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Abstract: This paper presents an EEG-based brain-computer interface system for classifying eleven
motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams
time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG
signals. The constructed TFR is used to extract five categories of time-frequency features (TFFs). The
TFFs are processed using a hierarchical classification model to identify the MI task encapsulated
within the EEG signals. To evaluate the performance of the proposed approach, EEG data were
recorded for eighteen intact subjects and four amputated subjects while imagining to perform each of
the eleven hand MI tasks. Two performance evaluation analyses, namely channel- and TFF-based
analyses, are conducted to identify the best subset of EEG channels and the TFFs category, respectively,
that enable the highest classification accuracy between the MI tasks. In each evaluation analysis, the
hierarchical classification model is trained using two training procedures, namely subject-dependent
and subject-independent procedures. These two training procedures quantify the capability of the
proposed approach to capture both intra- and inter-personal variations in the EEG signals for different
MI tasks within the same hand. The results demonstrate the efficacy of the approach for classifying
the MI tasks within the same hand. In particular, the classification accuracies obtained for the
intact and amputated subjects are as high as 88.8% and 90.2%, respectively, for the subject-dependent
training procedure, and 80.8% and 87.8%, respectively, for the subject-independent training procedure.
These results suggest the feasibility of applying the proposed approach to control dexterous prosthetic
hands, which can be of great benefit for individuals suffering from hand amputations.

Keywords: motor imagery; Choi-Williams time-frequency distribution; electroencephalography;
time-frequency features; hierarchical classification; support vector machines; subject-independent
analysis

1. Introduction

Nowadays, many individuals are suffering from hand motor impairments due to strokes, hand
amputations, and spinal cord injuries. Developing a system that can recover a significant part of the
lost or disabled hand functionality is crucial to improve the quality of life of those individuals. Recently,
we have witnessed substantial advancements in designing and developing wearable assistive devices,
such as robotic prosthetic hands and exoskeletal orthotic hands. These assistive devices can be of great
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benefit for individuals who are cognitively intact and suffering from motor impairments. In particular,
an individual with amputated hand can utilize a prosthetic hand to recover part of the missing hand
functionality [1]. Moreover, an individual who had a stroke attack can utilize an exoskeletal orthotic
hand to support his/her disabled hand [1]. In this vein, brain-computer interface (BCI) systems
have been employed to provide alternative non-muscular communication pathways to assist people
suffering from motor disabilities or living with lost limbs to interact with their surroundings [1–3].

BCI systems translate the neural signals of the human brain into control commands for
peripheral and assistive devices, which in turn can improve the communication capabilities of
the individuals who suffer from severe motor impairments. Several noninvasive neuroimaging
modalities have been utilized in BCI systems, such as functional magnetic resonance imaging (fMRI) [4],
electroencephalography (EEG) [5–9], and positron emission tomography (PET) [10,11]. Among these
different neuroimaging modalities, EEG is considered the most commonly used modality in BCI
systems. This can be attributed to several factors such as the high temporal resolution, relatively
low cost, and high portability [12–14]. The use of EEG provides a measure of the electrical potentials
generated at various locations of the brain in response to the execution or imagination of different
movements [15].

Over the past two decades, motor imagery (MI) has been used to design EEG-based BCI
systems that enable individuals with motor impairments to control various assistive devices, such
as wheelchairs [16,17], prosthetic devices [18–20], and computers [1,21]. In fact, a MI task can be
defined as a mental process in which an individual imagines himself/herself performing a specific
action without real activation of the muscles [22]. During MI tasks, various regions in the brain are
activated such as primary motor cortex (M1), primary and secondary sensory areas, pre-frontal areas,
superior and inferior parietal lobules, and dorsal and ventral pre-motor cortices [15]. Therefore, the
development of BCI systems that can effectively analyze brain signals and discriminate between
different MI tasks to control neural prostheses devices has the potential to enhance the quality of life
for people with severe motor disabilities.

Literature reveals that the vast majority of the existing MI EEG-based BCI systems were focused
on differentiating between MI tasks that are associated with four different body parts [23–27], including
feet, left hand, right hand, and tongue. Despite the relatively high classification accuracies attained
for classifying MI tasks performed by different body parts, the discrimination between MI tasks
within the same hand is considered challenging [6–9]. This can be attributed to three limitations
associated with the EEG signals. First, the low spatial resolution of the EEG signals constrains the
ability to discriminate between MI tasks of the same hand that activate similar and close areas in
the brain [6]. In fact, this limitation becomes more pronounced when the MI tasks are associated
with the same joint in the hand, such as wrist movements. Second, due to the volume conducted
effect [28], EEG signals have a limited signal-to-noise ratio [6]. This in turn can drastically reduce
the ability to discriminate between EEG signals of different dextrous MI tasks within the same
hand, such as fingers- and wrist-related tasks. Third, the spectral characteristics of the EEG signals
are time varying, or non-stationary. The non-stationary characteristics of EEG signals introduce
large intra-trial variations for each subject and inter-personal variations between subjects, which
increase the difficulty to discriminate between the EEG signals of MI tasks within the same hand.
Therefore, traditional time-domain and frequency-domain representations, which are employing the
time-invariance assumption, are considered inadequate to represent EEG signals [29–32].

Recently, a few studies have been reported to utilize EEG signals in order to discriminate
between flexion/extension movements of the fingers [6,33] as well as several wrist movements [5,9],
including flexion, extension, supination and pronation. The promising results reported in these studies
demonstrate the possibility of utilizing EEG signals to discriminate between MI tasks within the same
hand. Nonetheless, these studies have been conducted using EEG signals acquired from intact subjects,
without exploring the capability of classifying MI tasks within the same hand using EEG signals that
are acquired from individuals with hand amputations. Moreover, these studies, which explored a
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limited number of movements, have focused on decoding finger movements or wrist movements
without attempting to discriminate between MI tasks associated with different parts of the hand.

The aim of the current study is to contribute to the ongoing research in the field of EEG signal
analysis by introducing an EEG-based BCI system that employs an extracted set of time-frequency
features (TFFs) to discriminate between eleven MI tasks within the same hand. In fact, we hypothesize
that the use of time-frequency distribution (TFD) as joint time-frequency representation of EEG signals
enables the extraction of salient TFFs that comprise discriminative information about different MI
tasks within the same hand. The MI tasks considered in the present study range from basic wrist and
fingers tasks, such as flexion/extension tasks, to complex hand tasks, such as functional grasping tasks.
This diverse set of MI tasks makes the problem of classifying the MI tasks challenging, due to the
substantial inter- and intra-personal variations of the EEG signals associated with different MI tasks.

In order to discriminate between the EEG signals associated with the eleven MI tasks, a sliding
window approach is employed to decompose each EEG signal into overlapping segments. Then,
we utilize the Choi-Williams TFD (CWD) to construct a time-frequency representation of the EEG
segments that can describe the dynamic changes in the EEG signals during different MI tasks. Using
the time-frequency representation, we extract five categories of TFFs, including log-amplitude-based
category, amplitude-based category, statistical-based category, spectral-based category, and spectral
entropy-based category. The extracted TFFs are utilized to construct a hierarchical classification model
that classifies each EEG segment into one of the eleven MI tasks considered in this study. Specifically,
the hierarchical classification model consists of four layers. The first layer classifies the EEG segments
into rest or movement segments. In the second layer, the EEG segments that were identified as
movement segments at the first layer are further classified into functional or basic wrist and finger
movements. The third layer classifies the EEG segments that comprise functional movements into
small diameter grasp, lateral grasp, and extension-type grasp, and the EEG segments that comprise
basic wrist and fingers movements into wrist-related movements and finger-related movements.
Finally, the fourth layer classifies the EEG segments that comprise wrist-related movements into wrist
flexion/extension, wrist ulnar/radial, and the EEG segments that comprise finger-related movements
into index flexion/extension, middle flexion/extension, ring flexion/extension, little flexion/extension,
and thumb flexion/extension.

In order to evaluate the performance of the proposed approach, we have recorded EEG data
for both intact and amputated subjects while imagining to perform the eleven hand MI tasks.
Two performance evaluation analyses are conducted to evaluate the performance of the proposed
TFD-based approach in identifying the eleven different MI tasks. The two performance evaluation
analyses are: the channel-based performance evaluation analysis and the TFF-based performance
evaluation analysis. These performance evaluation analyses quantify the effect of the utilized EEG
channel locations and TFFs on the capability of the proposed system to decode different MI tasks
within the same hand. Furthermore, within each evaluation analysis, the hierarchial classification
model is trained using two different procedures, namely subject-dependent and subject-independent
training procedures. These two training procedures measure the ability of the proposed TFD-based
system to capture both intra- and inter-personal variations of the EEG signals for different MI tasks
within the same hand. To the best of our knowledge, this is the first study that explores the use of TFD
for classifying MI tasks within the same hand for both intact and amputated subjects.

