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Abstract: Recently, the simultaneous wireless information and power transfer (SWIPT) technique
has been regarded as a promising approach to enhance performance of wireless sensor networks
with limited energy supply. However, from a green communication perspective, energy efficiency
optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor
Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three
factors including spectral efficiency, the transmit power and outage target rate for two different modes,
i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the
energy efficiency maximization problem subject to the constraints of minimum Quality of Service
(QoS), minimum harvested energy and maximum transmission power as non-convex optimization
problem. In particular, we focus on optimizing power control and power allocation policy in PS and
TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose
the corresponding algorithm to characterize a non-convex optimization problem that takes into
account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional
programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms
to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage
probability and effective throughput from the scenarios that the transmitter does not or partially know
the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed
optimal iterative algorithm can achieve optimal solutions within a small number of iterations and
various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target
rate, respectively.

Keywords: SWIPT; energy efficiency; energy-spectral efficiency tradeoff; effective throughput;
wireless rechargeable sensor networks

1. Introduction

Currently, energy efficiency is an important objective in the analysis and design of wireless sensor
networks, in addition to the traditional interest in higher rates and quality of service [1–4]. According to
the technical report from Ericiss [5], by 2020, there will be more than 50 billion connected devices,
including sensors, smart phones, medical and wearable devices connected to the Internet. Clearly,
in order to serve such a massive number of terminals, future networks will have to dramatically
increase the energy consumption compared to the present network. More importantly, most sensors
are powered by finite battery capacity. In order to address these issues, wireless power transfer
(WPT) is a promising approach to harvest radio frequency (RF)-energy from wireless received signal
and prolong the lifework time of wireless sensor networks. Accordingly, the WPT as the wireless
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charging technology enables an intentional RF power source to transmit electromagnetic energy
to an electrical load across the air media without an interconnected line. Due to its convenience
and better user experience, some researchers have begun to investigate wireless power transfer
algorithms, technologies and applications in wireless sensor networks [6–20]. In [6], the network
architecture for wireless rechargeable sensor networks (WRSNs) was introduced by describing the
functionality of network components and their features. The perpetual operation condition for
WRSNs was analyzed and derived. In [7], the abstract model, algorithm design and networking
principles about wireless power transfer in ad hoc communication network were introduced. Especially,
several applications for wirelessly powered communication networks (WPCN) were presented and
the relevant performance tradeoffs were characterized. In [8–12], some works on joint mobile
data gathering and energy provisioning in Wireless Rechargeable Sensor Networks (WRSN) were
investigated to provide perpetual network operations by capturing renewable energy from external
environments. Wireless power transfer provides a promising means of replenishing battery-powered
devices and supports various applications [13–20].

On the other hand, since radio signals carry both information and RF energy at the same time,
simultaneous wireless information and power transfer (SWIPT) has recently been proposed and
attracted much attention from academia and industry [21–24]. However, it is not realizable that
the receiver for SWIPT technology is required to be able to decode information and harvest energy
from the same signal, which is due to the practical circuit designment limitations [21]. Therefore,
two receiver design schemes, namely power splitting (PS) and time switching (TS), were proposed
in [21,23]. In addition, in [21], optimal mode switching rule at the receiver to achieve the tradeoff
between wireless information and energy harvesting was derived. In [22], a unified study on SWIPT
for a Multiple Input Multiple Output (MIMO) broadcast system was pursued to characterize their
achievable rate-energy (R-E) regions for two practical designs, i.e., PS and TS mode. In addition, in [23],
a general receiver operation, namely, dymamic power splitting (DPS) was proposed to characterize
R-E regions and derive different R-E tradeoffs. In [24], based on the instantaneous channel condition
and the proposed DPS scheme, an optimal power splitting rule at the receiver was derived to achieve
the tradeoffs between the maximum ergodic capacity and the maximum average harvested energy.
However, these works focus on how to achieve rate-energy tradeoff and increase R-E regions and/or
maximize transmission rate subject to the harvested energy constraint. The tradeoff between energy
efficiency (EE) and spectral efficiency (SE) and the EE optimization problem for SWIPT system have
not been considered in detail. In particular, the increasingly strict environmental standard and rapidly
rising energy cost have led to an emerging trend of addressing the energy efficiency of wireless
networks. Moreover, EE optimization of transceiver design in the SWIPT system has also not been
investigated in wireless sensor networks from a green communication perspective.

Recently, the EE optimization problem for the SWIPT system has been considered in [19,25–33].
In [19], an energy-efficient cooperative transmission problem for SWIPT in clustered wireless sensor
networks was formulated to develop a distributed iteration algorithm for power allocation, power
splitting and relay selection. In [25], a resource allocation algorithm for maximization of the
energy efficiency of data transmission was investigated in orthogonal frequency division multiple
access (OFDMA) systems with SWIPT. Furthermore, in [26], a power splitting based multiuser
multiple-input-single-output (MISO) downlink system with SWIPT was considered to maximize
the system energy efficiency by joint beamforming and PS schemes. Similarly, in [27], the main
objective is to maximize the ratio of the achievable utility to the total power consumption subject
to harvested energy requirements and power budget at the base station (BS). Moreover, in [28], two
user multiple access channels with SWIPT were studied to optimize resource allocation strategy
for SWIPT focusing on the system energy efficiency. In [29], an energy efficient resource allocation
scheme for SWIPT with imperfect channel estimation was studied by determining the training interval.
Furthermore, in [30], an algorithm for EE optimization was proposed in the MISO system with SWIPT
to reveal the influence of the searching interval, channel fading, maximum transmit power and the
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Quality of Service (QoS) requirement. In [32], the user association and power allocation in the mmWave
based ultra dense networks (UDNs) was considered with attention to load balance constraints, user
QoS requirement, energy harvesting by base stations, energy efficiency and cross-tier interference
limits. In [33], the EE and SE in the SWIPT systems were investigated to achieve different EE–SE
tradeoffs and optimal strategies for various constraint conditions. However, the static circuit power
consumption and the harvested energy requirement have not been jointly considered in [32,33].

In this paper, firstly, we study the tradeoff between SE and EE from a green communication
perspective. Moreover, we formulate two EE maximization problems subject to the constraints of
minimum QoS requirements, minimum harvested energy and maximum transmit power for different
practical design modes, which are two non-convex optimization problems. In particular, we aim to
focus on the distributed iterative algorithm design for PS and TS modes at the receiver. To this end, the
non-convex optimization problems are solved by the optimal iterative algorithms that jointly apply
nonlinear fractional programming and Lagrangian dual decomposition. In addition, we consider the
scenarios that the transmitter does not know or partially knows the channel state information (CSI)
of the receiver to characterize the tradeoff between effective throughput (ET) and outage target rate
with respect to PS and TS modes, respectively. Finally, simulation results illustrate various different
interesting tradeoffs between EE and SE, between EE and the transmit power, and between EE and ET
for SWIPT systems.

Compared to the previous work [19,25–33], the contributions of this paper are summarized
as follows.

• We analyze the tradeoff between EE and SE for PS and TS modes from a green wireless
communication perspective, respectively.

• We formulate the EE optimization problem as a nonlinear fractional programming problem, and
propose the optimal iterative algorithms by using Dinkelbach’s method and Lagrangian dual
decomposition to obtain the optimal transmit power and time switching slot.

• We analyse outage probability and give closed-form analytic expression of effective throughput
under the scenarios the transmitter does not know or partially knows the CSI of receiver.
The tradeoff between energy-throughput efficiency and outage target rate is analyzed for PS
and TS modes, respectively.

