

 Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor

Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor

Sensors 2017, 17(9), 1932; doi:10.3390/s17091932

Article

Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor

Lvwen Huang 1,2,*[image: Orcid], Siyuan Chen 1, Jianfeng Zhang 1,*, Bang Cheng 3 and Mingqing Liu 1

1

College of Information Engineering, Northwest A&F University, Xianyang 712100, China

2

Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Xianyang 712100, China

3

College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China

*

Correspondence: Tel.: +86-137-0922-3117 (L.H.); +86-139-9287-4588 (J.Z.)

Received: 27 June 2017 / Accepted: 21 August 2017 / Published: 23 August 2017

Abstract:

Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.

Keywords:

3D LiDAR; object tracking; Kalman filter; adaptive particle filter

1. Introduction

1.1. Application of LiDAR

Light Detection and Ranging (LiDAR) technology provides realistic 3-dimensional (3D) image information and has been widely utilized in various fields [1]. LiDAR sensors are commonly used in perception for autonomous vehicles because of their high accuracy, speed, and range. These characteristics make the sensors suitable for integration into the perception layer of controllers which have the capacity to avoid collisions with unpredicted obstacles [2]. LiDAR technology is also applied to field Autonomous Land Vehicles (ALVs) to detect potential obstacles. With a novel 3D LiDAR setup, the blind area around the vehicle is greatly reduced and the density of LiDAR data is greatly improved, which are critical for ALVs [3]. In addition to autonomous land vehicle applications, LiDAR is also used for navigation of unmanned aircraft systems [4]. The authors combined LiDAR to automatically identify ground objects that pose navigation restrictions such as airports and high-rises.

Meanwhile, in the field of agriculture and forestry, by combining field and LiDAR data in forests with coexisting evergreen and deciduous species, researchers modelled common forest stand variables (height, diameter, volume and biomass) with high accuracy [5]. At the same time, LiDAR point clouds data is used for comparative classification analysis of post-harvest growth detection in precision agriculture [6], while other researchers have proposed a new approach for discriminating maize and weed plants from soil surface, evaluating the accuracy and performance of a LiDAR sensor for vegetation detection using distance and reflection values [7].

In other respects, LiDAR technology contributes to detect flood protection structures, natural or artificial in river floodplains and in coastal zones [8]. Also, 3D information derived from image dense matching or airborne LiDAR is very effective for building change detection [9]. Furthermore, for many robotics and intelligent vehicle applications, detection and tracking multiple objects based on LiDAR is one of the most important components [10].

1.2. Tracking Algorithms Based on LiDAR

LiDAR systems are commonly used for pedestrian recognition in ALVs, compared with cameras and can provide accurate range information and larger field of view [11]. For years, Kalman filters (KF) and Monte Carlo particle filters (PF) have been the two commonly used approaches to estimate motions of a target. In some early works, Song et al. [12] proposed a novel sparse learning-based object tracking algorithm utilizing 3D LiDAR data to realize moving object tracking of vehicles. The 3D point clouds acquired from LiDAR are first resampled on a virtual image plane, where the hypothesis of the targets is generated under the particle filtering framework. Guo et al. [13] proposed a pedestrian tracking algorithm initializing a KF to predict the possible position of the pedestrian centroid in the future frame. Meanwhile, Dewan et al. [14] have presented a novel model-free approach for detecting and tracking dynamic objects in 3D LiDAR scans obtained by a moving sensor. They sequentially detected multiple motions in the scene and segment objects using a Bayesian approach. Allodi et al. [15] have presented an obstacle detection, tracking and fusion algorithm which allows to reconstruct the environment surrounding the vehicle. An Unscented Kalman Filter (UKF) managing a variable number of observations, arbitrarily composable, allows to correctly address the combined tracking and fusion challenge. Moreover, Wasik et al. [16] have proposed a method based on the detection of circular features with least-squares fitting and filtering out outliers using a map-based selection. They have improved the estimate of the relative robot position and reduce its uncertainty by feeding measurements into a KF, resulting in an accurate tracking system.

For detecting and tracking moving objects in more complex cases, an occupancy grid tracking system based on particles [17] has been proposed. The proposed occupancy grid tracking solution can be classified as using the Descartes probability model of the reverse sensor and it generates a fully dynamic grid. To resolve ambiguities in complex dynamic scenes, Tuncer et al. [18] proposed a novel method for integrated tracking and segmentation of 3D LiDAR data with a non-parametric Bayesian method to combine segmentation and tracking components. In [19], Asvadi et al. proposed a 3D object tracking algorithm using a 3D-LiDAR, an RGB (Red, Green, Blue) camera and INS (Inertial Navigation System) (GPS (Global Position System)/IMU (Inertial Measurement Unit)) sensors data by analyzing sequential 2D-RGB, 3D point-cloud, and the ego-vehicle’s localization data and outputs the trajectory of the tracked object, an estimation of its current velocity, and its predicted location in the 3D world coordinate system in the next time-step while in [20], feature matching, Iterative Closest Point (ICP), Kalman filtering, and dynamic mapping are combined together to estimate motions.

As mentioned above, the KF, the PF UKF and non-parametric Bayesian are used in detecting and tracking moving targets and there is no straightforward extension of their approach to a moving spherical object.

1.3. Application of Kalman Filter

The KF has achieved notable success in the areas of guidance, navigation, and control of vehicles, particularly aircraft and spacecraft. Srilekha et al. [21] introduced a new technique for detecting, tracking and counting the vehicles based on Kalman filtering. Huang et al. [22] proposed the Robust Strong Tracking Cubature Kalman Filter (RSTCKF) for spacecraft attitude estimation with a quaternion constraint. Furthermore, the KF is a widely applied concept in time series analysis used in fields such as signal processing and econometrics. Jain et al. [23] investigated the use of KF to estimate and track both the laser PN (Phase Noises) and the NLPN (Nonlinear Phase Noises) in 100-Gb/s single channel coherent optical phase-modulated systems. The KF is one of the main topics in the field of robotic motion planning and control. Gulalkari et al. [24] proposed an object tracking and following six-legged robot (6LR) system that uses a Kinect camera based on KF and back-stepping control method. Lim et al. [25] proposed incorporating dead-reckoning using only encoder measurements, and a Kalman filter-based Gaussian Process to compensate the uncertainty. As for other aspects, Moon [26] developed a human skeleton tracking system using the Kalman filter framework, in which multiple Kinect sensors are used to correct inaccurate tracking data from a single Kinect sensor.