The remainder of this paper is organized as follows: In Section 2, we describe the experimental
procedure, the proposed TFD-based features, the classification model, and the evaluation procedures.
The experimental results and discussion are presented in Sections 3 and 4, respectively. Finally,
the conclusion is provided in Section 5.
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2. Materials and Methods

2.1. Subjects

The EEG dataset employed in the current study is composed of two databases, namely
DB1 and DB2. DB1 includes EEG signals acquired from eighteen intact subjects (6 females and
12 males, 4 left-handed and 14 right-handed) who volunteered to participate in the experiments.
The mean ± standard deviation age of the subjects was 21.2± 2.9 years. Furthermore, the subjects did
not have any known neurological or neuromuscular disorders. In DB2, four male subjects with upper
limb amputation participated in the experiments. The mean ± standard deviation age of the subjects
was 28.5± 6.2 years. Table 1 provides characterization information about the amputations associated
with the subjects who were recruited in DB2. Before data acquisition, the experimental procedure
of our study was explained in details to each subject and signed consent forms were collected from
all subjects. The participants had the chance to withdraw from the study at anytime during the
experimental procedure. Moreover, the experimental procedure was reviewed and approved by the
Research Ethics Committee at the German Jordanian University.

Table 1. Detailed information about the amputation associated with each subject in DB2.

Subject Handedness Amputated Hand Years Since Amputation Cause of Amputation Prosthesis Use

AS1 Right hand Left hand 3.5 Accident Cosmetic
AS2 Right hand Right hand 1.5 Accident None
AS3 Left hand Left hand 4 Accident Myoelectric
AS4 Right hand Right hand 5 Accident Cosmetic

2.2. Experimental Procedure

The experimental procedure adopted in the current study is similar to the experimental procedures
employed in several previous studies related to EEG-based MI tasks classification, such as [8,34–36].
In particular, each subject was seated on a comfortable upright chair at a distance of approximately
0.5 m from a computer monitor placed on top of a desk. During the experiments, the subjects were
asked to comfortably rest their arms on the desk. Then, each subject was asked to imagine performing
different hand tasks according to the displayed visual cues on the computer monitor. The visual
cues associated with the hand tasks are shown in Figure 1. In this work, we consider three sets of
hand motor imagery tasks (HMITs), namely set 1 (see Figure 1a), set 2 (see Figure 1b), and set 3
(see Figure 1c). Specifically, set 1 includes the rest configuration of the hand, which we denoted as A1.
Set 2 comprises grasping and functional movements of the hand, including the small diameter grasp
(A2), lateral grasp (A3), and extension-type grasp (A4). Finally, set 3 contains basic movements of the
wrist and the fingers, including wrist ulnar/radial deviation (A5), wrist flexion/extension (A6), index
finger flexion/extension (A7), middle finger flexion/extension (A8), ring finger flexion/extension (A9),
little finger flexion/extension (A10), and thumb flexion/extension (A11). The eleven HMITs that are
comprised in the aforementioned three sets were selected to cover a wide range of the hand movements
that are involved in activities of daily living (ADL) [35].

The experimental procedure consists of a training phase and recording phase. In the training
phase, each subject was asked to watch a set of videos displaying each of the movements depicted in
Figure 1. Then, the subjects were asked to practice imagining themselves performing the displayed
movements in order to become familiar with the experiment. During the recording phase, each subject
was asked to relax his/her arms on the desk. Then, a visual cue was displayed on the computer
monitor in front of the subject for 3 s. After that, the visual cue disappeared and a black screen
was displayed on the monitor. The subject was asked to close his/her eyes when the screen turned
black, and to start to imagine performing the movement that was specified by the visual cue until
the experimenter prompted him/her that the recording was over. For DB1, each subject was asked to
imagine performing the eleven HMITs using his/her right hand. However, for DB2, the subjects were
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asked to imagine performing each movement using the missing limb. The duration of the recorded
EEG signals of the HMITs varies according to the complexity of the movement being imagined as
depicted in Figure 2. In particular, for the movements in set 1 and set 3, the duration of each trial is
equal to 10 s. For the extension-type grasp movement in set 2, the duration of each trial is equal to
12 s. Finally, for the small diameter grasp and lateral grasp movements in set 2, the duration of each
trial is equal to 14 s. The average duration of the experiment for each subject was approximately 1.5 h.
This time includes the subject preparation and the recording of 7 trials for each of the hand movements
depicted in Figure 1.

Figure 1. Sample images of the visual cues associated with the different HMITs investigated in
this study.
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Figure 2. Experimental paradigm. A visual cue is displayed on the computer monitor for 3 s. After that,
the visual cue disappears and a black screen is displayed on the monitor. During this period of time,
the subject starts to imagine performing the movement that was specified by the visual cue until time
T s. The value of T varies according to the complexity of the movement being imagined. In particular,
for the movements in set 1 and set 3, T is equal to 10 s. For the extension-type grasp movement in set 2,
T is equal to 12 s. Finally, for the small diameter grasp and lateral grasp movements in set 2, T is equal
to 14 s.

2.3. EEG Data Acquisition and Preprocessing

Raw EEG data was acquired using the Biosemi ActiveTwo EEG recording system (Biosemi B.V.,
Amsterdam, Netherlands). The Biosemi ActiveTwo system employs the 10–20 international EEG
electrode placement system to localize 16 Ag/AgCl electrodes at the following locations: Fp1, Fp2,
C3, C4, Cz, F3, F4, Fz, T7, T8, O1, O2, Oz, P3, P4, and Pz, referenced to the common mode sense
(CMS)/ driven right leg (DRL) at C1/C2 locations for noise cancelation (see Figure 3). In this study,
we consider four different groups of electrodes that cover different motor cortex related regions in the
brain [9,36,37]. Table 2 shows the electrodes included within each group.

Figure 3. The positions of the EEG electrodes employed in this study arranged according to the 10–20
EEG system.

The EEG signals were acquired at a sampling frequency of 2048 Hz. The acquired signals were
filtered using a band pass filter with a bandwidth of 0.5–35 Hz to reduce low-frequency noise [8,34]
and ensure that the mu and beta rhythms, which are necessary for classifying EEG signals related
to MI tasks, are within the bandwidth of the filtered EEG signals [8]. The filtered EEG signals were
downsampled to 256 Hz to reduce the processing and storage requirements. In addition, EEGLAB
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toolbox [38] was utilized to remove the muscular and ocular artifacts from the acquired EEG signals
using the automatic artifact rejection (AAR) toolbox [39].

Table 2. The groups of electrodes analyzed in this study.

Group Name Comprised Electrodes

Broad bilateral (G1) C3, C4, Cz, P3, P4, Pz, F3, F4, Fz, T7, T8
Left side (G2) C3, P3, F3, T7
Right side (G3) C4, P4, F4, T8
Narrow bilateral (G4) C3, C4, Cz, Pz, Fz

2.4. Time-Frequency Representation of EEG Signals

The non-stationary nature of the EEG signals implies that the frequency contents of the EEG signals
are rapidly changing over time [40]. This imposes the requirement of employing a time-frequency
representation in order to effectively analyze the EEG signals. Indeed, recent studies on detecting
seizure activities in EEG signals have indicated that utilizing joint time-frequency representations
of EEG signals can significantly outperform traditional time-domain or frequency-domain
representations [41,42]. This can be attributed to the fact that several key features of the EEG
signals are encapsulated within either the time-domain or frequency-domain. Hence, the use of
joint time-frequency representation has the potential to provide more discriminative features of EEG
signals and can enhance the classification accuracy of MI tasks within the same hand.