• We characterize and analyse the corresponding performance of our proposed iterative algorithms
for PS and TS modes in the SWIPT system by numerical simulations with respect to various
scenarios and different condition constraints, such as minimum QoS, minimum harvested energy
requirement and maximum transmit power constraint.

It is worth pointing out that energy queuing in the wireless rechargeable sensor network has
been studied [6]. However, these works mainly focused on the research of energy management policy
optimization at the transmitter side with energy harvesting, which is subject to random arrival energy.
Therefore, it is different from our work that mainly tackles EE optimization problem for SWIPT on the
receiver side.

The remainder of this paper is organized as follows. Section 2 introduces the channel model,
presents the PS, TS mode for receiver architecture and gives the concept of energy efficiency of two
receiver modes in the SWIPT system. Section 3 investigates the tradeoff between EE and SE. Section 4
formulates EE maximization optimization problem for the PS, TS receiver mode, respectively. Section 5
investigates the quasi-concavity of energy efficiency objective function for the PS, TS mode. Section 6
proposes distributed iterative algorithms to solve the corresponding nonlinear fractional program
problem. Section 7 analyzes the tradeoffs between energy-throughput efficiency and outage target rate
for PS, TS mode, respectively. Section 8 verifies the proposed iterative algorithms and the tradeoffs of
SE-EE, energy throughput efficiency and outage target rate by numerical simulations. Finally, Section 9
concludes this paper.



Sensors 2017, 17, 1906 4 of 29

2. System Model

In the WRSN system model, the energy harvesting model plays an important role in the
performance of wireless power transfer (WPT). Several energy harvesting models have been
investigated in the existing literature about wireless power transfer (WPT) and SWIPT [21–24,34–44].
Energy harvesting models are mainly divided into two categories: the Linear Energy Harvesting (EH)
model [21–24] and Nonlinear Energy Harvesting (EH) model [34–44]. On the one hand, the linear
EH model is based on the energy conversion efficiency being independent of the input power level
at the wireless powered user. Thus, the total harvested energy at the energy harvesting receiver is
linearly proportional to the received RF power [21,22]. On the other hand, the nonlinear EH model
captures the nonlinear dynamics of the RF energy conversion efficiency for different input power
levels in practical circuits and characterizes the RF energy-to-direct current (DC) power transfer at
the wireless powered user terminals in the wireless energy harvesting phase, which is based on a
nonlinear logistic (sigmoidal) function [35–39]. In fact, in [35–39], the authors found that the RF energy
conversion efficiency will be improved as the input power increases, but for high input powers there is
a diminishing return and a limitation on the maximum harvested energy. This result implies that the
linear EH model be equivalent to the nonlinear model when the input power is lower, such as WRSN.
Therefore, we consider employing a linear EH model in our proposed SWIPT system.

2.1. Channel Model

As shown in Figure 1, we study a point-to-point wireless link from a sensor node (SN) to cluster
head (CH) with simultaneous wireless information and power transfer in a clustered WSN. It is
assumed that both the SN transmitter and CH receiver are equipped with one antenna and the channel
between the transmitter and the receiver is blocking fading and quasi-static. The channel model is
given as follows:

y =
√

Pth0x + na, (1)

where x is the transmitted signal at sensor node and y is the received signal at cluster head. Pt denotes
the transmit power, h0 is the channel gain coefficient, h = |h0|2 is the channel power gain, na represents
the antenna noise and na ∼ N (0, σ2

a ). Table 1 summarizes the used notations and the corresponding
definitions in this paper.

Figure 1. A practical transceiver design for the SWIPT system.
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Table 1. List of notations.

Notation Definition

Pt Transmit power
h Channel power gain
ρ Fraction of information decoding power

1− ρ Fraction of energy harvesting power
τ Time for information transmission

T − τ Time for power transfer
W Channel bandwidth
Pc Static circuit power
µ The inverse of power amplifier efficiency
ξ Energy harvesting efficiency

σ2
a Antenna noise power

σ2
s Signal processing noise power

Pmax Maximum transmitted power
RPS Achievable information decoding rate for PS mode
RTS Achievable information decoding rate for TS mode

QEH(Pt, ρ) Energy harvesting power sum for PS mode
Qtotal(Pt, ρ) Total power consumption for PS mode
QEH(Pt, τ) Energy harvesting power sum for TS mode
Qtotal(Pt, τ) Total power consumption for TS mode

QEH Energy harvesting power sum
Qtotal Total power consumption in the system

ηPS
ee (Pt, ρ) Energy efficiency for PS mode

ηTS
ee (Pt, τ) Energy efficiency for TS mode

Rmin Minimum information decoding rate satisfied QoS
Qmin Minimum energy harvesting requirement
RPS

0 Outage target rate for PS mode
RTS

0 Outage target rate for TS mode
ηPS

ee (RPS
0 , Pt, ρ) Energy-throughput efficiency for PS mode

ηTS
ee (RTS

0 , Pt, τ) Energy-throughput efficiency for TS mode

2.2. Receiver Architecture

In this subsection, we consider the co-located receiver architecture, which means that the energy
harvester and the information decoder share the same antenna so that they can observe the same
channel. This architecture can be categorized into two modes, namely, power splitting (PS) mode and
time switching (TS) mode. Specifically, the former means that the receiver allocates one part of power
to be used for decoding information and the other for harvesting energy. The latter implies that the
receiver can switch over time slots between decoding information and harvesting energy.

2.2.1. Power Splitting Mode

In the power splitting mode, as shown in Figure 2, the received RF signals are split into two signal
streams for the information decoder and RF energy harvester with different power levels, respectively.
Let ρ ∈ [0, 1] denote the PS coefficient for information decoding while 1− ρ is the fraction of RF signals
used for energy harvesting. Therefore, the power of harvested RF signals at the energy harvester for
the receiver can be given as follows:

QPS = ξ(1− ρ)Pth, (2)

where ξ denotes the energy harvesting efficiency factor.
The maximum information decoding rate RPS at the PS receiver is given by

RPS = Wlog2(1 +
ρPth

ρσ2
s + σ2

a
), (3)
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where σ2
s denotes the signal processing noise power, and σ2

a is the antenna noise power, which is
depicted in Figure 2.

Figure 2. A practical transceiver design with power splitting mode.

2.2.2. Time-Switching Mode

The TS mode, as shown in Figure 3, allows the receiver antenna to switch and utilize either the
information decoder or the RF energy harvester for the received RF signals at a time. Hence, a time
switching strategy is adopted as two phases: (i) the power transfer phase: during each coherence time
interval T, the transmitter first transmits wirelessly the information to the receiver and then harvests
energy for T− τ time slots; and (ii) the information transmission phase: the signal to the receiver for τ

time slots is allocated to decode information. When the receiver works in the power transfer phase,
the power harvested from the transmitter can be given as follows:

QTS = ξ(T − τ)Pth, (4)

where ξ denotes the energy harvesting efficiency factor, Pt is the transmit power at the transmitter,
and h denotes the channel power gain between the transmitter and the receiver. On the other hand,
when the receiver works in the information decoding phase, the maximum information decoding rate
RTS for time slot τ at the receiver is

RTS = τWlog2(1 +
Pth
σ2

a
), (5)

where W and σ2
a denote the fading channel bandwidth and antenna noise power, respectively.

Figure 3. A practical transceiver design with time switching mode.