In order to solve the real-time tracking process for a moving sphere at indoor environments and in the future for spherical fruit identification and positioning with varying illumination, this paper first introduces the processes of sphere detection with 3D LiDAR, and then discusses the principles of the KF and PF algorithms. Next, with experimental modeling, data analysis of two tracking methods is compared, and finally we reach a conclusion. The tracking flowchart is as shown in Figure 1 below.

Figure 1. The tracking flowchart for a moving object.

[image: Sensors 17 01932 g001]

2. Detection of Moving Spherical Object

2.1. The Velodyne System

The Velodyne VLP-16 3D LiDAR sensor obtains a 360-degree scene capture through the rotation of its internal motor. It is composed of 16 laser beams, which scan thousands of times per second. Each beam has a fixed pitch angle. The experimental scene and its visualization result are shown in Figure 2.

Figure 2. The results of visualization: (a) Experimental scene; (b) Point clouds visualization.

[image: Sensors 17 01932 g002]

2.2. Outliers and Noise Filtering

To reduce the calculation of segmentation after the 3D data acquisition, it is necessary to eliminate some of the noise, outliers, holes, etc. by filtering according to some motion cues. Here we remove the coordinate origin (0, 0, 0) and then use outlier filter proposed by Rusu et al. [27] which works well for indoor scenes. Firstly, we compute the average distance of each point between its nearest [image: there is no content] neighbors. Next, we compute the mean [image: there is no content], and standard deviation [image: there is no content] of all these distances to determine a distance threshold. The standard deviation coefficient [image: there is no content] depends on the size of the analyzed neighborhood [image: there is no content]. The distance threshold [image: there is no content] will be equal to:

[image: there is no content]

(1)

In Equation (1), [image: there is no content] is set to 1 and [image: there is no content] is set to 30 here with the empiric and experimental threshold, especially for the indoor scene. Finally, the points can be classified as inliers or outliers if their average neighbor distance is below or above this threshold respectively. The results of filtering are shown below in Figure 3, where most of the noises and outliers marked by red ellipse are removed.

Figure 3. The results of outliers and noise filtering: (a) Before filtering; (b) After filtering.

[image: Sensors 17 01932 g003]

2.3. Fast Ground Segmentation

For the indoor object motion tracking, the ground segmentation is essential to cancelling the ground background information. The fast ground segmentation algorithm proposed by Himmelsbach et al. [28] is used to remove the ground noise and to reduce the amount of subsequent calculations, which requires less runtime and obtains good segmentation results.

2.3.1. 3D Point-Cloud Data Set Mapping

	
Define the unordered 3D point clouds from a scan time [image: there is no content] of the LiDAR sensor as [image: there is no content], where [image: there is no content] denotes the number of 3D point clouds. The [image: there is no content] denotes a 3D point, given by the Euclidean coordinates to the ego-coordinate system with original point at the center of the LiDAR sensor.

	
The x-o-y plane denotes a circle with a radius of [image: there is no content], and then cut the circle equally into multiple discrete sectors, as shown in Figure 4. The [image: there is no content] denotes the angle of each sector plane, so the number of sectors [image: there is no content].

Figure 4. Partitioning the 3D space into segments of equal size.

[image: Sensors 17 01932 g004]

	
[image: there is no content] represents each sector, where [image: there is no content], so that each point can be classified into a sector plane according to its projection on the x-o-y plane, expressed as a segment ([image: there is no content]):

[image: there is no content]

(2)

where [image: there is no content] represents the angle within [0, 2π) between the positive direction of x-axis and x-o-y plane, [image: there is no content] representing y-value of [image: there is no content], [image: there is no content] representing x-value of [image: there is no content], and [image: there is no content] representing the angle of each sector plane.

We denote the set of all points mapped to the same segment [image: there is no content] by [image: there is no content]:

[image: there is no content]

(3)

Define a mapping of all points [image: there is no content] of the same segment to one of many bins [image: there is no content],[image: there is no content] discretizing the range component of the points, while the superscript [image: there is no content] denotes the sector that the bin belongs to. The minimum or maximum range that a bin covers is expressed respectively by [image: there is no content] and [image: there is no content]. Obviously, a point [image: there is no content] maps to bin [image: there is no content]:

[image: there is no content]

(4)

The [image: there is no content] is denoted by the set of all points mapping to [image: there is no content]. Given a set of [image: there is no content] of 3D points mapped to the same bin, a new set of 2D points [image: there is no content] is simply defined as:

[image: there is no content]

(5)

where [image: there is no content] representing any point in 3D space, [image: there is no content], [image: there is no content].

All points have been mapped to a segment and a corresponding segment bin. With the above mapping method of 3D point clouds data set, sorting from small to large by distance, the processed 3D space point set is partially of order. A prototype point [image: there is no content] is calculated for every non-empty bin points [image: there is no content] whose point with lowest z-coordinate and most likely belonging to the ground plane.

2.3.2. Fast Ground Segmentation

On the basis of the above data mapping method of 3D point clouds data set, the ground model in a sectorial area S can be expressed as a set [image: there is no content] of a line segment shown in Figure 5.

Figure 5. Mapping of 3D point p to a bin of the corresponding segment and resulting mapped point [image: there is no content].

[image: Sensors 17 01932 g005]

Calculate the distance between a point and the line [image: there is no content] as shown in Figure 6. Calculate the two straight lines [image: there is no content], and [image: there is no content], which pass through both ends of line segment [image: there is no content], and perpendicular to line segment [image: there is no content]. Then determine whether the point [image: there is no content] is between the straight lines [image: there is no content], and [image: there is no content] (such as [image: there is no content] point) or outside the two lines (such as [image: there is no content] point, [image: there is no content] point). If the point is at the position [image: there is no content], the distance[image: there is no content] and [image: there is no content] can be directly calculated. If the point is at the position [image: there is no content], then the distance between [image: there is no content] and point [image: there is no content] is calculated. In the same way, if at point [image: there is no content], the distance between [image: there is no content] and [image: there is no content] is equal to the distance between [image: there is no content] and point [image: there is no content]. The process of extracting lines for a segment is expressed in Algorithm 1 as follows.