In this study, we propose a time-frequency representation for analyzing EEG signals that is based
on computing the time-frequency distribution (TFD) of the EEG signals. Specifically, TFD can be
viewed as a transformation that maps the EEG signals from the one-dimensional time-domain into a
two-dimensional time-frequency plane (TFP), which allows capturing the spectral changes in the EEG
signals occurring over time [43]. In order to compute the TFD of the acquired EEG signals, we segment
the EEG signals of each channel using a sliding window of size W = 256 samples and overlap size of
O = 128 samples. Each EEG segment is transformed into its analytic form to enhance the resolution
of the TFP representation [44–46]. Specifically, the analytic signal of a real EEG segment x(t) can be
defined as follows [43]:

sx(t) = x(t) + jHT {x(t)}, (1)

where sx(t) is the analytic signal of x(t) andHT {·} is the Hilbert transform [47]. The time-frequency
representation of the segment x(t) is carried out by computing the TFD of the analytic signal sx(t).
In this vein, Cohen [44,45] provided a general formula to compute the TFD of an analytic signal, which
can be applied to various types of distributions. In particular, the TFD of the analytic signal sx(t) can
be computed as follows:

Γs(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
AF s(φ, τ)ψ(φ, τ)e−j2π f τ−j2πtφ∂τ∂φ, (2)

where Γs(t, f ) is the TFD of the analytic signal sx(t) and AF s(φ, τ) is the ambiguity function of sx(t).
The ambiguity function AF s(φ, τ) is defined as the Fourier transform of the auto-correlation function
of s(t), which can be expressed as follows [44,45]:

AF s(φ, τ) =
∫ ∞

−∞
sx(t +

τ

2
)s∗x(t−

τ

2
)ej2πφt∂t, (3)

where s∗x(·) is the complex conjugate of sx(·). In Equation (2), ψ(φ, τ) is the smoothing kernel function
that defines the type of the TFD. In fact, various kernel functions can be employed to compute TFDs,
where the design of these kernels depends on the information to be extracted from the TFP, the
resolution in both time and frequency domains, and the ability to suppress the cross-terms generated
from the bi-linearity of the TFDs [48]. When the kernel function is defined as ψ(φ, τ) = 1, the
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generated TFD is called Wigner-Ville distribution (WVD) [49]. The WVD is a quadratic TFD that
produces prevalent interference terms in the TFP, which are usually called cross-terms. The existence of
cross-terms in the generated TFP increases the difficulty of interpreting the energy distribution in the
TFP as a function of both time and frequency [43]. Therefore, in this study, we utilize the Choi-Williams
distribution (CWD) [50] in order to minimize the cross-terms in the TFP. Unlike the WVD, the CWD
employs an exponential kernel function to suppress the cross-term artifacts while maintaining a good
resolution in the TFP [40,43]. The kernel function of the CWD can be expressed as follows [50]:

ψ(φ, τ) = exp
(
− φ2τ2

γ2

)
, (4)

where γ > 0 is a parameter that controls the suppression of the cross-terms and its value is
experimentally selected to be 0.5. Figure 4 shows the time-frequency representations computed
for three EEG segments that represent three HMITs, namely rest, wrist flexion/extension, and lateral
grasp. These time-frequency representations demonstrate the effect of utilizing the CWD on reducing
the cross-terms in comparison with the WVD, which in turn enables a more distinguishable TFPs for
differentiating HMITs. The dimensionality of the constructed time-frequency representation for each
EEG segment is equal to W × N, where W and N represent the number of time-domain samples of
s(t) and the number of frequency-domain samples, respectively. In this study, we have only used the
CWD to compute the time-frequency representation of the EEG segments. In fact, the computation of
the CWD is carried out using the HOSA toolbox [51], where the values of W and N are set to 256 and
512, respectively.

Figure 4. Illustration of the constructed time-frequency representation of EEG segments. The plots
(a–c) represent the WVD of the EEG segments associated with rest, wrist flexion/extension, and lateral
grasp, respectively. The plots (d–f) represent the CWD of the EEG segments associated with rest, wrist
flexion/extension, and lateral grasp, respectively.
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2.5. Time-Frequency Features

The constructed CWD-based time-frequency representation of each EEG segment has a
256 × 512 points. Therefore, to reduce the dimensionality of the constructed time-frequency
representation, we extract a set of 12 time-frequency features (TFFs) from the CWD of each EEG
segment. In this study, we group the extracted TFFs into five different categories, namely the
log-amplitude-based category (C1), amplitude-based category (C2), statistical-based category (C3),
spectral-based category (C4), and spectral entropy-based category (C5). These categories are described
as follows:

2.5.1. Log-Amplitude-Based Category

In this category, we adopt and extend the concept of moment-related features presented
in [34], in which MI tasks associated with different limbs were classified by computing spectral
moment-related features extracted from the bispectrum of the EEG signals. Among the different
spectral moment-related features, the sum of the logarithmic amplitudes of the bispectrum achieved
promising classification results [34]. Thus, in this study, we compute a TFF (TF1) that quantifies
the sum of the logarithmic amplitudes of the CWD of an EEG segment. The feature TF1 is defined
as follows:

TF1 =
W

∑
t=1

N

∑
f=1

log(|Γs(t, f )|), (5)

where Γs(t, f ) is the CWD of the analytic signal sx(t).

2.5.2. Amplitude-Based Category

In this category, we utilize the amplitudes of the points in the CWD to classify the EEG segments.
In particular, we adopt three amplitude-based TFFs [42,52–54], including the median absolute deviation
of the CWD (TF2), the root mean square value of the CWD (TF3), and the inter-quartile range of the
CWD (TF4). The features TF2, TF3, and TF4 can be expressed as follows [42]:

TF2 =
1

WN

W

∑
t=1

N

∑
f=1

∣∣∣Γs(t, f )−
( 1

WN

W

∑
t=1

N

∑
f=1

Γs(t, f )
)∣∣∣. (6)

TF3 =

√√√√ 1
WN

(
W

∑
t=1

N

∑
f=1

Γs(t, f )

)
. (7)

TF4 =
1
N

N

∑
f=1

(
Γs

(3(W + 1)
4

, f
)
− Γs

( (W + 1)
4

, f
))

. (8)

2.5.3. Statistical-Based Category

This category of features consists of the mean (TF5), variance (TF6), skewness (TF7), and kurtosis
(TF8) of the CWD computed for each EEG segment [42,43,48]. These features can be defined as follows:

TF5 =
1

WN

W

∑
t=1

N

∑
f=1

Γs(t, f ). (9)

TF6 =
1

WN

W

∑
t=1

N

∑
f=1

(
Γs(t, f )− TF5

)2
. (10)
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TF7 =
1

WN(TF6)3/2

W

∑
t=1

N

∑
f=1

(
Γs(t, f )− TF5

)3
. (11)

TF8 =
1

WN(TF6)2

W

∑
t=1

N

∑
f=1

(
Γs(t, f )− TF5

)4
. (12)

2.5.4. Spectral-Based Category

The features in this category are based on adapting some of the frequency-domain spectral
features of the EEG signals to the time-frequency domain. In particular, we employ two spectral-based
TFFs [31,43,48], namely the flatness of the CWD (TF9) and the flux of the CWD (TF10). These two
TFFs are the time-frequency extension of the spectral flux and spectral flatness in the frequency
domain [42,52,55]. The use of spectral-based TFFs enables the quantification of several spectral
information of the EEG signals, which can be used to classify different HMITs. In particular, the
flatness of the CWD provides a measure that describes the uniformity of the distribution of the signal
energy in the TFP [48]. Moreover, the flux of the CWD quantifies the changing rate of the signal energy
in the TFP [48]. In this study, the features TF9 and TF10 are defined as follows [48]:

TF9 = WN
∏W

t=1 ∏N
f=1(|Γs(t, f )|)1/WN

∑W
t=1 ∑N

f=1(|Γs(t, f )|)
. (13)

TF10 =
W−l

∑
t=1

N−k

∑
f=1

(
Γs(t + l, f + k)− Γs(t, f )

)
, l = k = 1. (14)

2.5.5. Spectral Entropy-Based Category

This category comprises two TFFs, namely the normalized Renyi entropy of the CWD (TF11)
and the energy concentration of the CWD (TF12) [31]. The normalized Renyi entropy of the CWD
measures the regularity of the distribution of the signal energy in the TFP. In fact, the EEG signals
that have a uniformly distributed energy in the TFP tend to have a larger values of TF11, while the
signals that have energy concentrated within specific regions in the TFP tend to have smaller values of
TF11 [43,56,57]. The energy concentration of the CWD measures the spread of the energy in the TFP.
Specifically, EEG signals that have broadly distributed energy across the TFP tend to have a larger
values of TF12, while signals that have energy concentrated within specific areas in the TFP tend to
have smaller values of TF12 [58]. In this study, the features TF11 and TF12 are defined as follows:

TF11 = −1
2

log2

W

∑
t=1

N

∑
f=1

(
Γs(t, f )

WN(TF5)

)2

. (15)

TF12 =

(
W

∑
t=1

N

∑
f=1

√
|Γs(t, f )|

)2

. (16)

2.6. Classification of HMITs

As indicated by Edelman et al. [9], the EEG signals are characterized by low spatial resolution
in the motor cortex regions. Hence, classifying EEG segments that encapsulate different MI tasks is
considered challenging, particularly when these tasks are within the same hand. Another challenge
is the variability in the duration of the HMITs, in which the length of each MI task depends on
the complexity of the movement being imagined. Hence, the number of samples associated with
different HMITs can vary significantly, which leads to unbalanced data samples across different HMITs.
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Therefore, direct application of a multi-class classifier for classifying the EEG segments into different
MI movements within the same hand might lead to limited recognition accuracy [59,60].