2.3. Energy Efficiency

Taking both the information decode rate and the total power consumption into consideration,
energy efficiency is an important metric for the SWIPT system in energy constrained wireless
sensor networks. Assume that Pc denotes the total static power consumption by mixer digital or
analog converter, frequency synthesizer at the transmitter and the receiver. Note that the allocated
transmission power Pt is not concluded in the static circuit power consumption. The harvested
energy QEH is regarded as a compensation energy of the considered system. Then, the total power
consumption of the proposed SWIPT system is formulated as

Qtotal = µPt + Pc −QEH , (6)
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where µ denotes the inverse of power amplification efficiency coefficient.
Then, the energy efficiency ηee of the considered system is defined as the total average number of

bits successfully transmitted to the receiver per Joule energy and is given by

ηee =
R

Qtotal
[bits/Joule]. (7)

2.3.1. Power Splitting Mode

For PS mode, we assume that the transmission takes T0 time slots, and the total consumed energy
is given by

QPS
total = T0(µPt + Pc −QPS

EH). (8)

Then, the amount of data that can be reliably transmitted in T0 time slots is

RPS
total = T0(Wlog2(1 +

ρPth
ρσ2

s + σ2
a
)). (9)

Then, according to Equations (7)–(9), the energy efficiency ηPS
ee for PS mode can be formulated as

ηPS
ee =

RPS
total

QPS
total

=
Wlog2(1 +

ρPth
ρσ2

a +σ2
s
)

µPt + Pc − ξ(1− ρ)Pth
. (10)

2.3.2. Time Switching Mode

For TS mode, we assume that the time slot T is divided into two phases, i.e., power transfer phase
T − τ and information decode phase τ. Therefore, the harvested energy for time slot T − τ at the
receiver is given by Equation (4) and the total power consumption is presented by

QTS
total = T(µPt + Pc)− ξ(T − τ)Pth. (11)

In time slot τ, the amount of data that can be reliably transmitted is given by Equation (5). Thus,
the energy efficiency ηTS

ee for TS mode can be formulated as

ηTS
ee =

RTS

QTS
total

=
τWlog2(1 +

Pth
σ2

a
)

T(µPt + Pc)− ξ(T − τ)Pth
. (12)

3. Spectral-Energy Efficiency Tradeoff

In this section, we propose a general framework of the tradeoffs between EE and SE in the SWIPT
system for different receiver modes; furthermore, we derive the specific EE–SE relation for two modes
as the closed-form expression function, which are based on the proposed framework.

Traditionally, wireless sensor network design mainly aims to improve spectral efficiency and
effective throughput. The spectral efficiency (SE), defined as the system throughput per unit of
bandwidth, is a widely accepted criterion for wireless network optimization. However, according to
Shannon capacity formulation, it becomes urgent to maintain sustainable capacity growth by only
increasing transmit power. Thus, the researchers and engineers have a paradigm shift from improving
system capacity and throughput to energy efficiency oriented design. Unfortunately, SE and EE
of communication systems are not always consistent and sometimes conflict with each other [3].
The SE-EE tradeoff is to balance the achievable rate and energy consumption of the system for a given
available bandwidth. Therefore, it is worth studying how to balance the two metrics in future systems
from a green communication perspective

In the following, we consider the static circuit power consumption Pc in our proposed SWTPT
system. On the other hand, energy harvesting terminal design is regarded as energy compensation for



Sensors 2017, 17, 1906 8 of 29

two modes. The significant impact on the tradeoff between SE and EE can be investigated to obtain
energy-efficient transmission policies, which is crucial for environmental protection and sustainable
development in WRSN.

3.1. Power Splitting Mode

For PS mode, let ηPS
se denote power spectral efficiency; then we can obtain spectral efficiency

expression as follows:

ηPS
se =

RPS

W
= log2(1 +

ρPth
ρσ2

a + σ2
s
). (13)

Moreover, we can obtain more insight on the fundamental tradeoff between energy efficiency and
spectral efficiency. According to Equation (3), the transmit power with respect to spectral efficiency is
given by

Pt =
(2

RPS
W − 1)(ρσ2

s + σ2
a )

ρh
=

(2ηPS
se − 1)(ρσ2

s + σ2
a )

ρh
. (14)

Substituting Equation (14) into Equation (10), we can yield the EE as a function of the SE, i.e.,

ηPS
ee =

WηPS
se ρh

ρhPc + (µ− (1− ρ)ξh)(2ηPS
se − 1)(ρσ2

a + σ2
s )

. (15)

The function relation in Equation (15) is illustrated in Figure 4, which shows that the EE ηPS
ee is

quasi-concave (uni-modal) with respect to the SE ηPS
se for PS mode, and provides more insights on the

fundamental tradeoff between EE and SE in the SWIPT system.
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Figure 4. Tradeoff of EE-SE with different power splitting ratios for PS mode.

3.2. Time Switching Mode

For TS mode, let ηTS
se denote power spectral efficiency; then, the spectral efficiency for time slot τ

is formulated as

ηTS
se =

RTS

W
= τlog2(1 +

Pth
σ2

a
). (16)

Moreover, we can obtain the transmit power as follows:

Pt =
(2

ηTS
se
τ − 1)σ2

a
h

. (17)
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Substituting Equation (17) into Equation (12), we can derive the relation of the SE-EE tradeoff for
TS mode as follows:

ηTS
ee =

WηTS
se h

hTPc + (Tµ− (T − τ)ξh)(2
ηTS

se
τ − 1)σ2

a

. (18)

Similarly, the function relation in Equation (18) is illustrated in Figure 5, which shows that the EE
ηTS

ee is quasi-concave (uni-modal) with respect to the SE ηTS
se for TS model and provides more insights

on the fundamental tradeoff between EE and SE in the SWIPT system.
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Figure 5. Tradeoff of EE–SE with different time switching slots for TS mode.

4. Problem Formulation

In this section, we first formulate the EE maximization problem for PS and TS mode, respectively.
For the PS model, we propose Problem 1, constrained by minimum QoS and the minimum harvested
energy requirement for optimizing transmit power and power splitting ratio. In addition, for TS mode,
we formulate Problem 2 under minimum QoS constraints and minimum harvested energy requirement
for optimizing transmit power and time switching slot.

4.1. Energy Efficiency Maximization Problem for PS Mode

For PS mode, the energy efficiency maximization problem (Problem 1) is formulated as

Problem 1.
max
{ρ,Pt}

ηPS
ee , (19)

subject to

C1 : RPS ≥ Rmin, (20)

C2 : QPS ≥ Qmin, (21)

C3 : 0 ≤ Pt ≤ Pmax, (22)

C4 : 0 ≤ ρ ≤ 1, (23)

where minimum rate constraint C1 indicates that the achievable rate at the receiver should be more than or
equal to minimum rate requirement, i.e., minimum QoS, Rmin. The minimum harvested energy constraint C2
describes that the harvested energy must be no less than the minimum energy harvesting requirement Qmin of
the wireless sensor node. C3 denotes the transmit power constraint of the transmitter, which captures the fact
that the transmit power is equal to or less than the maximum power peak value of the transmitter. C4 denotes
the power splitting ratio constraint. For PS mode, the feasible region for the optimization variable ρ and Pt is
given by the constraints C1–C4.
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4.2. Energy Efficiency Maximization Problem for TS Mode

In this subsection, for TS mode, the EE optimization problem (Problem 2) is formulated as

Problem 2.
max
{τ,Pt}

ηTS
ee , (24)

subject to

D1 : RTS ≥ Rmin, (25)

D2 : QTS ≥ Qmin, (26)

D3 : 0 ≤ Pt ≤ Pmax (27)

D4 : 0 ≤ τ ≤ T, (28)

where constraint D1 reflects that minimum transmit rate should satisfy Quality of service (QoS) requirement,
D2 ensures minimum energy harvesting requirement, D3 denotes maximum transmit power constraint and D4
is the range of time switching value τ. For time switching mode, the feasible region for optimization variable τ

and Pt is characterized by the constraints D1–D4.