Figure 6. The distance between points and line segment L.

[image: Sensors 17 01932 g006]

The thresholds mentioned in the algorithm are tested in the experiment with the settings shown in Table 1, while the threshold [image: there is no content] determines whether the point belongs to a ground point. It remains to formulate necessary conditions for a line [image: there is no content] to be considered part of the ground plane:

	
The line’s slope [image: there is no content] must not exceed a certain threshold [image: there is no content].

	
The line’s absolute y-intercept b must not exceed a certain threshold [image: there is no content].

	
The root mean square error of the fit must not exceed a certain threshold [image: there is no content].

	
The distance of the first point of a line to the line previously fitted must not exceed [image: there is no content], enforcing smooth transitions between pairs of successive lines.

Table 1. Threshold Setting.

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
0.08

	
0.2

	
1

	
0.04

	
0.08

With the above bins and segments calculation, and the experimental thresholds trial selection, the fast ground segmentation results are shown in Figure 7, where the most of ground information can be effectively cancelled.

	Algorithm 1. Extraction of lines for one segment SS

	1: [image: there is no content], c = 0, [image: there is no content]

	 % [image: there is no content] denotes a set of line set in segment S, c denotes count of loop,[image: there is no content] denotes a point of line

	2: for j = 0 in MAX_B do  % for each bin

	3:  if [image: there is no content]then     % if there is a point mapping in [image: there is no content]

	4:   if |[image: there is no content]| >= 2 then   % if the number of points in [image: there is no content] bigger than two

	5:    ([image: there is no content]) = fitline([image: there is no content])  % line fit to get [image: there is no content] of L

	6:    if [image: there is no content] <= [image: there is no content] ∧ ([image: there is no content] > |[image: there is no content]| ∨ [image: there is no content] <= [image: there is no content]) ∧ fitError([image: there is no content]) < [image: there is no content]then

	     % if match condition of thresholds

	7:      [image: there is no content]      % add [image: there is no content] to [image: there is no content]

	8:    else

	9:      ([image: there is no content]) [image: there is no content] fitline ([image: there is no content])    % line fit to get [image: there is no content] of L

	10:      [image: there is no content]

	11:      [image: there is no content]           % clear [image: there is no content]

	12:      c[image: there is no content]c + 1        % next line segment

	13:      j[image: there is no content]j − 1         % next distance

	14:   else               % if the number of points in [image: there is no content] smaller than two

	15:    if c = 0 ∨ ([image: there is no content]) ∨ [image: there is no content]then

     % if the first point or the distance of point and line match thresholds

	16:      [image: there is no content]        % add [image: there is no content] to [image: there is no content]

Figure 7. Results of fast ground segmentation: (a) Before segmentation; (b) After segmentation.

[image: Sensors 17 01932 g007]

2.4. Object Segmentation

On the basis of fast ground segmentation to cancel the noises, the Euclidean clustering segmentation algorithm is used to segment the sphere target, and its point-cloud data needs to be trained to recognize the target.

2.4.1. Euclidean Clustering of Point Clouds

The Euclidean clustering algorithm is used to segment other disperse irrelevant background sorting point clouds data of same similarity within certain threshold. The basic idea is dividing n points into m classes randomly at first, and then making the points in each class have comparatively high similarity while the points in different classes have comparatively low similarity. Then we calculate the Euclidean distance between clusters. The two clusters with a minimum distance could be merged into one cluster. We repeat the calculation of distances between clusters, and subsequent merging. With the repeated iteration until the distance between any two clusters is over than the given threshold, or the number of clusters is less than the given number, the segmentation is completed and the target sphere object is obtained. The distance threshold is set as 0.06 according to the number of sphere object’s point clouds, the minimum number of points in each class as 100, and the maximum number as 2000. The results of Euclidean clustering are shown in Figure 8, where the surrounding of the target sphere can be clearly clustered. Figure 8e shows the basic contour of the target sphere. With the Euclidean clustering, we could extract and match the moving sphere during the indoor motion tracking process.

Figure 8. The segmentation results of Euclidean clustering: (a) The right chair; (b) The legs of the middle chair; (c) The pneumatic pole of the black chair; (d) The back of the middle chair; (e) The target sphere segmented; (f) The edge of window; (g) The part of chair near the air conditioning; (h) The back of blue chair.

[image: Sensors 17 01932 g008]

2.4.2. VFH Descriptor Extraction

The numbers of clusters have been segmented in the process of Euclidean clustering. Subsequently the feature extraction descriptor for each cluster is employed to match the target sphere with Fast Library with Approximate Nearest Neighbors (FLANN). The feature description here describes the geometry and topology of the local or global of point clouds data sets, which can be easily understood as a point-cloud feature. The feature description of point-clouds generally consists of local and global feature descriptions. The local features describe the local geometry and shape characteristics of the point-cloud data, while the global features describe the global topological structure of the point clouds. Only for the motion tracking at the whole indoor environment to distinguish different poses, the global feature descriptor of Viewpoint Feature Histograms (VFH) is employed to estimate the feature of clusters and to extract the target. The visualization of sphere object and its VFH are shown in Figure 9.

Figure 9. Results of VFH descriptor extraction: (a) Basketball’s point clouds visualization; (b) VFH of the basketball.

[image: Sensors 17 01932 g009]

2.4.3. Feature Match of FLANN

The point clouds feature model library is constructed with the FLANN and the extraction steps are listed as follows:

	(1)

	
Acquire the point clouds data sets using the LiDAR sensor at different distance between the sphere object and sensor, and then extract VFH features for each point clouds model.

	(2)

	
Load the above VFH features into memories and convert the data into matrix format.

	(3)

	
Create the k-d (k-dimensional) tree with the converted matrix data, and save the index of k-d tree for the direct search match.

	(4)

	
Input the VFH feature and the index of k-d, and search the nearest neighbor along the k-d tree for the input data.

	(5)

	
Achieve the target point clouds if the difference between the searching results and VFH is less than the given threshold.