To address this limitation, we propose a four-layer hierarchical classification model to classify
each EEG segment into one of the eleven HMITs considered in our study. The four-layers in our
classification model convert the original complex classification task (i.e., classifying an EEG segment
into one of the eleven HMITs) into a sequence of simpler classification tasks that are performed at
each layer. In particular, the first layer consists of a classification node, namely CN1, that classifies
EEG segments into rest segments (A1) and movement segments (IC1), where movement segments
are EEG segments that can comprise HMITs from set 2 or set 3 in our collected dataset. Then, the
EEG segments of class IC1 are passed on to the second layer to identify whether the movement in
each EEG segment belongs to set 2 or set 3. Specifically, the second layer consists of a classification
node, denoted as CN2, that classifies each EEG segment of class IC1 into a movement segment that
comprises HMIT from set 2 (IC2) or a movement segment that comprises HMIT from set 3 (IC3). Then,
the EEG segments of classes IC2 and IC3 are passed on to layer 3, which consists of two classification
nodes, namely CN3 and CN4. At the third layer, CN3 classifies the EEG segments of class IC2 into one
of the three HMITs comprised in set 2, namely small diameter grasping (A2), lateral grasping (A3),
and extension-type grasp (A4). Similarly, CN4 classifies EEG segments of class IC3 into wrist-related
HMITs (IC4) or finger-related HMITs movements (IC5). Finally, the EEG segments of classes IC4 and
IC5 are passed on to layer 4, which consists of two classification nodes, namely CN5 and CN6. At the
fourth layer, CN5 classifies the EEG segments of class IC4 into wrist ulnar/radial deviation (A5) and
wrist flexion/extension (A6). Similarly, CN6 classifies the EEG segments of class IC5 into one of the
five finger-related HMITs comprised in set 3, namely index finger flexion/extension (A7), middle
finger flexion/extension (A8), ring finger flexion/extension (A9), little finger flexion/extension (A10),
and thumb flexion/extension (A11). Figure 5 provides a schematic diagram of the proposed four-layer
hierarchical classification model.

In this study, the input to the hierarchical classification model is a feature vector that consists of the
TFFs extracted from the CWD computed for an EEG segment. Moreover, the classification nodes in the
four layers are implemented using support vector machine (SVM) classifiers with radial basis function
(RBF) kernel [61,62]. Previous studies have shown that utilizing SVM classifiers with RBF kernel can
be more effective than generative models for supervised learning problems [63]. Moreover, using
the SVM classifier with RBF kernel can achieve a better performance and generalization compared
with the other state-of-the-art classifiers, such as Naive Bayes, k-nearest neighbors (k-NN), and neural
networks [31,64]. Therefore, we realize the classification nodes CN1, CN2, CN4 and CN5 using binary
SVM classifiers. The classification nodes CN3 and CN6 are realized using multi-class SVM classifiers.
The multi-class SVM classifiers are implemented using a one-against-one scheme [65,66], in which
we construct n(n− 1)/2 binary SVM classifiers for each classification node, where n is the number of
classes. In particular, for CN3, the number of classes is three, including A2, A3 and A4, whereas the
number of classes for CN6 is five, including A7, A8, A9, A10 and A11.

The performance of the SVM classifier with RBF kernel depends on the selected values of the
RBF kernel parameter (σ) and the regularization parameter (C > 0). To tune these two parameters,
we perform a grid-based search [66] along two directions to determine the values of σ and C for each
classification node. In the first direction, we vary the value of the parameter σ, while in the second
direction we vary the value of the parameter C. Then, the best SVM model is selected such that its
parameters maximize the average classification accuracy.
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Figure 5. Illustration of the structure of the proposed four-layer hierarchical classification model.
Nodes in gray color represent the classification nodes in each layer. Orange nodes represent the eleven
classes of the HMITs in our study. Blue nodes represent an intermediate classes of EEG segments.

2.7. Performance Evaluation Procedures and Metrics

The acquired EEG signals of the intact subjects (DB1) and amputated subjects (DB2) are used to
perform two types of performance evaluation analyses, namely channel-based analysis and TFF-based
analysis. In the channel-based analysis, we study the effect of selecting different groups of EEG
channels on the accuracy of classifying HMITs. In particular, we evaluate the performance of our
proposed approach based on its ability to classify the feature vectors extracted from the EEG channels
comprised within each of the four channel groups (G1, G2, G3 and G4) presented in Table 2. For the
TFF-based analysis, we explore the effect of using each of the five categories of TFFs, namely C1, C2,
C3, C4 and C5, on the accuracy of classifying HMITs. For each performance evaluation analysis, we
measure the performance of the proposed approach using standard performance evaluation metrics,
including the precision (PRC), recall (RCL), F1-score, and accuracy (ACC), which are defined as
follows [67,68]:

PRC =
TP

(TP + FP)
× 100%, (17)

RCL =
TP

(TP + FN)
× 100%, (18)

F1 − score = 2
(PRC ∗ RCL)
(PRC + RCL)

× 100%, (19)

ACC =
(TP + TN)

(TP + TN + FP + FN)
× 100%, (20)

where TP, TN, FP and FN represent the numbers of true positive cases, true negative cases, false
positive cases, and false negative cases, respectively. These performance evaluation metrics are
obtained using two types of training procedures, including subject-dependent training procedure
(SDTP) and subject-independent training procedure (SITP). In the SDTP, we employ a ten-fold
cross-validation procedure [8,69] to construct a hierarchical classification model for each subject,
as described in Section 2.6. In particular, we randomly divide the feature vectors associated with
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the HMITs performed by each subject into 10 folds. Nine folds are used to train the classification
nodes at each layer in the constructed classification model, while the remaining fold is used for
testing. This procedure is repeated for ten times, and the overall performance of each classification
node is computed by averaging the results obtained from each repetition. The SDTP measures the
ability of the proposed approach to capture the intra-personal variations of the performed HMITs.
For the SITP, we employ a leave-one-subject-out cross-validation (LOSO-CV) procedure to evaluate
the performance of the proposed approach [31]. This procedure is based on constructing a single
hierarchical classification model for all the subjects in each database. Then, the classification nodes at
each layer of the constructed classification model are trained using the feature vectors extracted from
all subjects except one subject. The feature vectors of the subject that was excluded from the training
are used for testing. This procedure is repeated for each subject to guarantee that the feature vectors of
each subject are used for testing, and the overall performance is computed by averaging the results
obtained from all repetitions. The SITP quantifies the ability of the proposed approach to capture the
inter-personal variations of the performed HMITs.

3. Experimental Results

In this section, we present the performance evaluation results of the proposed approach for the
channel-based and TFF-based evaluation analyses obtained for the intact and amputated subjects
using the SDTP and SITP.

3.1. Evaluation Results of the Intact Subjects (DB1)

In this section, we evaluate the performance of the proposed approach based on DB1 that includes
the EEG signals of the intact subjects. In particular, we provide the performance evaluation results of
the channel-based analysis and the TFF-based analysis obtained using the SDTP and SITP.

3.1.1. Results of the Channel-Based Analysis

Table 3 provides the average PRC, RCL, F1-score, and ACC of the classification nodes for each
group of EEG channels, computed using the SDTP and SITP. In particular, for the SDTP, we extract the
twelve TFFs (TF1–TF12) from the EEG signals in each group of EEG channels. Then, for each subject, we
construct four hierarchical classification models using the TFFs extracted from the four groups of EEG
channels. The classification nodes in each classification model are trained and tested using the ten-fold
cross-validation procedure, which is described in Section 2.7. Finally, for each classification node, we
report the average values of the PRC, RCL, F1-score, and ACC metrics computed over the eighteen
subjects in DB1. For SITP, we utilize the twelve TFFs extracted from each group of EEG channels to
construct a single hierarchical classification model for all the subjects in DB1. The classification nodes
in the constructed classification model are trained and tested using the LOSO-CV procedure, described
in Section 2.7. Finally, for each classification node, we present the average values of the PRC, RCL,
F1-score, and ACC metrics computed over the repetitions of the LOSO-CV procedure.

In Table 3, the results obtained using SDTP show that the classification nodes achieved an average
PRC, RCL, F1-score, and ACC values that are higher than 70% using the various groups of EEG
channels. In fact, the lowest PRC, RCL, F1-score, and ACC values of 73.2%, 71.4%, 72.3% and 73.8%,
respectively, are obtained using the TFFs extracted from the EEG channels of G3. Moreover, the highest
PRC, RCL, F1-score, and ACC values of 84.4%, 82.9%, 83.6% and 84.6%, respectively, are achieved
using the TFFs extracted from the EEG channels of G1. On the other hand, the results obtained based
on the SITP show that the classification nodes achieved an average PRC, RCL, F1-score, and ACC
values that are higher than 52% using the different groups of EEG channels, with the lowest PRC, RCL,
F1-score, and ACC of 57.4%, 53.0%, 54.9% and 58.7%, respectively, obtained using the TFFs extracted
from the EEG channels of G3 and the highest PRC, RCL, F1-score, and ACC of 64.2%, 62.2%, 63.2% and
67.8%, respectively, obtained using the TFFs extracted from the EEG channels of G1. In fact, the results
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obtained using both SDTP and SITP are well above the average random classification accuracy, which
is defined as the the reciprocal of the number of classes, i.e. 9.1%.