It is worth noting that one of our main goals is to maximize energy efficiency under constraints
C1–C4 ( or D1–D4) in the SWIPT system for two modes. The EE maximization problem can be regarded
as a fractional programming problem, whose objective function is the ration of two functions. It is
generally a non-convex (or non-concave) function. In other words, the original fractional problem is
not a convex optimization problem. In the following, we will show that the energy efficiency function
is concave with respect to optimal variables while the objective function is quasi-concave.

5. Quasi-Concavity of Energy Efficiency Objective Function and Dinkelbach’s Method

In this section, we firstly prove the quasi-concavity of energy efficiency objective function and then,
by applying Dinkelbach’s method, transform two original quasi-concave fractional programming
problems into two convex optimization problems in a subtraction form. Finally, we give the distributed
iteration algorithms to solve two transformed convex optimization problems by using the classical
Lagrangian dual decomposition method.

5.1. Quasi-Concavity of Energy Efficiency Objective Function

5.1.1. Power Splitting Mode

For PS mode, we give Lemmas 1 and 2 to show the quasi-concavity of the proposed EE
objective function.

Lemma 1. For given power splitting ratio ρ, the energy efficiency objective function ηPS
ee in Equation (10) with

respect to transmit power Pt is quasi-concave.

Proof. According to Equation (3), we calculate the two-order derivation of the energy efficiency
function with respect to Pt for given power splitting ratio ρ as follows:

∂2RPS

(∂Pt)2 =
W(ρh)2

ln 2(ρσ2
a + σ2

s + ρPth)2 < 0. (29)

Thus, the energy efficiency function RPS in Equation (3) with respect to the transmit power Pt

is concave.
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On the other hand, the total power consumption in Equation (2) is an affine positive function
with respect to the transmit power Pt. Therefore, the energy efficiency objective function ηPS

ee is the
ratio of a concave function to an affine function and results in a quasi-concave function.

Lemma 2. For given transmit power Pt, the energy efficiency objective function in Equation (10) with respect
to the power splitting ratio ρ is also quasi-concave.

Proof. According to Equation (3), we calculate the two-order derivation of the energy efficiency
function RPS with respect to ρ for given transmit power Pt as follows:

∂2RPS

(∂ρ)2 = − W
ln 2

σ2
s Pth[2(ρσ4

a + ρσ2
a Pth + σ2

a σ2
s ) + σ2

s Pth]
(ρσ2

a + σ2
s + ρPth)2(ρσ2

a + σ2
s )

2 < 0. (30)

Thus, the energy efficiency function RPS in Equation (3) with respect to power splitting ratio ρ

is concave.
On the other hand, the total power consumption is an affine positive function in Equation (10)

with respect to power splitting ratio ρ. Therefore, the energy efficiency objective function ηPS
ee is the

ratio of a concave function to an affine function and results in a quasi-concave function.

5.1.2. Time Switching Mode

Similarly, for TS mode, the quasi-concavity of the proposed energy efficiency objective function is
discussed in the proof of Lemmas 3 and 4.

Lemma 3. For given time switching slot τ, the energy efficiency objective function ηTS
ee in Equation (12) with

respect to the transmit power Pt is quasi-concave.

Proof. According to Equation (5), we calculate the two-order derivation of the energy efficiency
function RTS with respect to Pt for given time switching slot τ as follows:

∂2RTS

(∂Pt)2 = − 1
ln 2

τWh2

(Pth + σ2
a )

2 < 0. (31)

Thus, the energy efficiency function RTS in Equation (5) with respect to the transmit power Pt

is concave.
On the other hand, the total power consumption is an affine positive function in Equation (4) with

respect to the transmit power Pt. Therefore, the energy efficiency objective function ηTS
ee is the ratio of a

concave function to an affine function and results in a quasi-concave function.

Lemma 4. For given transmit power Pt, when D > 0, the energy efficiency objective function in Equation (12)
with respect to time switching slot τ is concave.

Proof. According to Equation (12), we rewrite it with respect to variable τ as a fractional form, which
is given by

ηTS
ee =

Aτ + B
Cτ + D

, (32)

where A = Wlog2(1 +
Pth
σ2

a
) > 0, B = 0, C = ξPth > 0 and D = T(µPt + Pc − ξPth).

We can directly calculate the two-order derivation of energy efficiency objective function ηTS
ee with

respect to τ for given transmit power Pt as follows:

∂2ηTS
ee

(∂τ)2 = − 2AD
(Cτ + D)3 < 0. (33)
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Therefore, the energy efficiency objective function ηTS
ee is a concave function under the constraint

D > 0.

Remark 1. It is worth noting that the fractional programming represents a fundamental tool in energy efficiency
modeling and design of wireless communication [4]. From Lemmas 1–4, we can obtain the quasi-concavity
and concavity of the energy efficiency objective function, respectively. According to proposition 2.6 in [4], the
quasi-concavity guarantees that the Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient for
global optimality. In other words, many useful properties that hold for concave functions are still satisfied in the
quasi-concave cases, such as the existence and uniqueness of the global optimal solution. Next, we transform the
fractional programming into the convex optimization by using Dinkelbach’s method.

5.2. Dinkelbach’s Method

From the above discussion, we can know that our proposed EE maximization Problems 1 and 2
are concave-convex fractional optimization problems, which belong to a special nonlinear fractional
programming and can share important properties with convex optimization theory. By using
Dinklebach’s method [4], a concave-convex fractional programming can be transformed into a convex
optimization problem and be solved with the aid of classical methods in convex optimization theory.
In the following, we will introduce Dinklebach’s method.

Dinkelbach’s method, i.e., Dinkelbach’s algorithm, has been introduced in [4]. The basic idea is
to address a concave-convex fractional problem (CCFP) by solving a sequence of easier optimization
problems that converge to the global optimal solution of the CCFP. The fundamental result of
Dinklebach’s algorithm is based on the relationship between the CCFP (34) and the convex function of
the real optimization variable (35) with a subtract form as follows:

max
x∈S

f (x)
g(x)

(34)

and
F(λ) = max

x∈S
{ f (x)− λg(x)} (35)

where f (x) is concave, differentiable, and non-negative, and g(x) is convex, differentiable, and positive.
S represents compact, convex set constraints, and λ is a parameter of the auxiliary function F(λ).

In fact, the following theorem bridges the equivalent relation between CCFP (34) and (35), which
is given by

Theorem 1. Consider x ∈ S and λ∗ = f (x∗)
g(x∗) . Then, x∗ is a solution of CCFP (34) if and only if

x∗ = argmaxx∈S{ f (x)− λg(x)} (36)

We can observe from Theorem 1 that solving a nonlinear fractional problem is equivalent to finding
the unique zero of the auxiliary function F(λ). On the other hand, we can find that Dinkelbach’s
algorithm in fact follows Newton’s method as far as updating λ is concerned and presents a super-linear
convergence rate in the sub-problem sequence. In a word, from an algorithm design perspective,
Dinkelbach’s algorithm is an iterative algorithm to find the increasing values of feasible λ by solving
the parameterized optimization problem of maxx∈S F(λn) = maxx∈S{ f (x) − λng(x)} at the n-th
iteration. The iterative process stops until |F(λn)| is less than or equal to a pre-determined tolerance
value ε, which is described in Algorithm 1.
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Algorithm 1 Dinkelbach’s method

1: Initialize: ε > 0, n = 0;
2: Set λn = 0
3: while |F(λn)| > ε do

4: x∗ = argmaxx∈S{ f (x)− λng(x)};
5: F(λn) = f (x∗n)− λng(x∗n);

6: λn+1 = f (x∗n)
g(x∗n)

;
7: n = n + 1;
8: end while

6. The Proposed Algorithm for Solving Transformed Optimization Problems

In this section, we mainly focus on solving the proposed optimization problems by applying
Dinkelbach’s method and Lagrangian dual decomposition. Dinkelbach’s method for EE maximization
for PS and TS mode is described in Algorithm 2.