3. Tracking

3.1. Kalman Filtering

For the motion tracking of a moving sphere, the KF [29] provides a highly computable method in the recursive way to estimate the state of the process and minimize the estimated mean square error. The state and measurement equations are used to describe a dynamic system. The state vector [image: there is no content] of the system of time moment [image: there is no content] is determined by both the state [image: there is no content] at time moment [image: there is no content] and the observed noise. The measurement vector [image: there is no content] is also determined by these two, which is by the observation function of state vector [image: there is no content] at time moment k and the noise. The target motion tracking process with KF is shown in Figure 10. The state variables are the positions and velocities of the sphere object in the X, Y, and Z coordinate, expressed as the matrix [image: there is no content] and the observed variable z is the objects’ position data real-time sensed by LiDAR sensor and real-time processed, denoted as [image: there is no content]. Here, the state function is expressed as Equation (6):

[image: there is no content]

(6)

and the measurement function is given by Equation (7):

[image: there is no content]

(7)

Figure 10. Sphere motion tracking process with KF based on LiDAR.

[image: Sensors 17 01932 g010]

The random variables [image: there is no content] and [image: there is no content] represent the process and the measurement noise respectively, denoting the noises and disturbances of the moving sensing data. They are assumed to be independent of each other, and with normal probability distributions:

[image: there is no content]

(8)

[image: there is no content]

(9)

The matrix [image: there is no content] denotes the process noise covariance and [image: there is no content] the measurement noise covariance. Here assumed that [image: there is no content] and [image: there is no content] are redefined as constant shown as follows:

[image: there is no content]

(10)

[image: there is no content]

(11)

Define the state variable [image: there is no content] as a six-dimensional vector shown in Equation (12):

[image: there is no content]

(12)

where [image: there is no content] are respectively the coordinate value of the center sphere object in the x, y, z coordinate system, and [image: there is no content] is respectively the speed of the center coordinates in the x, y, z direction.

The time interval [image: there is no content] between the two frames of LiDAR is only one second, which is relatively short, and the motion could be considered as a uniform motion, so the state transition matrix A is expressed as:

[image: there is no content]

(13)

The measurement vector [image: there is no content] is used to observe the center position of the moving spherical objects shown in Equation (14):

[image: there is no content]

(14)

and the corresponding observation matrix is as follows:

[image: there is no content]

(15)

The variable [image: there is no content] (− represents priori, and ^ represents the estimate) denotes k-th priori state estimation when the k-th preceding state is known, and [image: there is no content] is the known posterior state estimation of measurement variable [image: there is no content] at the k-th period.

The following Equation (16) predicts the current state value with the result of the previous finest state:

[image: there is no content]

(16)

where [image: there is no content] is the a priori state estimate at step k given knowledge of the process prior to step k. A is the state transition matrix of the system shown in Equation (13), [image: there is no content]is the optimal estimate at time moment t − 1, and w is the system noise following Gaussian distribution.

The uncertainty of each moment is represented by the covariance matrix P, and the update formula is expressed in Equation (17):

[image: there is no content]

(17)

where [image: there is no content] is the covariance of [image: there is no content], [image: there is no content] is the covariance of [image: there is no content], and Q is the covariance of the random signals [image: there is no content] and [image: there is no content]. The prediction Equations (16) and (17) update time t.

We define a priori and a posteriori estimate error as Equations (18) and (19), respectively;

[image: there is no content]

(18)

[image: there is no content]

(19)

Then, the a priori estimated error covariance is given by Equation (20):

Pk−=E[ek−ek−T],

(20)

and the s posteriori estimate error covariance is:

Pk=E[ekekT],

(21)

The initial state [image: there is no content] of covariance matrix [image: there is no content] is redefined as:

[image: there is no content]

(22)

The posteriori state estimate [image: there is no content] as a linear combination of an a priori estimate [image: there is no content] and a weighted difference between an actual measurement [image: there is no content] and a measurement prediction [image: there is no content] calculated as shown in Equation (23):

[image: there is no content]

(23)

where the matrix [image: there is no content] is the gain that minimizes the posteriori error covariance. The difference [image: there is no content] is the measurement innovation (residual) that reflects the discrepancy between the predicted measurement [image: there is no content] and the actual measurement [image: there is no content].

To accomplish minimization, the Equations (18) and (23) are firstly substituted into Equation (19), with a unit matrix [image: there is no content], then we get Equation (24):

[image: there is no content]

(24)

Substituting the above Equation (24) into Equation (21), then we get:

Pk=(I−KkH)Pk−(I−KkH)T+KkRKkT,

(25)

Obtaining the indicated expectations, we take the derivative of the tracking result with respect to [image: there is no content]. Set the result to zero, and then solve for [image: there is no content] as below:

[image: there is no content]

(26)

With the equations above, the smaller the observed noise covariance R, the larger the gain [image: there is no content]. The smaller the covariance [image: there is no content], the smaller the gain [image: there is no content]. The Kalman gain [image: there is no content] works on two aspects, firstly, it weighs the size of the a priori estimated error of the covariance[image: there is no content]and the observed noise covariance matrix R to determine the more convincing model between the prediction and observation model; secondly, it transforms the representation form of the residuals from the observation domain to the state domain.

To make the KF rung down till the end of the whole system running process, the covariance [image: there is no content] at state t needs to be updated as follows:

[image: there is no content]

(27)

After the time updating calculation of the Equations (14) and (19) and the measurement updating Equations (20), (23) and (24), the whole Kalman tracking process repeats again. A posteriori estimation of Equation (20) obtained from the previous calculation of Equation (18) is taken as the a priori estimation of Equation (24) of the next computation. The whole process of KF is shown in Algorithm 2 as follows.

	Algorithm 2. Kalman Filter

	Input:[image: there is no content],  % object position for time step t from sensor

	Output: [image: there is no content],  % a position estimation of object

	1: initialize t, [image: there is no content], A, P, Q, R  % t represents prediction time moment, [image: there is no content] is the known posterior

       % state estimation at time moment k − 1; A represents state transition matrix;

       % P represents the covariance matrix, Q denotes covariance of the random

       % signals, and R is the matrix of observation noise covariance.

	2: if filterStop = false then  % end with convergence of click the ‘stop’ button.