To compare between the performance of the proposed approach using each group of EEG channels,
we have conducted paired t-tests with significance level of 0.05 to compare the accuracies of the
classification nodes obtained using the TFFs extracted from the EEG channels of G1 with the accuracies
of the classification nodes achieved based on the TFFs extracted from the other three groups of EEG
channels. For the SDTP, the computed p values for G1 versus G2, G1 versus G3 and G1 versus G4 were
0.0007, 0.004 and 0.0014, respectively. Similarly, for the SITP, the computed p values for G1 versus G2,
G1 versus G3 and G1 versus G4 were 0.0141, 0.0101 and 0.0072, respectively. The calculated p values,
for both SDTP and SITP, demonstrate that the performance of the classification nodes achieved based
on the TFFs extracted from the EEG channels of G1 outperforms significantly the performance of the
classification nodes obtained using the TFFs of the other three groups.

Table 3. Results of the channel-based analysis obtained using the SDTP and SITP for the intact subjects
in DB1. The set of EEG electrodes comprised in each group is provided in Table 2.

Group of EEG
Electrodes

Classification
Layer

Classification
Node

Results of the SDTP Results of the SITP
PRC RCL F1-Score ACC PRC RCL F1-Score ACC

G1

Layer 1 CN1 81.0 78.3 79.6 82.9 74.1 71.7 72.9 76.0
Layer 2 CN2 83.5 82.3 82.9 83.7 66.5 65.4 65.9 72.0

Layer 3 CN3 86.5 86.0 86.2 85.8 58.7 58.5 58.6 60.9
CN4 86.8 83.2 85.0 87.8 71.5 63.4 67.2 76.2

Layer 4 CN5 91.0 90.9 91.0 90.7 68.8 68.7 68.7 69.7
CN6 77.9 76.6 77.2 76.9 45.6 45.5 45.6 51.9

Overall average 84.4 82.9 83.6 84.6 64.2 62.2 63.2 67.8

G2

Layer 1 CN1 77.4 72.1 74.7 77.2 70.3 67.0 68.6 73.1
Layer 2 CN2 73.3 72.3 72.8 74.4 65.3 58.4 61.6 65.8

Layer 3 CN3 74.2 73.7 73.9 73.6 49.3 49.4 49.4 49.3
CN4 76.7 69.0 72.6 79.1 70.1 52.5 60.1 72.8

Layer 4 CN5 84.1 83.3 83.7 83.7 65.5 65.5 65.5 65.5
CN6 63.7 62.6 63.2 62.9 37.6 37.0 37.3 37.8

Overall average 74.9 72.2 73.5 75.1 59.7 55.0 57.1 60.7

G3

Layer 1 CN1 76.6 74.7 75.6 78.6 70.7 68.0 69.3 73.2
Layer 2 CN2 73.0 71.7 72.3 73.7 61.9 57.2 59.5 63.6

Layer 3 CN3 69.3 69.0 69.2 69.0 46.8 46.4 46.6 47.1
CN4 76.9 71.1 73.9 79.0 70.3 51.6 59.5 72.7

Layer 4 CN5 83.9 83.1 83.5 83.2 60.4 60.5 60.4 60.4
CN6 59.6 58.6 59.1 59.4 34.4 34.1 34.3 35.0

Overall average 73.2 71.4 72.3 73.8 57.4 53.0 54.9 58.7

G4

Layer 1 CN1 75.6 72.1 73.8 76.6 67.3 64.4 65.8 70.1
Layer 2 CN2 73.5 73.1 73.3 74.5 64.6 57.1 60.6 65.5

Layer 3 CN3 71.7 71.3 71.5 70.8 49.6 49.3 49.5 50.1
CN4 78.5 70.8 74.5 80.1 70.2 52.9 60.3 71.2

Layer 4 CN5 83.1 82.9 83.0 82.9 69.6 69.5 69.5 66.5
CN6 62.0 61.7 61.9 61.5 36.6 36.1 36.3 37.0

Overall average 74.1 72.0 73.0 74.4 59.6 54.9 57.0 60.1

3.1.2. Results of the TFF-Based Analysis

Table 4 provides the average PRC, RCL, F1-score, and ACC of the classification nodes computed
for each of the five categories of TFFs using both SDTP and SITP. The results presented in Table 4 are
based on the TFFs extracted from the EEG channels of G1. The selection of G1 is based on the results
of the channel-based analysis, described in the previous subsection, in which the classification nodes
achieved the best performance when the TFFs were extracted from the EEG channels of G1 in both
SDTP and SITP. More specifically, for the SDTP, we construct five hierarchical classification models
for each subject. Each classification model is constructed using the TFFs comprised within one of the
five categories of TFFs. The classification nodes in each classification model are trained and tested
using the ten-fold cross-validation procedure, as described in Section 2.7. The reported results of each
classification node are the average values of PRC, RCL, F1-score, and ACC computed over the eighteen



Sensors 2017, 17, 1937 15 of 27

subjects in DB1. For the SITP, we utilize the TFFs extracted from each of the five categories of TFFs to
construct five hierarchical classification models for all subjects in DB1. In particular, each classification
model utilizes the TFFs of one of the five categories extracted from the EEG signals of all subjects. The
classification nodes in the constructed classification models are trained and tested using the LOSO-CV
procedure, as described in Section 2.7. Finally, for each classification node, we present the average
values of PRC, RCL, F1-score, and ACC computed over the repetitions of the LOSO-CV procedure.

In Table 4, the obtained results based on the SDTP indicate that the classification nodes achieved
average PRC, RCL, F1-score, and ACC values that are higher than 72% using the different categories
of TFFs, with the lowest PRC, RCL, F1-score, and ACC values of 74.4%, 72.9%, 73.6% and 75.2%,
respectively, obtained using the TFFs of the statistical-based category and the highest PRC, RCL,
F1-score, and ACC values of 88.1%, 86.7%, 87.4% and 88.8%, respectively, achieved using the TFFs of
the log-amplitude-based category. On the other hand, the obtained results based on the SITP show
that the classification nodes achieved average PRC, RCL, F1-score and ACC values that are higher than
51% using the different categories of TFFs, with the lowest PRC, RCL, F1-score, and ACC values of
55.4%, 51.3%, 53.2% and 55.4%, respectively, obtained using the TFFs of the statistical-based category
and the highest PRC, RCL, F1-score and ACC values of 81.3%, 79.5%, 80.4% and 80.8%, respectively,
obtained using the TFFs of the log-amplitude-based category. The results of both the SDTP and the
SITP are well above the average random classification accuracy, which is equal to 9.1%.

Table 4. Results of the TFF-based analysis obtained using the SDTP and SITP for the intact subjects
in DB1.

Category of
TFFs

Classification
Layer

Classification
Node

Results of the SDTP Results of the SITP
PRC RCL F1-Score ACC PRC RCL F1-Score ACC

Log-amplitude-based
category (C1)

Layer 1 CN1 81.4 77.1 79.2 85.1 77.4 72.6 74.9 76.6
Layer 2 CN2 87.6 86.8 87.2 87.8 82.6 81.8 82.2 81.7

Layer 3 CN3 88.4 88.1 88.3 87.6 81.9 80.8 81.3 80.8
CN4 91.0 87.8 89.3 91.7 83.0 80.6 81.8 84.6

Layer 4 CN5 95.1 94.7 94.9 94.9 86.9 85.9 86.3 86.9
CN6 85.0 86.0 85.5 85.5 76.2 75.1 75.6 74.4

Overall average 88.1 86.7 87.4 88.8 81.3 79.5 80.4 80.8

Amplitude-based
category (C2)

Layer 1 CN1 78.8 76.3 77.5 80.5 72.7 69.2 70.9 70.0
Layer 2 CN2 79.6 78.3 78.9 80.2 72.2 70.0 71.1 62.1

Layer 3 CN3 81.3 80.7 81.0 80.3 67.0 65.3 66.1 61.2
CN4 84.9 80.4 82.6 86.9 71.9 62.6 66.9 70.9

Layer 4 CN5 89.6 89.9 89.7 89.8 71.7 70.4 71.1 68.4
CN6 71.2 71.0 71.1 71.5 59.8 56.2 57.9 53.4

