first term on the right side of Equation (5) is equal to zero, indicating that non-gravitational
accelerations are canceled, this is the basic principle of the common mode rejection. When the
accelerometers do not match, this term is not zero. Therefore, Equation (5) could be used to control
how well the common mode rejection works.

Using the first-order Taylor expansion of g1 and g3 at the center of the turntable, and taking the
preceding two items, we obtain the following:

g3 − g1 = Γ× dr (6)

where Γ is the gravity gradient tensor and dr is the vector from accelerometer 1 to accelerometer 3.
Substituting Equation (6) into Equation (5), will yield the following relation [29]:

a1 + a3 = Γxjdrj(j ∈ {x, y, z}) (7)

where a1 and a3 are the outputs of accelerometers 1 and 3, respectively. Γxj is the gravity gradient
tensor; and drj is the distance vector between the two accelerometers.

In case of a horizontal disk, drj can be expressed in the instrument frame as:

drx = 2rs cos α

dry = 2rs sin α

drz = 0
(8)

where α is the angle between the x-axis and accelerometer 1 in the instrument frame. α can be
calculated by α = ωst and rs represents the radius of the disc.

Substituting Equations (3)–(6) and (8) into Equation (7) [18], it then follows that for the
accelerometer difference a1 + a3 and a2 + a4 on a horizontal disc, rotating with angular speed ωs

at time t that
(a1 + a3)− (a2 + a4) = 4rsΓxy cos 2ωst + 2rs

(
Γxx − Γyy

)
sin 2ωst (9)

Equation (9) indicates that the Γxy and
(
Γxx − Γyy

)
components of the gravity gradient tensor could be

obtained by demodulating (a1 + a3)− (a2 + a4) at a frequency of 2ωst.
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3. New Configuration and Matching Method

As mentioned above, for the classical configuration of accelerometers in GGI (Figure 1), the
sensitivity axis of each accelerometer and the tangent line of the disc are parallel, and the outputs
of accelerometers are unaffected by the angular velocity of the disc. Therefore, we proposed a new
configuration to match accelerometers based on the centrifugal acceleration caused by the angular
velocity of the disc.

3.1. New Configuration

The new configuration consists of two opposing pairs of accelerometers (Figure 3).
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Figure 3. New GGI configuration. A fixed angle lies between the measurement direction (red line) of
accelerometer and the spin direction (blue line). The rotational speed and radius of the turntable are
denoted by ω and r, respectively.

The direction of the sensitive axis is indicated by a red line, and the tangential direction is indicated
by a blue line, as shown in Figure 3. The fixed angle between these two axes is denoted by θ. Thus, the
centrifugal acceleration caused by the rotation could be measured by the accelerometer as rω2 sin θ,
and could be used to match accelerometers.

3.2. Accelerometer Model

An absolute linear relationship between the input and output of the accelerometer does not exist
in practical measurement. A simple model generally used by an Inertial Measurement Unit (IMU) is
expressed as follows:

N = k1(a + b + v) (10)

where N is the accelerometer reading, that is, the number of pulses; a is the true value of the specific
force (which contains the gravitational gradient signal); k1 is the linear scale factor; and b and v are the
bias and the noise of the accelerometer, respectively.

However, nonlinear scale factors are inherent in the output of high-precision accelerometers [30,31].
Furthermore, the ignored errors caused by the nonlinear scale factors affect the quality of inertial
sensors [32]. Given that the gravity gradient signal is very weak, a high-precision accelerometer model
is necessary. Therefore, nonlinear scale factors should be introduced to the sensor model.