	3:  [image: there is no content]    % calculate predicting position estimation, according to Equation (16)

	4:  P ← APAT + Q  % calculate priori covariance matrix, according to Equation (17)

	5:  K ← PCT(CPCT + R)  % calculate Kalman Gain matrix, according to Equation (26)

	6:  [image: there is no content] ← [image: there is no content] + K([image: there is no content] − C[image: there is no content])  % calculate optimal estimation value, according to Equation (23)

	7:  P ← (I − KC)P  % calculate [image: there is no content] covariance, according to Equation (27), I denotes unit matrix

	8:  t ← t + 1

	9: end if

3.2. Particle Filtering

Particle filtering is a non-parametric Monte Carlo method used to simulate the realization of the recursive Bayesian filter, which is applicable to any state space model for the non-linear non-Gaussian case, and its accuracy can reach the optimal estimate. Filtered particles are possibilities to describe the target state. The purpose of filtering is the most probable state of the filtered target. In the Bayesian estimation theory, the current state of the target is estimated using the previous state and the current measured value. The arbitrary probability distribution [image: there is no content] can be Monte Carlo approximated using the discrete particle set as follows:

[image: there is no content]

(28)

where [image: there is no content], [image: there is no content], [image: there is no content] are respectively expressed as particle state, weight and total number under [image: there is no content] time, where [image: there is no content] is Dirac’s delta function.

The most basic and common PF implementation framework is Sequential Importance Sampling and Resampling (SISR) or Sampling Importance Resampling (SIR) filter, and the algorithm is shown below:

Step 1: For i = 1, 2, …, N, Initializing the particle set, [image: there is no content]:

Generating the sampled particles [image: there is no content] based on the priori distribution [image: there is no content]

Step 2: For [image: there is no content], Executing the follow steps circularly:

Sequential importance sampling: for [image: there is no content], generating the sampled particles [image: there is no content] from the importance probability density, then calculating the particle weights, finally normalizing the weights so that the sum of the weights of the particles is 1;

Resampling: resampling the particles set [image: there is no content], and the resampled set is [image: there is no content];

Printing: calculating the estimated state value: [image: there is no content].

Sequential importance sampling is the basis of particle filtering, which applies the sequential analysis method in statistics to the Monte Carlo method, so as to realize the recursive estimation of the probability density of posterior filtering. Assumed that the importance probability density function [image: there is no content] can be decomposed into:

[image: there is no content]

(29)

Let the system state be a Markov process, and the given system state is independent of each observation so that there is:

[image: there is no content]

(30)

[image: there is no content]

(31)

The recursive form of the posterior probability density function can be expressed as:

p(x0:k|Yk)=p(yk|x0:k,Yk−1)p(x0:k|Yk−1)p(yk|Yk−1)=p(yk|x0:k,Yk−1)p(xk|x0:k−1,Yk−1)p(x0:k|Yk−1)p(yk|Yk−1)=p(yk|xk)p(xk|xk−1)p(x0:k−1|Yk−1)p(yk|Yk−1)

(32)

In the update phase, the particles’ weights are recalculated according to the likelihood function [image: there is no content]:

wk(i)∞p(xk(i)|Yk)q(xk(i)|Yk),=p(yk|xk(i))p(xk(i)|xk−1(i))p(x0:k−1(i)|Yk−1)q(xk(i)|x0:k−1(i),Yk)q(x0:k−1(i)|Yk−1)=wk−1(i)p(yk|xk(i))p(xk(i)|xk−1(i))q(xk(i)|x0:k−1(i),Yk)

(33)

In general, it is necessary to normalize the weight of the particle:

[image: there is no content]

(34)

This results in an approximate representation of the posterior probability density function expressed by Equation (32). In practical application, the use of too many samples will result in a sharp increase in the computational complexity and the deterioration of the performance of the particle filter. However, it is very difficult to correctly approximate the posterior probability with a small amount of sampling, and the resampling process may also lead to particle deficiency. Therefore, it is necessary to determine the appropriate sampling quantity and improve the efficiency of sampling according to the state of the system, under the condition of ensuring the diversity of the particles. In this paper, adaptive particle filter based on Kullback-Leibler Distance (KLD) sampling proposed by Fox [30] is adopted to resample the particles.

The core idea of the KLD sampling is that in each iteration of the particle filter, using the probability [image: there is no content] to make the error between the true posterior probability and the estimated probability density based on the sample less than ε:

[image: there is no content]

(35)

where [image: there is no content] is set as 0.99 and [image: there is no content] as 0.2. So that the number of resampled samples is determined. The error is determined by calculating the KLD. The KLD is used to represent the approximation error between the two probability distributions [image: there is no content] and [image: there is no content]:

[image: there is no content]

(36)

In the resampling, the smaller particles are neglected and the larger particles are copied. The number of particles in the resampling is determined by KLD sampling in the process of particle duplication, and the number of particles of the next importance is determined, adjusting the number of particles on-line and reducing the computational complexity. The process of KLD sampling is shown in Algorithm 3.

	Algorithm 3. KLD sampling algorithm

	Input: [image: there is no content] , observations[image: there is no content] , limits[image: there is no content] and[image: there is no content];

	Output: [image: there is no content]

	1: [image: there is no content]    % initializing

	2: do                % generating samples

	3:  sampling from discrete distributions under the weight of known [image: there is no content] , the sequence is[image: there is no content]

	4:  sampling [image: there is no content] from[image: there is no content] using [image: there is no content]

	5:  [image: there is no content]       % calculate the importance weights

	6:  [image: there is no content]          % update the normalization factor

	7:  [image: there is no content]    % insert the sample into the sample set

	8:  if ([image: there is no content] fall in [image: there is no content]) then    % update the number of [image: there is no content]

	9:   [image: there is no content]

	10:   [image: there is no content]

	11:  [image: there is no content]          % update the number of generated samples

	12: while ([image: there is no content])     % stop when come to the limits K-L with Equation (35)

	13: for i: = 1, …, n do         % normalize importance weights

	14:  [image: there is no content]

4. Experimentation and Discussions

In order to validate the robustness and real-time performance of the two tracking algorithms (KF and adaptive PF), some experiments were carried out on the moving spherical target with or without occlusion, obstacles, different speeds and different trajectories. We tied the ball with a rope and pulled the string to move the ball.