Algorithm 2 Dinkelbach’s method for EE maximization

1: Input: Louter
max : the maximum number of iterations and εouter : the maximum tolerance;

2: η0 ← 0;
3: i← 0;
4: while k ≤ Louter

max and |ηi − ηi−1| > εouter do

5: i← i + 1;
6: Obtain the optimal transmit power Pt

∗ and the power splitting ratio ρ∗ (inner loop) by solving
Problem 3;

7: Obtain the optimal transmit power Pt
∗ and the time switching slot τ∗ (inner loop) by solving

Problem 4;

8: Update ηi ←
RPS(P∗t ,ρ∗)
QPS(P∗t ,ρ∗) for PS mode;

9: Update ηi ←
RTS(P∗t ,τ∗)
QTS(P∗t ,τ∗) for TS mode;

10: end while
11: return

6.1. Power Splitting Mode

For PS mode, according to the formulated fractional Problem 1 and applying Dinkelbach’s method
discussed in above section, the parametric version of the EE-maximization Problem 1 is reformulated as

Problem 3.
max
{ρ,Pt}

{RPS − ηPS
ee QPS}, (37)

s.t. C1 ∼ C4. (38)

Here, RPS and QPS with respect to optimization variable ρ, Pt are concave and affine, respectively.
Then, the objective function is concave in Problem 3 and the feasible region generated by constraints
C1–C4 is a convex set. Thus, Problem 3 is a convex optimization problem. Furthermore, we can obtain
the primal solution with a zero duality gap by solving a dual problem. In the following, the Lagrangian
function over variable ρ, Pt for optimization Problem 3 is presented by

L{ρ, Pt, ϕ, φ, ψ} = RPS − ηPS
ee QPS + ϕ(RPS − Rmin) + φ(QPS −Qmin) + ψ(Pmax − Pt), (39)

where ϕ, φ, ψ denote the Lagrange multiplier corresponding to the constraints C1, C2 and C3, respectively.
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Since Problem 3 is a standard form of the convex optimization problem, we can deal with
the updating process of the primal and dual variables in terms of the Karush–Kuhn–Tucker (KKT)
first order optimality conditions in [45], in order to find the optimal solution. In the following,
we mainly focus on updating optimization variables and Lagrangian multiplier to obtain the solution
for PS modes.

6.1.1. Optimal Transmit Power for PS Mode

For given power splitting ratio ρ, we can obtain the first order partial derivation of Lagrangian
function with respect to transmit power Pt and let it equal zero as follows:

∂L
∂Pt

=
Wρh(1 + ϕ)

ln 2(ρPth + ρσ2
a + σ2

s )
+ ηPS

ee − ψ + (φ− ηPS
ee )ξ(1− ρ)h = 0. (40)

By simple calculation, optimal transmit power P∗t is given by

P∗t = { W(1 + ϕ)

ln 2[(ψ− ηPS
ee µ) + (ηPS

ee µ− φ)ξ(1− ρ)h]
− ρσ2

a + σ2
s

ρh
}Pmax

0 , (41)

where {Θ}Pmax

0 denotes 0 ≤ Θ ≤ Pmax.

6.1.2. Optimal Power Splitting Ratio

On the other hand, for fixed transmit power Pt, we can give the first order derivation of Lagrangian
function with respect to variable ρ as follows:

∂L
∂ρ

=
W(1 + ϕ)

ln 2
[

σ2
a + Pth

ρσ2
a + σ2

s + ρPth
− σ2

a
ρσ2

a + σ2
s
] + (ηPS

ee − φ)ξPth = 0. (42)

By solving Equation (42), the optimal power splitting ratio ρ∗ is given by

ρ∗ = {
σ2

s [−M0 +
√

M2
0 − 4(M0 − σ2

a )(σ
2
s −M)]

2(M0 − σ2
a )σ

2
a

}1
0, (43)

where M = W(1+ϕ)

ln 2[ξ(φ−ηPS
ee )]

, M0 = 2σ2
a + Pth and {Θ}1

0 denotes 0 ≤ Θ ≤ 1.

6.1.3. Lagrange Multiplier Update for PS Mode

In the following, we apply the sub-gradient method to update the dual variables ϕ, φ and ψ:

ϕ(k + 1) = [ϕ(k) + α1(RPS − Rmin)]
+, (44)

φ(k + 1) = [φ(k) + α2(QPS −Qmin)]
+, (45)

ψ(k + 1) = [ψ(k) + α3(Pmax − Pt)]
+, (46)

where α1, α2 and α3 denote the proper step size of sub-gradient iteration, respectively, and [Θ]+ denotes
max{0, Θ}. For PS mode, the inner loop iterative algorithm for obtaining the optimal transmit power
Pt
∗ and the power splitting ratio ρ∗ for given ηPS

ee is illustrated in Algorithm 3, respectively.
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Algorithm 3 Inner Loop Iterative Algorithm for obtaining Pt
∗ and ρ∗ for given ηPS

ee

1: Input: Linner
max : the maximum number of iterations and εinner : the maximum tolerance;

2: k← 0;
3: while k ≤ Linner

max or |ϕ(k+ 1)− ϕ(k)| < εinner and |φ(k+ 1)−φ(k)| < εinner and |ψ(k+ 1)−ψ(k)| <
εinner do

4: k + 1← k;
5: Obtain the optimal transmit power Pt

∗ by using Equation (41);
6: Obtain the power splitting ratio ρ∗ by using Equation (43);
7: Update the dual variables ϕ, φ, ψ by using Equations (44)–(46);
8: end while
9: return

6.2. Time Switching Mode

For TS mode, similarly, according to the formulated fractional program Problem 2,
the EE-maximization Problem 2 is reformulated as

Problem 4.
max
{τ,Pt}

{RTS − ηTS
ee QTS}, (47)

s.t. D1 ∼ D4, (48)

since RTS and QTS with respect to optimization variable Pt are concave and affine, respectively.
In addition, the objective function is concave in Problem 4 and the feasible region generated
by constraints D1∼D4 is a convex set. Therefore, Problem 4 is a convex optimization problem.
Furthermore, the Lagrangian function over variable Pt for optimization Problem 4 is described by

L0{τ, Pt, ϕ0, φ0, ψ0} = RTS − ηTS
ee QTS + ϕ0(RTS − Rmin) + φ0(QTS −Qmin) + ψ0(Pmax − Pt), (49)

where ϕ0, φ0, ψ0 are the corresponding Lagrangian multipliers of constraint conditions.
Since Problem 4 is convex, we can give an iterative update of the primal and dual variables in

terms of the Karush–Kuhn–Tucker (KKT) first order optimality conditions of [45], which is to search
the global optimal solution. Moreover, we update optimization variables and Lagrange multipliers to
obtain the optimal solution for TS mode.