The quadratic term is the main component in scale factors; other components are all negligible [33].
To simplify the model, the other second- and higher-order terms are omitted. The model with
a quadratic factor is derived as follows:
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N = k1

(
a + k2a2 + b + v

)
(11)

where k2 is the quadratic factor.
Taking points a and c in Figure 3 into account, and combining the accelerometer model described

in Equation (11), the outputs of accelerometers a and c can be represented as

Na = k1a

(
aa + k2aa2

a + ba + va

)
(12)

and
Nc = k1c

(
ac + k2ca2

c + bc + vc

)
(13)

where Ni(i ∈ {a, c}) is the output of accelerometer i; ai(i ∈ {a, c}) is the true value of the specific force
at i; k1i(i ∈ {a, c}) is the linear scale factor; k2i(i ∈ {a, c}) is the quadratic factor; and bi(i ∈ {a, c}) and
vi(i ∈ {a, c}) are the bias and the noise of the accelerometer i, respectively.

3.3. Principle of the New Matching Method

The new matching method for accelerometers a and c is realized by adjusting the parameters
k1i, k2i, bi(i ∈ {a, c}) in Equations (12) and (13).

For the accelerometers configured as in Figure 3, inputs can be divided into two parts: the
centrifugal acceleration produced by the disc and others (all accelerations except for the centrifugal
acceleration caused by the rotation of the turntable), as denoted by fω and fi(i ∈ {a, c}), respectively.
The other inputs include acceleration produced by gravity and other non-gravitational acceleration.
Substituting these inputs into Equations (12) and (13), we obtain:

Na = k1a

(
( fa + fω) + k2a( fa + fω)

2 + ba + va

)
(14)

and
Nc = k1c

(
(− fc + fω) + k2c(− fc + fω)

2 + bc + vc

)
(15)

If we slow down the angular velocity of the turntable from ω to ω − ∆ω1, the centrifugal
acceleration of the turntable will change by ∆ fω. Correspondingly, the outputs of the accelerometers
(denoted by N̂a and N̂c) could be written as

N̂a = k1a

(
( fa + fω − ∆ fω) + k2a( fa + fω − ∆ fω)

2 + ba + va

)
(16)

N̂c = k1c

(
(− fc + fω − ∆ fω) + k2c(− fc + fω − ∆ fω)

2 + bc + vc

)
(17)

If we turn the angular velocity of the turntable from ω to ω + ∆ω2, we obtain the following:

ˆ̂Na = k1a

(
( fa + fω + ∆ fω) + k2a( fa + fω + ∆ fω)

2 + ba + va

)
(18)

ˆ̂Nc = k1c

(
(− fc + fω + ∆ fω) + k2c(− fc + fω + ∆ fω)

2 + bc + vc

)
(19)

where ˆ̂Na and ˆ̂Nc are outputs of accelerometers after the angular velocity is adjusted.
We calculate the sum of Equations (14) and (15) by the following:

Nac= Na + Nc

= K1 fa + K2(δ f + fω) + K3 f 2
a + K3(δ f + fω)

2 + 2K4 fa(δ f + fω) + K5
(20)
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where:
K1 = ka1 − kc1

K2 = ka1 + kc1

K3 = ka1ka2 + kc1kc2

K4 = ka1ka2 − kc1kc2

K5 = ka1ba + kc1bc

δ f = fc − fa

(21)

and a similar relation holds for Equations (16) and (17), as well as for Equations (18) and (19). That is:

N̂ac= N̂a + N̂c

= K1 fa + K2(δ f + fω − ∆ fω) + K3 f 2
a

+K3(δ f + fω − ∆ fω)
2 + 2K4 fa(δ f + fω − ∆ fω) + K5

(22)

and
ˆ̂Nac=

ˆ̂Na +
ˆ̂Nc

= K1 fa + K2(δ f + fω + ∆ fω) + K3 f 2
a

+K3(δ f + fω + ∆ fω)
2 + 2K4 fa(δ f + fω + ∆ fω) + K5

(23)

The variables c, b and e in Equation (21) can be calculated from Equation (20), Equations (22)
and (23) as follows:

ˆ̂Nac + N̂ac =2K1 fa + 2K2(δ f + fω) + 2K3 f 2
a + 2K3(δ f + fω)