4.1. Target Tracking with Occlusion and Obstacle in the Environment

In target tracking processes, occlusion is a very common phenomenon. When the target is blocked, the valid information will be reduced and the tracking difficulty will be increased. Considering the partial occlusion of the spherical target with a long piece of wood, as shown in Figure 11a, the experimental results are shown in Figure 12 and Figure 13 with two different tracking algorithms, respectively.

Figure 11. Experimental scenes: (a) Occlusion scene; (b) Obstacle scene.

[image: Sensors 17 01932 g011]

Figure 12. The tracking results with KF in occlusion scenes.

[image: Sensors 17 01932 g012]

Figure 13. The tracking results with adaptive PF in occlusion scenes.

[image: Sensors 17 01932 g013]

In Figure 12, when the target is partially occluded, the KF clusters the wood point clouds together as the next frame’s measurement, and some tracking loss occurs. However, in Figure 13, the PF algorithm can track the object effectively where the occluded wood board does not cluster with the target.

Obstacles in front of the moving target are common in practical applications, and when multiple targets appear in motion, they may interfere with each other. The carton box as an obstacle is shown in Figure 11b. The experimental results are shown in Figure 14.

Figure 14. The tracking results in interference scenes: (a) Results with Kalman filter; (b) Results with adaptive particle filter.

[image: Sensors 17 01932 g014]

The two methods can track the spherical target continuously in the case of an obstacle. In Figure 14, the KF is susceptible to near point-cloud in the tracking process, and the PF has strong robustness for the motion tracking.

4.2. Target Tracking at Different Moving Speeds

Whether the tracker can track moving targets at different speeds is also an important indicator of the performance. Due to the limitations of our laboratory environment and the point-cloud density of LiDAR equipment, the basketball position swings easily in the process of manually moving the basketball, especially at low speed, and a uniform speed can hardly be obtained. At the experimental process, the observed speed of movement of the basketball is 0.054 m/s at its low speed, and 0.125 m/s at its high speed. In Figure 15, the continuity of low-speed trajectory expressed by the light blue dots shows that the KF is more suitable for tracking at relative lower speeds. The continuity and density of high speed trajectory expressed by the red and brown fork shows the adaptive PF has better tracking performance. Basically, with more trials of different speed experiments, the adaptive PF has better tracking effects for the different moving speed than the KF.

Figure 15. The tracking results at different moving speeds: (a) Results with KF; (b) Results with adaptive PF.

[image: Sensors 17 01932 g015]

4.3. Target Tracking in Different Motion Trajectories

In an actual situation, the target may move in a variety of trajectories. The spherical target’s real-time tracking is tested in three kinds of trajectories including straight line, curve and three-dimensional trajectory. The linear motion trajectory and error analysis are shown in Figure 16. Figure 16a,b show the actual trajectory and the estimated value of the spherical target in the rectilinear movement under the Kalman filter and the adaptive particle filter, respectively. The results indicate that the target moves as a curve in the same situation are shown in Figure 17. Obviously, the trajectory with the Kalman filter is smoother. However, the effect of PF tracking is better. The error comparison is shown in Figure 16c and Figure 17c. Errors and fluctuations of the KF are greater than the adaptive PF.

Figure 16. The tracking results in rectilinear motion: (a) Results with KF; (b) Results with adaptive PF; (c) The error of KF and PF.

[image: Sensors 17 01932 g016]

Figure 17. The tracking results in curvilinear motion: (a) Results with KF; (b) Results with adaptive PF; (c) The error of KF and PF.

[image: Sensors 17 01932 g017a][image: Sensors 17 01932 g017b]

The results of the trajectory tracking of the spherical target in the three-dimensional space are shown in Figure 18. It is easy to see that the KF and the PF can basically track the moving target in three-dimensional space, but fluctuate in the Z-axis direction.

Figure 18. The tracking results in 3D space: (a) Results with KF; (b) Results with adaptive PF.

[image: Sensors 17 01932 g018]

5. Conclusions

This paper has proposed a systematic real-time detection and tracking method for an indoor moving sphere using the VLP-16 3D LiDAR sensor. After a series of preprocessing steps of point-cloud data and global feature extraction, the Kalman filter and the adaptive particle filter method are used to estimate the real-time motion state of a spherical object. With three different kinds of indoor comparison experiments and analysis, the results show that the adaptive PF has better tracking performance. The specific work allows us to put forth two conclusions:

Firstly, the real-time detection of the spherical target is accomplished by acquiring the real-timepoint-cloud data of moving sphere at indoor, preprocessing with fast ground segmentation algorithm to remove outliers, and ground points clustering with Euclidean cluster algorithm, extracting target feature with VFH to establish model library and matching to detect spherical targets.

Secondly, the KF is used to real-time track the object, and the object position is estimated sequentially by real-time acquisition of the measured value, prediction and correction, while the adaptive PF is used to track the target, and the state of the target is estimated by sampling, calculating the weight and resampling. The efficiency of KF and adaptive PF in 3D lidar tracking is verified by indoor basketball tracking experiments, with a moving spherical object with or without occlusion and obstacles, respectively, at different speeds and over different trajectories. The experimental results show that adaptive PF has a small tracking error and strong robustness.

The motion tracking of a dynamic environment is one of the key components for intelligent agricultural harvesters to operate in real-world conditions. We will continue to exploit the 3D semantic perception with transfer learning and real-time location method of natural fruits for a better tracking performance.

Acknowledgments

This research was fully supported by Major Pilot Projects of the Agro-Tech Extension and Service in Shaanxi (No. 2016XXPT-00), Fundamental Research Funds for the Central Universities, Northwest A&F University (No. QN2013052).