6.2.1. Optimal Transmit Power for TS Mode

For given switching time τ, we can calculate the first order partial derivation of Lagrangian
function with respect to transmit power Pt and let it equal zero, i.e.,

∂L0

∂Pt
=

τWh(1 + ϕ0)

ln 2(σ2
a + Pth)

+ ηTS
ee (Tµ + ξ(T − τ)h)− ψ0 = 0. (50)

By simple calculation, optimal transmit power P∗t is given by

P∗t = { τW(1 + ϕ0)

ln 2[ψ0 − ηST
ee (Tµ + ξ(T − τ)h)]

− σ2
a

h
}Pmax

0 , (51)

where {Θ}Pmax

0 denotes 0 ≤ Θ ≤ Pmax.
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6.2.2. Optimal Time Switching Slot for TS Mode

On the other hand, according to Lemma 4, we know that the objective function ηTS
ee with respect

to time switching variable τ is concave. Thus, the Lagrangian function can be reformulated as

L1{τ, Pt, ϕ1, φ1, ψ1, ν1} = ηTS
ee + ϕ1(RTS−Rmin)+ φ1(QTS−Qmin)+ψ1(Pmax− Pt)+ ν1(T− τ). (52)

In the following, for fixed transmit power Pt, we can give the first order derivation of of Lagrangian
function (52) with respect to time switching slot variable τ and let it equal zero as follows:

∂L1

∂τ
=

AD
(Cτ + D)2 + ϕ1 A− φ1ξPth− ν1 = 0. (53)

By solving the equation, the optimal time switching slot τ∗ is given by

τ∗ = { 1
C

√
AD

φ1ξPth− ϕ1 A + ν1
− D

C
}T

0 , (54)

where A = Wlog2(1 +
Pth
σ2

a
) > 0, C = ξPth > 0, D = T(µPt + Pc − ξPth) and {Θ}T

0 denotes 0 ≤ Θ ≤ T.

6.2.3. Lagrange Multiplier Update for TS Mode

In this subsection, we apply the sub-gradient algorithm to update the dual variables ϕ0, φ0, ψ0

as follows:

ϕ0(k + 1) = [ϕ0(k) + β1(RTS − Rmin)]
+, (55)

φ0(k + 1) = [φ0(k) + β2(QTS −Qmin)]
+, (56)

ψ0(k + 1) = [ψ0(k) + β3(Pmax − Pt)]
+, (57)

where β1, β2, β3 denote the proper iteration step size of sub-gradient algorithm, respectively, and [Θ]+

denotes max{0, Θ}.
Next, we also apply the sub-gradient algorithm to update the dual variables ϕ1, φ1, ψ1 and ν1

as follows:

ϕ1(k + 1) = [ϕ1(k) + γ1(RTS − Rmin)]
+, (58)

φ1(k + 1) = [φ1(k) + γ2(QTS −Qmin)]
+, (59)

ψ1(k + 1) = [ψ1(k) + γ3(Pmax − Pt)]
+, (60)

ν1(k + 1) = [ν1(k) + γ4(T − τ)]+, (61)

where γ1, γ2, γ3, γ4 denote the proper step size of sub-gradient algorithm, and [Θ]+ denotes max{0, Θ}.
For TS mode, an inner loop iterative algorithm for obtaining the optimal transmit power Pt

∗ and the
time switching slot τ∗ for given ηTS

ee is illustrated in the following Algorithms 4 and 5, respectively.
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Algorithm 4 Inner Loop Iterative Algorithm for obtaining Pt
∗ for given ηTS

ee

1: Input: Linner
max : the maximum number of iterations and εinner : the maximum tolerance;

2: k← 0;
3: while k ≤ Linner

max or |ϕ0(k + 1)− ϕ0(k)| < εinner and |φ0(k + 1)− φ0(k)| < εinner and |ψ0(k + 1)−
ψ0(k)| < εinner do

4: k + 1← k;
5: Obtain the optimal transmit power Pt

∗ by using Equation (51);
6: Update the dual variables ϕ0, φ0, ψ0 by using Equations (55)–(57);
7: end while
8: return

Algorithm 5 Inner Loop Iterative Algorithm for obtaining τ∗ for given ηTS
ee

1: Input: Linner
max : the maximum number of iterations and εinner : the maximum tolerance;

2: k← 0;
3: while k ≤ Linner

max or |ϕ1(k + 1)− ϕ1(k)| < εinner and |φ1(k + 1)− φ1(k)| < εinner and |ψ1(k + 1)−
ψ1(k)| < εinner and |ν1(k + 1)− ν1(k)| < εinner do

4: k + 1← k;
5: Obtain the optimal time switching slot τ∗ by using Equation (54);
6: Update the dual variables ϕ1, φ1, ψ1, ν1 by using Equations (58)–(61);
7: end while
8: return

6.3. Computational Complexity Analysis

In this section, we analyze computational complexity of our proposed algorithm as given by
Algorithms 3–5 in the SWIPT system.

Our proposed iterative algorithm is divided into two-layer iterative loops. Specifically, the inner
main loop is to solve Problem 3 (or Problem 4) for a given parameter ηPS

ee (or ηTS
ee ) by the dual

decomposition method. Next, the parameter ηPS
ee (or ηTS

ee ) is updated for solving Problem 3
(or Problem 4) in the next iteration. Since the proposed algorithm can converge to the the optimal
solution of Problem 3 (or Problem 4), this procedure will repeat until convergence is achieved or the
number of iterations reaches Lmax and the maximum tolerance satisfies ε < 10−5. Since the gradient
method is adopted to update the Lagrange multiplier, then the time complexity of outer layer loop is
sup-linear, i.e., O(Louter

max ). On the other hand, Problem 3 (or Problem 4) is convex with respect to the
optimization variables. In other words, solving the inner loop optimization problem by Dinkelbach’s
method needs a polynomial time complexity, i.e., O(Linner

max ). In summary, our proposed algorithm
has a polynomial time complexity, i.e., O(Louter

max × Linner
max ), which is desirable to apply in the practical

SWIPT system.

7. Effective Throughput and Energy-Throughput Efficiency

In this section, we consider the scenario that the transmitter does not know or partly knows the
channel state information (CSI) of the receiver. Therefore, we investigate the effective throughput
of link between the transmitter and the receiver by using outage target rate and outage probability.
Assume that RPS

0 and RTS
0 represent the critical value of reliable transmission outage occurrence for

PS, TS mode, respectively. Moreover, we derive the close-form expression of effective throughput for
two modes. Furthermore, we define energy-throughput efficiency and characterize the relationship
between energy-throughput efficiency and the outage target rate. Finally, we derive the optimal value of
outage target rate, which is regarded as a system parameter to maximize the energy-throughput efficiency.



Sensors 2017, 17, 1906 18 of 29

We assume that the channel power gain h satisfies the exponential distribution. The probability
density function (PDF) of h is given by

fh(z) =
1
h

exp(− z
h
), (62)

where h denotes the expectation of h. Then, the cumulative density functions (CDF) of h is given by

Fh(z) = 1− exp(− z
h
). (63)

In the following, we derive the closed form expression of outage probability and effective
throughput, and then give the definition of energy-throughput efficiency for two modes.

7.1. Power Splitting Mode

For PS mode, the outage probability of reliable transmission is defined as the probability that the
reliable transmission rate is less than the outage target rate, which is obtained by

PPS
out(ρ, Pt, RPS

0 ) = Pr{RPS(ρ, Pt) < RPS
0 }

= Pr{h <
(2

RPS
0
W − 1)(ρσ2

a + σ2
s )

ρPt
}

= 1− exp(− (2
RPS

0
W − 1)(ρσ2

a + σ2
s )

hρPt
).