Overall average 80.9 79.4 80.1 81.5 69.2 65.6 67.4 64.3

Statistical-based
category (C3)

Layer 1 CN1 76.4 73.2 74.8 77.6 67.2 62.7 64.9 65.9
Layer 2 CN2 74.2 72.9 73.5 75.2 59.8 55.1 57.3 56.5

Layer 3 CN3 72.7 72.6 72.6 72.5 46.3 46.0 46.2 51.5
CN4 75.7 71.6 73.6 79.3 65.8 52.4 58.3 57.7

Layer 4 CN5 84.4 85.0 84.7 84.4 61.4 61.4 61.4 60.3
CN6 63.1 62.2 62.7 62.5 31.7 30.3 31.0 40.8

Overall average 74.4 72.9 73.6 75.2 55.4 51.3 53.2 55.4

Spectral-based
category (C4)

Layer 1 CN1 79.5 80.3 79.9 83.1 72.9 70.1 71.5 72.3
Layer 2 CN2 85.4 85.0 85.2 86.0 73.5 72.6 73.0 71.1

Layer 3 CN3 87.3 87.3 87.3 86.8 69.6 69.4 69.5 66.1
CN4 89.1 87.7 88.4 90.7 72.3 67.4 69.8 72.6

Layer 4 CN5 91.3 90.6 91.0 92.8 80.4 80.3 80.3 79.1
CN6 81.9 82.4 82.1 82.4 60.3 59.4 59.9 57.8

Overall average 85.7 85.5 85.6 87.0 71.5 69.9 70.7 69.8

Spectral entropy-based
category (C5)

Layer 1 CN1 78.0 76.5 77.2 80.1 70.3 65.8 68.0 69.6
Layer 2 CN2 80.3 79.7 80.0 81.1 63.6 60.0 61.7 63.0

Layer 3 CN3 81.7 81.3 81.5 81.1 56.0 56.0 56.0 55.4
CN4 84.5 81.8 83.1 86.6 63.1 56.7 59.7 76.5

Layer 4 CN5 89.4 89.8 89.6 89.6 69.1 69.1 69.1 70.5
CN6 73.5 74.6 74.0 73.9 37.7 37.3 37.5 40.5

Overall average 81.2 80.6 80.9 82.1 60.0 57.5 58.7 62.6

To compare the performance of the proposed approach obtained using each of the five TFFs
categories, we have conducted paired t-tests with significance level of 0.05 to compare the obtained
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accuracies of the classification nodes based on the TFF of C1 with the accuracies of the classification
nodes based on the TFFs of the other four categories. For the SDTP, the computed p values for
C1 versus C2, C1 versus C3, C1 versus C4, and C1 versus C5 are 0.0042, 0.0015, 0.0032 and 0.0012,
respectively. Similarly, for the SITP, the computed p values for C1 versus C2, C1 versus C3, C1 versus
C4, and C1 versus C5 are 0.00071, 0.0005, 0.0019, and 0.0074, respectively. The calculated p values, for
both SDTP and SITP, indicate that the performance of the classification nodes based on the TFF of C1

outperforms significantly the performance of the classification nodes obtained using the TFFs of the
other four categories.

Figure 6 shows the average PRC, RCL, and F1-score values obtained by the classification nodes
(CN1–CN6) in terms of their ability to classify the eleven HMITs (A1–A11) and five intermediate classes
(IC1–IC5) based on the TFF of C1 for both SDTP and SITP.

Figure 6. Average PRC, RCL, F1-score values of each of the eleven HMITs and the five intermediate
classes for the intact subjects obtained based on the TFF of C1 using (a) SDTP and (b) SITP.

3.2. Evaluation Results of the Amputated Subjects (DB2)

In this section, we evaluate the performance of the proposed approach based on the acquired
EEG signals of the amputated subjects recruited in DB2. In particular, we provide the performance
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evaluation results of the channel-based analysis and the TFF-based analysis obtained using the SDTP
and the SITP.

3.2.1. Results of the Channel-Based Analysis

Table 5 provides the average PRC, RCL, F1-score, and ACC of the classification nodes for each
group of EEG channels, computed using the SDTP and SITP. In particular, for the SDTP, we extract
twelve TFFs (TF1–TF12) from the EEG signals in each group of EEG channels. Then, for each subject,
we construct four hierarchical classification models using the TFFs extracted from the four groups of
EEG channels. The classification nodes in each classification model are trained and tested using the
ten-fold cross-validation procedure. Finally, for each classification node, we report the average values
of PRC, RCL, F1-score, and ACC that are computed for the four subjects in DB2. For SITP, we utilize the
twelve TFFs extracted from each group of EEG channels to construct a single hierarchical classification
model for all subjects in DB2. The classification nodes in the constructed classification model are
trained and tested using the LOSO-CV procedure. Finally, for each classification node, we present the
average values of PRC, RCL, F1-score, and ACC that are computed over the four repetitions of the
LOSO-CV procedure.

In Table 5, the SDTP results indicate that the classification nodes achieved average PRC, RCL,
F1-score, and ACC values that are higher than 79% using the different groups of EEG channels, with the
lowest PRC, RCL, F1-score, and ACC values of 80.3%, 79.3%, 79.8% and 80.2%, respectively, obtained
using the TFFs extracted from the EEG channels of G2 and the highest PRC, RCL, F1-score, and ACC
values of 84.8%, 83.5%, 84.1% and 84.8%, respectively, achieved using the TFFs extracted from the EEG
channels of G1. On the other hand, the results obtained based on the SITP show that the classification
nodes achieved average PRC, RCL, F1-score, and ACC values that are higher than 61% using the
different groups of EEG channels, with the lowest PRC, RCL, F1-score, and ACC of 63.4%, 61.3%,
62.3% and 63.6%, respectively, obtained using the TFFs extracted from the EEG channels of G2 and the
highest PRC, RCL, F1-score, and ACC of 73.0%, 72.0%, 72.5% and 73.9%, respectively, obtained using
the TFFs extracted from the EEG channels of G1. The results reported for both the SDTP and the SITP
are well above the average random classification accuracy, which is equal to 9.1%.

To evaluate the performance of the proposed approach using each group of EEG channels, we have
conducted paired t-tests with significance level of 0.05 to compare the accuracies obtained using the
TFFs extracted from the EEG channels of G1 with the accuracies of the classification nodes based
on the TFFs extracted from the other three groups of EEG channels. For the SDTP, the computed
p values for G1 versus G2, G1 versus G3 and G1 versus G4 are 0.0037, 0.0238 and 0.0084, respectively.
Similarly, for the SITP, the p values for G1 versus G2, G1 versus G3 and G1 versus G4 are 0.0108,
0.0054 and 0.008, respectively. The calculated p values, for both SDTP and SITP, demonstrate that the
performance of the classification nodes based on the TFFs that are extracted from the EEG channels of
G1 outperforms significantly the performance of the classification nodes obtained using the TFFs of
the other three groups.
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Table 5. Results of the channel-based analysis obtained using the SDTP and SITP for the amputated
subjects in DB2.

Group of EEG
Electrodes

Classification
Layer

Classification
Node

Results of SDTP Results of SITP
PRC RCL F1-Score ACC PRC RCL F1-Score ACC

G1

Layer 1 CN1 79.7 77.3 78.5 80.5 74.3 72.7 73.5 75.1
Layer 2 CN2 81.5 79.3 80.4 81.5 69.8 68.0 68.9 70.8

Layer 3 CN3 85.2 84.6 84.9 84.6 76.8 76.5 76.6 76.4
CN4 88.8 86.0 87.3 89.1 77.0 74.9 75.9 81.7

Layer 4 CN5 92.1 92.3 92.2 92.2 82.7 82.3 82.5 82.0
CN6 81.3 81.4 81.4 81.2 57.4 57.6 57.5 57.5

Overall average 84.8 83.5 84.1 84.8 73.0 72.0 72.5 73.9

G2

Layer 1 CN1 76.7 74.9 75.8 77.7 66.6 64.9 65.8 71.4
Layer 2 CN2 77.5 76.8 77.2 78.4 65.0 58.9 61.8 64.0

Layer 3 CN3 83.9 81.7 82.7 81.2 58.0 57.8 57.9 58.1
CN4 86.5 83.8 85.1 85.3 67.6 63.9 65.7 65.0

Layer 4 CN5 85.0 85.8 85.4 84.7 77.7 78.1 77.9 77.9
CN6 72.1 72.6 72.3 73.5 45.7 44.4 45.0 45.6

Overall average 80.3 79.3 79.8 80.2 63.4 61.3 62.3 63.6

G3

Layer 1 CN1 77.0 75.9 76.5 78.7 68.4 67.3 67.8 70.0
Layer 2 CN2 79.7 78.3 79.0 80.4 66.7 63.8 65.2 67.6