2

2K3∆ f 2
ω + 4K4 fa(δ f + fω) + 2K5

(24)

Then:
ˆ̂Nac + N̂ac − Nac = 2K3∆ f 2

ω (25)

Equation (25) indicates that c could be obtained by:

K3 =
ˆ̂Nac + N̂ac − Nac

2∆ f 2
ω

(26)

We can obtain b and e according to the following Equations:

K2 =
ˆ̂Nac − N̂ac − 4K3F∆ fω

2∆ fω
(27)

and
K5 = Nac − K2F− K3F2 (28)

where F is the centrifugal acceleration rω2 sin θ, which is measured by the accelerometer.
In the above process, consider that the parameters such as ω, ∆ω1, ∆ω2 are known. Furthermore,

the data of NA, NC, N̂A, N̂C, ˆ̂NA, ˆ̂NC are stored by data-acquisition systems. Thus, the mismatch
between accelerometers a and c, namely, the differential mode parameters k1c − k1a, k2c − k2a, bc − ba

and drifts of them can be calculated. The matching for accelerometers would be realized by mismatch
compensation, i.e., adjusting the parameters of one accelerometer in one pair. The detailed steps of the
new matching method are introduced in later sections of this paper.

3.4. Matching Algorithm

The flow diagram for the new matching method is shown in Figure 4. Next, this method will be
presented systematically.
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Figure 4. Flow chart of the matching process with the new matching method.

First, parameters k1c, k1a, k2c, k2a, bc, ba, r and θ from Equations (14)–(23) are determined
though calibration experiments. The calibration process for the inertial sensor accelerometer
includes determining systematic errors comprising of bias, scale factor, and misalignment error
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coefficients [34,35]. In these calibration experiments, both the mathematical model of the accelerometer
with a quadratic factor and high-g acceleration signals are used. Parameters k1c, k1a, k2c, k2a, bc, ba, r
and θ are obtained by comparing the excitation acceleration signal and the output responses of the
calibrated accelerometer to the excitation signals [35,36]. Kalman filter also plays an important role in
the estimating for these parameters [36]. Second, the system is turned on, and the angular velocity
of the disc is set to ω. Meanwhile, the outputs of the accelerometers are recorded as Ni(i ∈ {a, c}).
Third, the rotational speed of the disc is adjusted to ω − ∆ω1 (∆ω1 is a known fixed angle, making
the centrifugal acceleration change by ∆−). Similarly, the outputs of the accelerometers are recorded
as N̂i(i ∈ {a, c}). Finally, the turntable speed is reset again to ω + ∆ω2 (∆ω2 is a known fixed angle,
making the centrifugal acceleration change by ∆+), and the outputs of the accelerometers are recorded
as ˆ̂Ni(i ∈ {a, c}).

After the abovementioned data collection, primary data are processed as follows. First, the
appropriate data are selected from the records. Here, “appropriate data” refers to the length
of data as a multiple integer of the rotation period of the turntable. These data are denoted as
Ñ0

i , Ñ+
i , Ñ−i , (i ∈ {a, c}) (the lengths of them are as a multiple integer of the rotation period of the

turntable). Then, these data are summarized and the average of the sums are calculated as follows:

N0 = Ñ0
a + Ñ0

c
N+ = Ñ+

a + Ñ+
c

N− = Ñ−a + Ñ−c

(29)

where N0, N+, N− represent the sum of the accelerometers. For each angular speed of the disc,
we calculate the average of N0, N+, N−, denoted by N0, N+, N−. Finally, with the input of
k1c, k1a, k2c, k2a, bc, ba, r, θ, N̂0, N̂+, N̂− and the data processing algorithm, the accelerometers
are matched.

The whole Update Algorithm is introduced as follows:

Update Algorithm

Input: k1c, k1a, k2c, k2a, bc, ba, r, θ, N̂0, N̂+, N̂−.
Output: update of k1c, k2c, bc.
1. Calculate the centrifugal acceleration f 0

c , f+c , f−c generated by the rotation of the disc as follows:
f 0
c = rω2, f+c = r(ω + ∆ω2)

2, f−c = r(ω− ∆ω1)
2.