(64)

Moreover, the effective throughput of reliable transmission for PS mode is defined as the product
between the outage target rate and the probability of success reliable transmission, which is given by

TPS(ρ, Pt, RPS
0 ) = RPS

0 (1− PPS
out(ρ, Pt, RPS

0 )) = RPS
0 exp(− (2

RPS
0
W − 1)(ρσ2

a + σ2
s )

hρPt
). (65)

Finally, according to the previous definition, the energy-throughput efficiency of the SWIPT
system for power splitting mode on effective throughput is defined as the ratio between the effective
throughput and the total consumed energy, which can be expressed as

ηee(ρ, Pt, RPS
0 ) =

TPS(ρ, Pt, RPS
0 )

Qtotal
. (66)

Next, for given ρ, Pt, we characterize the relationship between energy-throughput efficiency
ηee(ρ, Pt, RPS

0 ) and outage target rate RPS
0 . We observe that the energy throughput efficiency with

respect to outage target rate is quasi-concave. In fact, we can obtain the following expression by taking
natural logarithm at both sides of Equation (66):

ln ηee(ρ, Pt, RPS
0 ) = ln RPS

0 + (− (2
RPS

0
W − 1)(ρσ2

a + σ2
s )

hρPt
)− ln Qtotal . (67)

We can observe that ln ηee(ρ, Pt, RPS
0 ) is a strict concave function with respect to RPS

0 from the
right-hand side of the equality (67). Thus, ηee(ρ, Pt, RPS

0 ) is a strict log-concave function with respect to
RPS

0 . Furthermore, it is also a strict quasi-concave function with respect to RPS
0 .
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Then, for given ρ and Pt, the optimal value of outage target rate exists and can be regarded as
a system parameter to maximize energy-throughput efficiency, i.e.,

RPS∗
0 = argmax{ρ,Pt}ηee(ρ, Pt, RPS

0 ). (68)

7.2. Time Switch Mode

On the other hand, we can obtain the outage probability, effective throughput and energy
throughput efficiency for time switching mode as follows:

PTS
out(τ, Pt, RTS

0 ) = Pr{RTS(τ, Pt) < RTS
0 }

= Pr{h <
(2

RTS
0

τW − 1)σ2
a

Pt
}

= 1− exp(− (2
RTS

0
τW − 1)σ2

a

hPt
).

(69)

Moreover, the effective throughput of reliable transmission for TS mode is given by

TTS(τ, Pt, RTS
0 ) = RTS

0 exp(− (2
RTS

0
τW − 1)σ2

a

hPt
). (70)

Similarly, the energy-throughput efficiency of the SWIPT system with time switching mode on
effective throughput can be given by

ηee(τ, Pt, RTS
0 ) =

TTS(τ, Pt, RTS
0 )

Qtotal
. (71)

For TS mode, similar to PS mode, we also can prove that the energy-throughput efficiency
ηee(τ, Pt, RTS

0 ) with respect to outage target rate RTS
0 is quasi-concave. Then, for given τ and Pt,

the optimal value of outage target rate exists and can be obtained by

RTS∗
0 = argmax{τ,Pt}ηee(τ, Pt, RTS

0 ). (72)

8. Numerical Simulation Results and Discussion

In this section, we first verify the convergence of the proposed algorithm in Section 5. Moreover,
we compare and evaluate the performance of our optimal solution for different parameters, such as
the transmit power Pt, power splitting ratio ρ and time switching slot τ for PS,TS mode, respectively.
In addition, we characterize the effects of minimum QoS and minimum harvested energy requirement
on energy efficiency. Furthermore, we illustrate the tradeoffs between EE and SE and characterize
the quasi-concavity of the EE with respect to SE for PS, TS mode, respectively. Finally, we illustrate
the quasi-concavity of the energy-throughput efficiency with respect to the outage target rate and
evaluate the optimal value of outage target rate, which maximizes the energy-throughput efficiency
for two modes, respectively.

We consider a SISO SWIPT system with PS, TS mode and the used simulation parameter values
for SWIPT system are presented in Table 2. We assume that the total bandwidth of fading channel
is 100 MHz. Moreover, the static circuit power consumption Pc is 10 mW, which is considered as
a constant parameter. Furthermore, unless specified otherwise, we assume that the system satisfies
a minimum rate requirement of Rmin = 1 kbps, minimum harvested energy constraint of Qmin = 0.1 J,
and initial energy harvesting efficiency ξ = 1, the power amplifier coefficient µ = 2. For the sake of fast
convergence, we assume that the step size of Lagrangian multiplier update αi(i = 1, 2, 3), β j(j = 1, 2, 3),
γl(l = 1, 2, 3, 4) = −0.05, convergence tolerance of iterative algorithms εD

outer = εD
inner = 10−5,
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maximum number of inner loop iterations LD
inner = 100 and maximum number of outer loop iterations

LD
outer = 20.

Table 2. Simulation parameters used in this section unless otherwise specified.

Simulation Parameter Value

Transmit power, Pt [10,15,20,25] mW
Channel power gain, h 1

Fraction power for information decoding , ρ [0.2,0.5,0.8,1]
Time for information transmission τ [0.2,0.5,0.8,1] s

Channel bandwidth, W 100 MHZ
Static circuit power, Pc 10 mW

Inverse of power amplifier efficiency, µ 1,2
Energy harvesting efficiency, ξ 1

Antenna noise power, σ2
a 0 dBm, −20 dBm

Signal processing noise power, σ2
s 0 dBm, −20 dBm

Maximum transmitted power, Pmax 30 mW
Minimum information decoding rate satisfied QoS, Rmin 1 kbps

Minimum energy harvesting requirement, Qmin 0.1, 1 J
Maximum number of outer loop iterations, LD

outer 20
Maximum number of inner loop iterations, LD

inner 100
Convergence tolerance of iterative algorithms, εD

outer = εD
inner 10−5

8.1. The Tradeoffs of Energy-Spectral Efficiency

In this subsection, we characterize the tradeoffs between energy efficiency and spectral efficiency
for two modes in the SWIPT system, which are depicted in Figures 4 and 5. If only transmit power
is considered, we can see that the EE decreases as the SE increases and the EE-SE relation looks
contradictory. However, in a practical communication system, in addition to the transmit power,
there exist other kinds of power consumed to maintain the whole system, such as the static circuit
power Pc. Then, the circuit power consumption is considered as a constant power for two transceivers
in our proposed SWIPT system and more details can be found in Section 3.

For the PS mode, the EE–SE relation presented in Equation (15) is showed in Figure 4.
For comparison, the power splitting ratio ρ is set to 0.2, 0.5, 0.8, 1. In Figure 4, we can see that an optimal
peak value of the EE can be achieved in different levels of the power splitting ratio. In other words,
the EE-SE relation does not conflict any more and the optimal tradeoff can be achieved. On the other
hand, Figure 4 shows that the EE decreases as the power splitting ratio increases. In particular, ρ = 1
means no energy harvesting, which indicates that the SWIPT system can enhance energy efficiency
under the condition of the same spectral efficiency for PS mode.

For the TS mode, the EE-SE relation presented in Equation (18) is showed in Figure 5.
For comparison, the time switching slot τ is set to 0.2, 0.5, 0.8, 1. In Figure 5, an optimal value of
tradeoff between EE and SE can be obtained in different intervals of the time switching slot. Similarly,
the EE–SE relation is not contradictory any more and the optimal tradeoff can be achieved. In addition,
Figure 5 illustrates that the EE increases as the time switching slot increases as well as the spectral
efficiency, which shows that the SWIPT system can achieve different EE–SE tradeoff levels by adjusting
time switching slot τ for TS mode.

8.2. Convergence of Iterative Algorithms

In this subsection, we focus on the energy efficiency versus the number of iterations and
the convergence speed of the our proposed iterative algorithms for PS, TS mode, which are
depicted in Figures 6–9. Specifically, for PS mode, Figure 6 depicts the energy efficiency of the
proposed iterative algorithms for different levels of transmit power versus the number of iterations.
Figure 6 reveals that the larger the transmit power is, the lower the energy efficiency of system is,
when Pt = 10, 15, 20, 25 mW. Figure 7 shows the energy efficiency of the proposed algorithms for
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different power splitting ratios versus number of iterations. Figure 7 illustrates that the higher the
power splitting ratio is, the lower the energy efficiency of system is, when ρ = 0.2, 0.5, 0.8, 1, respectively.
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Figure 6. Energy efficiency versus number of iterations with different transmit power for PS mode.
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Figure 7. Energy efficiency versus number of iterations with different power splitting ratios for
PS mode.
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Figure 8. Energy efficiency versus number of iterations with different transmit power for TS mode.