Layer 3 CN3 85.2 83.3 84.3 83.8 62.2 62.4 62.3 62.2
CN4 85.5 84.4 85.0 85.2 70.0 59.0 64.0 67.6

Layer 4 CN5 87.4 86.3 86.9 85.0 75.5 75.4 75.5 75.4
CN6 76.4 76.8 76.6 76.4 46.5 46.1 46.3 46.9

Overall average 81.9 80.9 81.4 81.6 64.9 62.3 63.5 64.9

G4

Layer 1 CN1 76.7 74.4 75.6 75.2 66.7 62.0 64.3 67.6
Layer 2 CN2 80.7 79.1 79.9 80.7 66.2 62.5 64.3 67.7

Layer 3 CN3 84.3 81.3 82.8 82.7 69.8 69.9 69.8 67.0
CN4 87.9 86.8 87.3 87.3 75.5 68.3 71.7 79.8

Layer 4 CN5 90.5 90.7 90.6 89.1 70.6 70.3 70.5 70.5
CN6 78.1 77.1 77.6 77.7 53.0 52.1 52.5 52.2

Overall average 83.0 81.6 82.3 82.1 67.0 64.2 65.5 67.5

3.2.2. Results of the TFF-Based Analysis

Table 6 provides the average PRC, RCL, F1-score, and ACC of the classification nodes computed
for each of the five categories of TFFs using both SDTP and SITP. The results presented in Table 6 are
based on the TFFs extracted from the EEG channels of G1. The selection of G1 is based on the results
of the channel-based analysis, described in the previous subsection, in which the classification nodes
achieved their best performance when the TFFs were extracted from the EEG channels of G1 in both
SDTP and SITP. More specifically, for the SDTP, we construct five hierarchical classification models for
each subject. Each classification model is constructed using the TFFs comprised within one of the five
categories of TFFs. The classification nodes in each classification model are trained and tested using
the ten-fold cross-validation procedure. The results reported for each classification node include the
average values of the PRC, RCL, F1-score, and ACC computed over the four subjects in DB2. For the
SITP, we utilize the TFFs extracted from each of the five categories of TFFs to construct five hierarchical
classification model for all subjects in DB2. In particular, each classification model utilizes the TFFs of
one of the five categories extracted from the EEG signals of all subjects. The classification nodes in the
constructed classification models are trained and tested using the LOSO-CV procedure. Finally, for
each classification node, we present the average values of the PRC, RCL, F1-score, and ACC computed
over the four repetitions of the LOSO-CV procedure.

The SDTP results reported in Table 6 indicate that the classification nodes achieved average PRC,
RCL, F1-score and ACC values that are higher than 72% using the different categories of TFFs, with the
lowest PRC, RCL, F1-score and ACC values of 73.5%, 72.6%, 73.1% and 74.9%, respectively, obtained
using the TFFs of the statistical-based category and the highest PRC, RCL, F1-score and ACC values
of 90.5%, 89.5%, 90.0% and 90.2%, respectively, obtained using the TFFs of the log-amplitude-based
category. On the other hand, the obtained results based on the SITP show that the classification nodes
achieved average PRC, RCL, F1-score and ACC values thar are higher than 57% using the different
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categories of TFFs, with the lowest PRC, RCL, F1-score and ACC of 60.0%, 57.4%, 58.7% and 61.0%,
respectively, obtained using the TFFs of the statistical-based category and the highest PRC, RCL,
F1-score and ACC of 87.9%, 86.4%, 87.1% and 87.8%, respectively, obtained using the TFFs of the
log-amplitude-based category. The results achieved using both the SDTP and the SITP are well above
the average random classification accuracy.

To evaluate the performance of the proposed approach obtained using the five categories of
TFFs, we have conducted paired t-tests with significance level of 0.05 to compare the accuracies of the
classification nodes obtained using the TFF of C1 with the accuracies of the classification nodes based
on the TFFs of the other four categories. For the SDTP, the p values computed for C1 versus C2, C1

versus C3, C1 versus C4 and C1 versus C5 are 0.0098, 0.005, 0.0104 and 0.0084, respectively. Similarly,
for the SITP, the p values computed for C1 versus C2, C1 versus C3, C1 versus C4 and C1 versus C5 are
0.146, 0.0063, 0.0067 and 0.0089, respectively. The p values calculated for the SDTP and SITP indicate
that the performance of the classification nodes based on the TFF of C1 outperforms significantly the
performance of the classification nodes obtained using the TFFs of the other four categories.

Figure 7 shows the average PRC, RCL, and F1-score values obtained by the classification nodes
(CN1–CN6) in terms of their ability to classify the eleven HMITs (A1–A11) and five intermediate classes
(IC1–IC5) based on the TFF of C1 for both SDTP and SITP.

Table 6. Results of the TFF-based analysis obtained using the SDTP and SITP for the amputated subjects
in DB2.

Category of TFFs Classification
Layer

Classification
Node

Results of the SDTP Results of the SITP
PRC RCL F1-Score ACC PRC RCL F1-Score ACC

Log-amplitude-based
category (C1)

Layer 1 CN1 79.3 78.0 78.6 77.8 76.5 74.8 75.6 77.6
Layer 2 CN2 90.7 88.6 89.7 90.0 88.8 88.4 88.6 89.1

Layer 3 CN3 93.0 93.0 93.0 93.1 90.7 90.5 90.6 90.6
CN4 93.6 91.7 92.7 94.6 92.4 85.5 88.8 90.5

Layer 4 CN5 97.4 97.3 97.4 97.4 93.3 93.5 93.4 93.4
CN6 89.3 88.4 88.8 88.3 86.0 85.6 85.8 85.5

Overall average 90.5 89.5 90.0 90.2 87.9 86.4 87.1 87.8

Amplitude-based
category (C2)

Layer 1 CN1 72.3 71.6 72.0 74.8 71.8 69.0 70.4 74.0
Layer 2 CN2 84.7 82.3 83.5 84.0 77.6 73.9 75.7 76.7

Layer 3 CN3 84.8 83.4 84.1 83.8 73.6 72.8 73.2 73.0
CN4 91.3 86.8 89.0 90.7 87.1 78.5 82.6 85.7

Layer 4 CN5 85.3 84.9 85.1 84.9 85.4 86.2 85.8 85.2
CN6 72.7 72.8 72.8 72.3 62.9 61.7 62.3 61.6

Overall average 81.8 80.3 81.1 81.7 76.4 73.7 75.0 76.0

Statistical-based
category (C3)

Layer 1 CN1 71.2 68.7 69.9 73.7 67.0 63.1 65.0 68.2
Layer 2 CN2 72.1 70.6 71.4 73.6 61.7 57.4 59.4 63.0

Layer 3 CN3 74.4 74.0 74.2 74.6 52.6 51.4 52.0 51.3
CN4 78.7 78.6 78.7 82.9 67.7 63.3 65.4 74.0

Layer 4 CN5 83.9 83.4 83.6 83.9 72.5 73.0 72.8 72.1
CN6 60.8 60.3 60.5 60.5 38.5 36.1 37.3 37.1

Overall average 73.5 72.6 73.1 74.9 60.0 57.4 58.7 61.0

Spectral-based
category (C4)

Layer 1 CN1 76.4 75.1 75.7 75.6 74.4 70.8 72.6 74.7
Layer 2 CN2 85.6 84.5 85.0 85.5 77.8 76.8 77.3 78.3

Layer 3 CN3 92.1 91.5 91.8 91.9 83.8 82.9 83.3 82.8
CN4 92.7 91.8 92.3 93.1 85.1 76.9 80.8 85.0

Layer 4 CN5 92.7 92.7 92.7 92.8 87.4 87.6 87.5 87.7
CN6 87.5 86.5 87.0 86.9 70.2 69.9 70.1 70.4

Overall average 87.8 87.0 87.4 87.6 79.8 77.5 78.6 79.8

Spectral entropy-based
category (C5)

Layer 1 CN1 75.4 72.3 73.8 77.5 69.1 66.7 67.9 71.8
Layer 2 CN2 76.7 75.4 76.1 77.6 65.4 63.0 64.2 66.4

Layer 3 CN3 86.3 85.8 86.1 86.4 67.9 66.9 67.4 67.8
CN4 87.4 84.5 85.9 88.6 76.0 73.3 74.6 79.3

Layer 4 CN5 88.8 89.3 89.0 88.6 82.4 82.3 82.4 82.8
CN6 77.2 76.7 77.0 76.4 51.3 51.0 51.2 51.3

Overall average 82.0 80.7 81.3 82.5 68.7 67.2 67.9 69.9
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Figure 7. Average PRC, RCL, F1-score values of each of the eleven HMITs and the five intermediate
classes for the amputated subjects obtained based on the TFF of C1 using (a) SDTP and (b) SITP.