2. Calculate the changes in the inputs of accelerometers, denoted by ∆+ and ∆−; ∆+ =
(

f+c − f 0
c
)

sin θ,
∆− =

(
f 0
c − f−c

)
sin θ.

3. Calculate K3 = N−+N+−2N0
2∆+∆− , and then replace k1ck2c with K3 − k1ak2a.

4. Calculate K2 =
N+−N−−2K3 F(∆++∆−)

∆++∆− , where F = rω2 sin θ and then replace k1c with K2 − k1a.
5. Calculate K5 = N0 − K2F− K3F2, and then replace k1cbc with K5 − k1aba.
6. Save the updated k1ck2c, k1c, k1cbc accelerometer parameters and complete real-time matching.

All the proposed methods can be summarized as follows: First, adjust the rotation speed of the
turntable as shown in Figure 4, and collect the data of the accelerometers. Then, data processing
is performed according to the data processing algorithm. Finally, the accelerometer is matched by
updating the scale factors of accelerometers. Therefore, it can be seen that the new matching method
is based on both the geometry of the new design, and the data processing steps. There is an indirect
relationship between the relative frequency change ∆ω/ω and the SNR. And the value of ∆ω/ω needs
to be determined according to different actual situation.

After illustrating the new matching method for accelerometers, we further analyzed the validity
of the new matching method via the following simulation experiment.
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4. Simulation

A simulation experiment was developed based on the above analysis. The data generated by
the simulator were used to validate the new matching method. First, we introduce the design of the
simulator for a rotating accelerometer-based gradiometer. Then, the matching performance of the new
method is estimated based on the frequency spectrum of the results.

4.1. Design and Implementation of Simulation

The parameters of the simulation, including the radius of the disc (r), the inclination of the
rotation axis of the disc (φ), gravity gradient tensor (Γ, expressed in North-East-Down coordinate
system), gravity vector (g, expressed in North-East-Down coordinate system), and the angle between
the sensing axis of accelerometer and the tangent line (θ), were set as shown in Table 1.

Table 1. Simulation parameters.

Parameter Description Value and Unit

r Radius of the turntable 0.2m
φ Tilt angle of the rotating axis 30◦

Γ Gravity gradient tensor A

g Gravity vector (in local frame)

 0
0

9.8

m/s2

θ Angle between sensing axis and tangent line 45◦

Where A =

 −2000 1000 1000
1000 −1300 1000
1000 1000 3300

(E).
For accelerometers in the simulation, the preliminary values of k1a, k2a, ba, k1c, k2c and bc were

set to 100, 2× 10−5, 1× 10−5, 100.1, 2.004× 10−5 and 1.002× 10−5, respectively. We assume that
these parameters drift with time as shown in Figure 5, which presents the variation in the step change
for these parameters. Taking the measurement error of accelerometers into account, the measurement
errors were assumed to be white and Gaussian with zero mean and given a standard deviation of
σ2 = 1× 10−7.
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The angular velocity of the turntable, and its variation with time is shown in Figure 6.Sensors 2017, 17, 1710  13 of 16 
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Figure 6. Angular velocity of the disc and its variation with time. The angular velocity of the disc is
divided into three stages, and the angular velocity of each stage is denoted as ω, ω−∆ω1 and ω +∆ω2.

The simulation experiment lasted for two cycles, as shown in Figure 6. However, we only
illustrated and analyzed the data in one cycle. During the first 6000 s, the rotational speed of the
turntable was ω = π/2 rad/s, and the gradiometer worked in the normal measurement stage.
From the 6000th second, the gradiometer entered the matching phase. During the next 400 s, the
angular velocity of the turntable was ω− ∆ω1 = 4π/9 rad/s, i.e., ∆ω1 = π/18 rad/s. At 6400–6800 s,
the angular speed of the disc was ω = π/2 rad/s. At 6800–7200 s, the rotational speed of the turntable
was ω + ∆ω2 = 11π/20 rad/s, i.e., ∆ω2 = π/20 rad/s. Matching was performed every two hours
and lasted for 1200 s.