Author Contributions

Lvwen Huang contributed the whole research, edited the English language and rewrote this paper. Siyuan Chen designed and implemented the tracking part of system and wrote this manuscript. Jianfeng Zhang edited the English expressing. Bang Cheng designed the detection part of the system and wrote the detection of this manuscript. Mingqing Liu assisted gathering the experimental data during the experiments and manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Eum, J.; Berhanu, E.; Oh, S. Unmanned aircraft platform based real-time lidar data processing architecture for real-time detection information. KIISE Trans. Comput. Pract. 2015, 21, 745–750. [Google Scholar] [CrossRef]

	2.
Dominguez, R.; Alonso, J.; Onieva, E.; Gonzalez, C. A transferable belief model applied to LIDAR perception for autonomous vehicles. Integr. Comput.-Aided Eng. 2013, 20, 289–302. [Google Scholar]

	3.
Shang, E.; An, X.; Wu, T.; Hu, T.; Yuan, Q.; He, H. Lidar based negative obstacle detection for field autonomous land vehicles. J. Field Robot. 2016, 33, 591–617. [Google Scholar] [CrossRef]

	4.
Feng, D.; Yuan, X. Automatic construction of aerial corridor for navigation of unmanned aircraft systems in class G airspace using LiDAR. In Proceedings of the Conference on Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications XIII, Baltimore, MD, USA, 18–19 April 2016; pp. 1–8. [Google Scholar]

	5.
Teobaldelli, M.; Cona, F.; Saulino, L.; Migliozzi, A.; D’Urso, G.; Langella, G.; Manna, P.; Saracino, A. Detection of diversity and stand parameters in Mediterranean forests using leaf-off discrete return LiDAR data. Remote Sens. Environ. 2017, 192, 126–138. [Google Scholar] [CrossRef]

	6.
Koenig, K.; Hoefle, B.; Haemmerle, M.; Jarmer, T.; Siegmann, B.; Lilienthal, H. Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture. ISPRS J. Photogramm. Remote Sens. 2015, 104, 112–125. [Google Scholar] [CrossRef]

	7.
Andujar, D.; Moreno, H.; Valero, C.; Gerhards, R.; Griepentrog, H.W. Weed-crop discrimination using LiDAR measurements. In Proceedings of the 9th European Conference on Precision Agriculture, Lleida, Spain, 7–11 July 2013; pp. 541–545. [Google Scholar]

	8.
Trmal, C.; Pons, F.; Ledoux, P. Flood protection structure detection with Lidar: Examples on French Mediterranean rivers and coastal areas. In Proceedings of the 3rd European Conference on Flood Risk Management (FLOODrisk), Lyon, France, 17–21 October 2016; pp. 1–5. [Google Scholar]

	9.
Du, S.; Zhang, Y.; Qin, R.; Yang, Z.; Zou, Z.; Tang, Y.; Fan, C. Building change detection using old aerial images and new LiDAR data. Remote Sens. 2016, 8, 1030. [Google Scholar] [CrossRef]

	10.
Hwang, S.; Kim, N.; Choi, Y.; Lee, S.; Kweon, I.S. Fast Multiple Objects Detection and Tracking Fusing Color Camera and 3D LIDAR for Intelligent Vehicles. In Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi’an, China, 19–22 August 2016; pp. 234–239. [Google Scholar]

	11.
Wang, H.; Wang, B.; Liu, B.; Meng, X.; Yang, G. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot. Auton. Syst. 2017, 88, 71–78. [Google Scholar] [CrossRef]

	12.
Song, S.; Xiang, Z.; Liu, J. Object tracking with 3D LIDAR via multi-task sparse learning. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation, Beijing, China, 2–5 August 2015; pp. 2603–2608. [Google Scholar]

	13.
Guo, L.; Li, L.; Zhao, Y.; Zhao, Z. Pedestrian tracking based on camshift with Kalman prediction for autonomous vehicles. Int. J. Adv. Robot. Syst. 2016, 13, 120. [Google Scholar] [CrossRef]

	14.
Dewan, A.; Caselitz, T.; Tipaldi, G.D.; Burgard, W. Motion-based detection and tracking in 3D LiDAR Scans. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4508–4513. [Google Scholar]

	15.
Allodi, M.; Broggi, A.; Giaquinto, D.; Patander, M.; Prioletti, A. Machine learning in tracking associations with stereo vision and lidar observations for an autonomous vehicle. In Proceedings of the IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden, 19–22 June 2016; pp. 648–653. [Google Scholar]

	16.
Wasik, A.; Ventura, R.; Pereira, J.N.; Lima, P.U.; Martinoli, A. Lidar-based relative position estimation and tracking for multi-robot systems. In Proceedings of the Robot 2015: Second Iberian Robotics Conference, Advances in Robotics, Lisbon, Portugal, 19–21 November 2015; pp. 3–16. [Google Scholar]

	17.
Li, Q.; Dai, B.; Fu, H. LIDAR-based dynamic environment modeling and tracking using particles based occupancy grid. In Proceeding of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 238–243. [Google Scholar]

	18.
Tuncer, M.A.C.; Schulz, D. Integrated object segmentation and tracking for 3D LIDAR data. In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics, Lisbon, Portugal, 29–31 July 2016; pp. 344–351. [Google Scholar]

	19.
Asvadi, A.; Girao, P.; Peixoto, P.; Nunes, U. 3D object tracking using RGB and LIDAR data. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1255–1260. [Google Scholar]

	20.
Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]

	21.
Srilekha, S.; Swamy, G.N.; Krishna, A.A. A novel approach for detection and tracking of vehicles using Kalman filter. In Proceedings of the 7th International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015; pp. 234–236. [Google Scholar]

	22.
Huang, W.; Xie, H.; Shen, C.; Li, J. A robust strong tracking cubature Kalman filter for spacecraft attitude estimation with quaternion constraint. Acta Astronaut. 2016, 121, 153–163. [Google Scholar] [CrossRef]

	23.
Jain, A.; Krishnamurthy, P.K. Phase noise tracking and compensation in coherent optical systems using Kalman filter. IEEE Commun. Lett. 2016, 20, 1072–1075. [Google Scholar] [CrossRef]

	24.
Gulalkari, A.V.; Pratama, P.S.; Hoang, G.; Kim, D.H.; Jun, B.H.; Kim, S.B. Object tracking and following six-legged robot system using Kinect camera based on Kalman filter and backstepping controller. J. Mech. Sci. Technol. 2015, 29, 5425–5436. [Google Scholar] [CrossRef]

	25.
Lim, J.; Yoo, J.H.; Kim, H.J. A mobile robot tracking using Kalman filter-based gaussian process in wireless sensor networks. In Proceedings of the 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2015; pp. 609–613. [Google Scholar]