On the other hand, for TS mode, Figure 8 depicts the energy efficiency of the proposed algorithms
for different transmit power versus the number of iterations. Figure 8 reveals that the larger the transmit
power is, the lower the energy efficiency of system is, when Pt = 10, 15, 20, 25 mW, respectively.
Figure 9 shows the energy efficiency of the proposed algorithms for different time switching slots
versus the number of iterations. Figure 9 illustrates that the higher the time switching slot is, the lower
the energy efficiency of system is, when τ = 0.2, 0.5, 0.8, 1, respectively.
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In addition, in Figures 6–9, after only eight iterations, the proposed iterative algorithms achieve
convergence for all considered scenarios. In addition, the convergence speed of the proposed
algorithms is unchanged for different transmit power, power splitting ratio and time switching
slots, which is expected for the practical SWIPT system.
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Figure 9. Energy efficiency versus number of iterations with different time switching slots for TS mode.

8.3. Effects of Minimum QoS and Minimum Harvested Energy on Energy Efficiency for PS Mode

In this subsection, the effects of the minimum QoS and minimum harvested energy requirements
on the energy efficiency are illustrated in Figures 10–13, respectively. For PS mode, Figures 10 and 11
show that the energy efficiency increases as the transmit power increases before achieving optimal
peak value for different cases. Specifically, Figure 10 reveals that the larger the minimum harvested
energy requirement is, the lower energy efficiency is. Moreover, Figure 13 shows that the larger
minimum QoS is, the lower energy efficiency is. This is due to the fact that more power is allocated to
guarantee reliable communication and harvested energy requirement. On the other hand, for PS mode,
Figures 12 and 13 show that the energy efficiency increases as the power splitting ratio increases when
ρ is small. After energy efficiency achieves the peak value, it decreases as the power splitting ratio
increases. In Figure 12, the effect of minimum harvested energy requirement on energy efficiency
is shown and the larger minimum harvested energy requirement is, the lower energy efficiency is,
when ρ ∈ [0.2, 0.3]. In Figure 13, for different levels of minimum QoS, the larger the minimum QoS is,
the slower energy efficiency achieves optimal peak value at a time.
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Figure 10. Energy efficiency versus transmit power with different minimum harvested energy
requirements for PS mode.
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Figure 11. Energy efficiency versus transmit power with different minimum QoS requirements for
PS mode.
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Figure 12. Energy efficiency versus power splitting ratio with different minimum harvested energy
requirements for PS mode.
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Figure 13. Energy efficiency versus power splitting ratio with different minimum QoS requirements
for PS mode.

8.4. Effects of Minimum QoS and Minimum Harvested Energy on Energy Efficiency for TS Mode

In this subsection, for TS mode, the effects of minimum QoS and minimum harvested
energy requirement on energy efficiency are illustrated in Figures 14–17, respectively. Specifically,
in Figures 14 and 15, with the increasing of transmit power, energy efficiency increases before achieving
the optimal solution. It is shown from Figure 14 that the higher the minimum harvested energy
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requirement is, the lower energy efficiency is. In addition, Figure 15 shows that the larger minimum
QoS requirement is, the lower energy efficiency is. On the other hand, in Figures 16 and 17, the energy
efficiency increases as the time switching slot increases before obtaining optimal value. After achieving
peak value, energy efficiency decreases as time switching slot increases. In addition, Figure 16 shows
that the larger the minimum harvested energy requirement is, the lower energy efficiency is as well as
minimum QoS in Figure 17. These observations predict that the optimal value of time switching slot
can be obtained to maximize energy efficiency of the SWIPT system by using our proposed algorithms.
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Figure 14. Energy efficiency versus transmit power with different minimum harvested energy
requirements for TS mode.
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Figure 15. Energy efficiency versus transmit power with different minimum QoS requirements for
TS mode.
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Figure 17. Energy efficiency versus power splitting ratio with different minimum QoS requirements
for TS mode.

8.5. Energy-Throughput Efficiency versus Outage Target Rate

In this subsection, the relation between energy-throughput efficiency and outage target rate
are illustrated for PS, TS mode in Figures 18 and 19, respectively. Figure 18 shows that the
energy-throughput efficiency is quasi-concave and decreases as the power splitting ratio increases.
It is worth noting that the maximum value of energy-throughput efficiency is lower than the other
scenarios when ρ = 1, which represents the scenario without energy harvesting. This observation
implies that energy-throughput efficiency can be enhanced by designing different system parameters ρ.
In addition, energy-throughput efficiency maximization can be achieved for different levels of outage
target rate in the SWIPT system with PS mode.

Figure 19 illustrates energy-throughput efficiency versus outage target rate with different time
switching slots for TS mode. It is observed from Figure 19 that energy-throughput efficiency with
respect to the outage target rate is quasi-concave. This observation means that the optimal value of
outage target rate can be achieved to maximize energy-throughput efficiency for TS mode. In addition,
the maximum of energy-throughput efficiency increases as the time switching slot increases. In a word,
energy-throughput efficiency and outage target rate can achieve a tradeoff in the SWIPT system with
PS, TS mode. From a green communication perspective, energy-throughput efficiency can be enhanced
by designing a proper transceiver with different system parameters when the transmitter does not
know or partially knows the CSI of the receiver.
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Figure 18. Energy-throughput efficiency versus outage target rate with different power splitting ratio
for PS mode.
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Figure 19. Energy-throughput efficiency versus outage target rate with different time switching slot for
TS mode.

9. Conclusions

In this paper, we have investigated the energy efficient transceiver design from different scenarios
of green communication for WRSN with SWIPT. We have demonstrated the concavity of the energy
efficiency function and quasi-concavity of the energy efficiency objective function. The energy
efficient transceiver design problems for the SWIPT system with two modes are formulated as a
fractional programming problem, in which the constraints of minimum QoS, minimum harvested
energy requirement and maximum transmit power and circuit power consumption are taken into
consideration. By exploiting the properties of nonlinear fractional programming, the proposed
problems are transformed into the equivalent convex optimization with a tractable parameterized
form. An efficient iterative algorithm for energy efficiency maximization is derived by Lagrangian
dual decomposition. Finally, simulation results illustrate that the proposed algorithm converges to the
optimal solution within a small number of iterations, which shows the achievable maximum energy
efficiency in the SWIPT system for two receiver modes. Moreover, the tradeoffs between EE and
SE, energy-throughput efficiency and outage target rate are observed from a green communication
perspective. Our research results reflect the effects of the minimum harvesting energy requirement,
minimum QoS, power splitting ratio, time switching slot and transmit power on the energy efficiency
of SWIPT system. These results means that it is helpful for energy efficient transceiver design with
SWIPT by optimally adjusting the system parameters in practical application. Our main contribution
is to optimize the design of a smart terminal with SWIPT from an energy efficiency perspective.

From a green communication perspective, we can observe two research paradigm shifts: one is
from energy saving to energy complement, and the other is from spectral efficiency to energy efficiency.
Our work on the energy efficiency maximization for transceiver design of SWIPT system combines the
two new research trends, i.e., energy harvesting and energy efficiency. Thus, our research work
promotes a deeper understanding on SWIPT system transceiver design from a green communication
perspective. Our future research can extend to the energy efficient smart terminal design with SWIPT
in a massive MIMO system.
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