A set of time series that ’measured’ data of acceleration was obtained through simulation.

4.2. Data Processing

The data collected from the simulation experiments were processed in accordance with Section 3.4.
The frequency spectrum of pre- and post-processed data are shown in Figure 7.Sensors 2017, 17, 1710  14 of 16 
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Figure 7a indicates that most of the energy was concentrated in nearby 0.25 Hz in the frequency
domain, which is the rotation frequency of the disc. However, most of the energy of the addition
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centralized in the frequency at approximately 0.5 Hz (Figure 7b) after matching. Equation (9) reveals
that the gravity gradient signals are in a frequency double with the rotation (0.5 Hz). The SNR
(signal-to-noise ratio) is defined as follows:

SNR = 10× log10

(
Amplitude of signal (0.5 Hz)
Amplitude of noise (others)

)
(30)

Therefore, the result without matching equated to−41 dB. After the accelerometers were matched,
the SNR turned to 22 dB.

5. Discussion and Conclusions

The results showed that using the new method suppressed the influence of the mismatch of
accelerometer scale factors on measurement. The performance of the new matching method is
equivalent to the strategy of trimming bias voltage proposed by Tu et al. [25]. Thus, the validity
of the new matching method is acceptable. After using the matching method proposed in this study,
the SNR has been significantly improved (from −41 dB to 22 dB), which is a great convenience for the
extraction of gravitational gradient signals.

Compared with other methods, no extra hardware support is required for the new matching
method, which made the measurement of gravity gradient simpler and cost less. Moreover, the new
matching method is achieved by means of updating scale factors based on the matching algorithm.

Given the close relationship between the matching result and the estimated accuracy of K2, K3
and K5, the smaller estimation errors of parameters K2, K3 and K5 will equate to a higher matching
precision of the accelerometer. The estimated values and true values of K2, K3 and K5 are shown in
Table 2.

Table 2. True values and estimated values of K2, K3 and K5.

Parameters K2 K3 K5

True value 2.006050119 × 102 4.029760031 × 10−3 1.839030458 × 10−3

Estimated value 2.006050180 × 102 4.022221105 × 10−3 2.008082321 × 10−3

Estimation error 3.0 × 10−8 −1.9 × 10−3 9.2 × 10−2

The estimation error is calculated with the following equation:

Estimation error =
Estimated value − True value

True value
× 100% (31)

Table 2 indicates that the estimation error of K2 was 3 × 10−8, which is negligible. The estimation
error of K3 was −1.9 × 10−3, which is an important cause of error for k1ck2c. However, the estimation
error of K5 was as high as 9.2 × 10−2, which will significantly affect the update of k1cbc. This result
indicates that the performance of the new matching method can still be improved.

There are two key ways to improve matching results. The first is to decrease the interval between
matchings, and the second is to improve the estimation performance of the data processing algorithm.

In conclusion, this new matching method can help decrease the costs of gravity gradient
measurement. More importantly, it might provide a new and potential idea for accelerometer matching
in the gravity gradiometer. Nevertheless, this proposed method still has some flaws and expected
challenges. For example, there is a certain degree of principle error caused by omitting “other second-
and higher-order terms” in the mathematical model of the accelerometer with a quadratic factor.
Fortunately, the error is so small that it does not affect the results of the matching. The matching
method proposed in this paper can improve SNR in gravity gradient measurement with the same
accuracy as other methods. However, it is more flexible, convenient and economical. Thus, the new
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matching method might provide a sound foundation for further research. Furthermore, the accuracy
of the new matching method can be improved by modifying the algorithm.
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