	26.
Moon, S.; Park, Y.; Ko, D.W.; Suh, I.H. Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering. Int. J. Adv. Robot. Syst. 2016, 13, 1–10. [Google Scholar] [CrossRef]

	27.
Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D point cloud based object maps for household environments. Robot. Auton. Syst. 2008, 56, 927–941. [Google Scholar] [CrossRef]

	28.
Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H.J. Fast segmentation of 3D point clouds for ground vehicles. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium (IV), San Diego, CA, USA, 21–24 June 2010; pp. 560–565. [Google Scholar]

	29.
Welch, G.; Bishop, G. An Introduction to the Kalman Filter; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2006; Volume 8, pp. 127–132. [Google Scholar]

	30.
Fox, D. KLD-sampling: Adaptive particle filters. In Proceedings of the Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December 2001; pp. 713–720. [Google Scholar]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg

media/file4.png

media/file30.png
1.1 T T T T
. low-speed trajectory
high-speed trajectory
1.05
1.05 i:-c: 4
-
L]
ﬁ 4L "\“ |
* " :
: *
1t }- - X ‘k };
x‘ 095 % i} r n
7 e
— — X
=
Eoosy x‘ﬁ/ g E oot s
o i W . > ﬁ(
-' 'q\h *e(. %
a‘ . 7\\.?(’ ' 4
09 ."‘ %%K o ' L £
s M‘K E J‘ %
’ -
by mﬁx "'Vvl‘. < 0.8 F b4
- 1 '
iy x
0.85 | % x-.i §§€‘ . -
%:SE& e UVAT « low-speed trajectory
X s # high-speed trajectory
b
D_B 1 i i i DT | i i i i i i i i
-1 0.5 0 0.5 1 -1 08 06 04 02 0 02 04 0.6 0.8
X(m) X(m)

media/file18.png
My
__..,.w*rﬂ‘ ll

150 200 250 300
X Axis

(b)

media/file34.jpg
y:error(m)

0.45

+ eror-kalman filter
04, % _error-particle filter|

0.35

°
S

°
&

e

0.05

media/file21.jpg

media/file26.png
—

media/file39.png

media/file27.jpg

media/file3.jpg
(@ (b)

media/file22.png

media/file35.png
1.4

1.2

y:y position{m)

0.4

0.2

estimated trajectory
real trajectory

0
X:x position{m)

(a)

05 1

1.2

)

y:y position({m

0.2r

ﬂ“

-k

| o

-

estimated trajectory
real trajectory

-0.5 0
X:x position(m)

(b)

0.5 1

media/file19.jpg
Detect sphere and compute
center of sphere

! B Initialize filter

Initialize filter with target state

!

Acquire the next frame of
LiDAR data

Compute center as %
P ‘ Estimate the state
measurements

Record current position of ‘

target

Update the state of filter ‘ 4 Update the state

media/file7.jpg

media/file28.png

media/file10.png

media/file33.jpg
yypossonm)

media/file32.png
y:y position{m)

'14 T T T T T T T 14 T T T T T T
* estimated trajectory * estimated trajectory
tar real trajectory i w3 real trajectory i
12 i 1.2 -
f:1.F 7 $:4. 7
1r 7 E 1r J\' T h
b4 _,E —Nr =
= ri=ts
09 r e w09 4
(=]
j=
0.8 : = 08f :
0.7 ¢ 7 0.7 .
0.6 7 0.6 7
0.5] 0.5 7
Dlli 1 i 1 1 i 1 1 [}4 1 i 1 i 1 i
0.6 0.4 0.2 0.2 04 0.6 0.8 1 12 0.6 -0.4 -0.2 0 0.2 04 0.6

X:x position({m)

(a)

0.1 2 T T ! ! [
= error-kalman filter

0.09 # error-particle filter

0.08 | T i

0.07 | i
_0.06 — i i
E . -
005" o« e ' . I
o . -
5‘ - ™ - &

0.04 [=T i

0.03 F ; ’ i

0.02 X X, i

x "% s
0.01 % % Valb s VDI T X X v X |
: s % - x « [®
Y. b4 = .
i i *X x' L L
D 5
0 10 20 30 40 50
x:scan

60

X% position(m)

(b)

0.8

media/file14.png
T,

" o

M.
\m
|

——r

media/file11.jpg

media/file6.png
Ao
s

A

PPy

e

O
s

o P
AR

Ser i g et
ot it o s

e P

et

media/file36.png
0.45

0.4

0.35

0.3

0.25

y.error(m)

0.2

0.15

0.1

0.05

* error-kalman filter
* error-particle filter

g .)g'c-oo«%«% i
5
i ﬁm% mxm - X z .
J&‘-)@C M- -
- 10 20 30 40 50 60 70
X:5can

media/file15.jpg

media/file37.jpg
(b)

nav.xhtml

 sensors-17-01932

 		
 sensors-17-01932

media/file16.png

media/file2.png
(a) The indoor scene in lab (b) The raw data from sensor (c) The filtered data

(f) Te detection result (e) The clusters (d) The segmented data

st]
results of tra

media/file20.png
Detect sphere and compute
center of sphere

l Initialize filter

Initialize filter with target state

Acquire the next frame of
LiDAR data

Compute center as
measurements

Estimate the state

Record current position of
target

Update the state of filter — g Update the state

media/file23.jpg

media/file5.jpg

media/file24.png
‘. .

\

media/file29.jpg
b L=

o X

@ ®

media/file1.jpg
(@) The indoor scene i lab (6) The raw data from sensor

() The detection result (@) The clusters

(© The filtered data

(@) The segmented data

g with Kalman filter

media/file31.jpg
" imted vy
) vty

e O N
@ ®
o et
L e

media/file25.jpg

media/file12.png

media/file9.jpg

media/file0.png

media/file38.png
— estimate trajectory

0.35 — 0.4 <
eatimate trajectory
0.3 4 0.3
LS 0.2 4
=02 E
£ B 0.1
[77] >
2 3
30.15 - N
0
0.1
0.1
0.05 -
0.2 =l
0 - 1.6
05

12 A2

03
x-axis(m) adieimy

1.1

(a)

0.2

0.3
, 06 05 04
y-axis(m) x-axis(m)

(b)

media/file8.png

media/file17.jpg
(@)

(b)