4. Discussion

This study aims to investigate the feasibility of using the CWD, which enables the extraction
of TFFs from the EEG signals, along with a hierarchical classification model to discriminate
between eleven HMITs, including: rest, basic finger and wrist movements, and grasping and
functional movements. The results demonstrate that our proposed approach can classify the eleven
HMITs and achieve promising performance in both subject-dependent and subject-independent
evaluation scenarios.

4.1. Channel-Based Analyses

In order to study the effect of the utilized different EEG channels on the capability of the proposed
approach to classify the eleven HMITs, channel-based analyses were carried out using four groups
of EEG channels that overlay the motor cortex regions in the brain. The results of the channel-based
analyses for both intact and amputated subjects, which are provided in Tables 3 and 5 for both SDTP
and SITP, indicate that our proposed approach achieved higher classification accuracies using the TFFs
extracted from the EEG channels of G1 compared to the performance obtained using the TFFs extracted
from the other three groups of EEG channels. In fact, G1 comprises EEG channels that cover various
motor cortex regions on both sides of the brain, including: midline region, left and right fronto-central
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regions, left and right centro-parietal regions, and left and right temporal lobe regions, while the other
three groups of EEG channels cover only subsets of the regions overlayed by the EEG channels of G1.
Hence, the results reported in Tables 3 and 5 suggest that the electrical activities generated during
different MI tasks within the motor cortex regions are propagating to various other regions in the brain.
This might be attributed to the volume conductor effect on the EEG signals [28], in which the electrical
activities generated within small cortical region are spatially propagated to other regions in the brain,
and consequently recorded by the sparsely distributed electrodes on the scalp [6,7,28,70,71].

4.2. TFF-Based Analyses

The TFF-based analyses aimed to investigate the effect of utilizing different categories of TFFs
on the classification accuracy of the eleven HMITs. Tables 4 and 6 show that the best performance of
our proposed approach was achieved using the TFF of C1, which outperforms significantly the other
four categories of TFFs, for both SDTP and SITP. Moreover, the results indicate that the performance of
the proposed approach achieved higher performance using the TFFs of C4 compared to the TFFs of
C2, C3, and C5, for both SDTP and SITP. On the other hand, the results obtained based on the TFFs of
C2, C3, and C5 vary depending on the training procedure and the EEG database used in the analysis.
In addition, the results in Tables 3 and 4 indicate that the performance of the hierarchical classification
framework has been increased significantly when the TFF of C1 was utilized in comparison with the
performance achieved using the all the TFFs extracted from the EEG channels of G1, for both SDTP
and SITP. Similarly, for amputated subjects, the results in Table 6 show that the average accuracy of
the hierarchical classification framework using the TFF of C1 has increased significantly compared
with the performance achieved using all the TFFs extracted from the EEG channels of G1, as shown in
Table 5, for both SDTP and SITP. The results of the TFF-based analyses indicate that the use of more
TFFs does not necessarily improve the classification accuracy. In fact, this finding can be attributed to
the fact that utilizing large sets of TFFs, without applying any selection procedure, can degrade the
performance of the classification nodes by exposing them to an extended group of unrelated features.
Moreover, the TFF-based analyses suggest that the TFF of C1 provides a low dimensional descriptor
that can capture the intra- and inter-personal variations in the EEG signals associated with different
HMITs for both intact and amputated subjects.

Furthermore, the results of the TFF-based analyses indicate that the proposed approach is
significantly degraded for the SITP compared to the SDTP. This is mainly due to the large variations in
the EEG signals of various HMITs across different subjects. Despite the reduction in the accuracies,
the performance of the proposed approach based on the SITP is still significantly higher than the
average random classification accuracy, which suggests the feasibility of applying the proposed
approach to optimize the number of training sessions required to control neural prosthetic devices.

4.3. Comparison with Previous Approaches

Literature reveals that the majority of the existing studies have focused on classifying MI tasks
associated with different limbs, such as feet, right hand, and left hand [8]. Despite the high classification
accuracies attained for classifying MI tasks performed by different limbs, discriminating between the
MI tasks within the same hand remains challenging [7–9].

Recently, few studies have investigated the possibility of applying EEG signal analysis to classify
different MI tasks and actual movements within the same hand. In this vein, few researchers have
investigated the possibility of decoding actual movements performed by each finger in one hand
using EEG signals. For example, Liao et al. [6] proposed a pairwise binary classification scheme to
discriminate between the flexion/extension movements of each pair of fingers. In particular, EEG
signals were acquired from eleven right-handed intact subjects while performing flextion/extension
movements of each finger using 128 electrodes. The acquired EEG signals were processed using a
power spectrum decoupling procedure and principle component analysis to extract a set of features.
For each pair of fingers, a SVM classifier is constructed based on the extracted features. Moreover, the
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training and validation of the classifier was performed using a subject-dependent scheme. In other
words, for each individual subject, the SVM was trained and validated using the EEG signals of the
subject under consideration without considering the EEG signals of the other subjects. The average
classification accuracy computed for all pairs of fingers over all subjects was 77.1%. In comparison
with the study presented in [6], our proposed hierarchial classification model incorporates a multi-class
classification node, namely CN6, that is responsible for discriminating between the flexion/extension
MI tasks of the individual fingers within the same hand. In fact, Liao et al. [6] have suggested that the
use of the multi-class classification scheme, which is employed in the present study, is more challenging
than the pairwise classification approach that has been adopted in their study. One advantage of using
the multi-class classification scheme compared to the pairwise classification is the capability to control
prosthetic hands using brain signals for performing real-world tasks [6]. In terms of classification
performance, CN6 of our proposed approach has enabled the discrimination between the fingers
flexion/extension MI tasks of the intact subjects with an average classification accuracies of 85.5%
and 74.4% for SDTP and SITP, respectively, based on the TFF of C1. Similarly, for amputated subjects,
CN6 achieved an average classification accuracies of 88.3% and 85.5% for SDTP and SITP, respectively.
Therefore, the results of our proposed approach is considered an improvement over those reported
in [6].

In another related study, Quandt et al. [33] proposed a one-versus-all multi-class classification
scheme to discriminate between the movements of four fingers, which are thumb, index, middle, and
little fingers. In particular, 32 EEG electrodes were utilized to record EEG signals from thirteen intact
subjects while pressing and releasing a button using each of the four fingers. Then, a low-pass digital
filter with bandwidth 0.15 Hz to 16 Hz was applied to the EEG signals. The samples of the filtered EEG
signals were directly used as features without employing any feature selection technique. For each
subject, four linear SVM classifiers were constructed using the extracted features to discriminate
between the movements of the four fingers. The accuracies of classifying the movements of the
thumb versus all other fingers, index versus all other fingers, middle versus all other fingers, and little
versus all other fingers, which were computed for each subject individually and averaged over all
subjects, were equal to 54%, 42%, 35% and 43%, respectively. Moreover, the average classification
accuracy computed over these four finger movements was 43.5%. Compared with the work of
Quandt et al. [33], Figure 6a shows that CN6 of our proposed approach was able to discriminate
between the flextion/extension MI tasks performed by the index, middle, ring, little, and thumb
fingers with an average F1-score of 82.8%, 88.6%, 86.1%, 84.5% and 85.1%, respectively, using the SDTP.
These results indicate that our proposed approach is an improvement over the work presented in [33],
taking into consideration that our proposed approach classifies various types of MI tasks besides the
fingers flexion/extension imagery tasks.

Other groups of researchers focused on investigating the possibility of classifying different wrist
MI movements within the same hand using EEG signals. In this vein, Vuckovic and Sepulveda [5]
developed an EEG-based BCI system to classify four different wrist MI movements, including flexion,
extension, pronation, and supination. Specifically, a pairwise binary classification scheme was used to
differentiate between the four wrist imagery movements, such that one binary classifier was employed
to classify each pair of wrist movements. To evaluate the performance of the BCI system, EEG signals
were recorded for ten intact subjects using 64 electrodes. Then, feature extraction and selection were
performed using Gabor transform and Davis-Douldin index methods, respectively. For each subject,
an Elman recurrent neural network was constructed using the extracted features to classify between
each pair of wrist imagery movements. The classification results reported in [5] indicate that the true
positive rate was as high as 80%. In a relevant study, Edelman et al. [9] utilized an EEG source imaging
(ESI) technique to classify four wrist MI movements associated with the right hand, including flexion,
extension, supination, and pronation. The EEG signals were recorded using 64 EEG channels for five
intact subjects. The EEG signals were processed using wavelet-based time-frequency analysis and
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Mahalanobis distance (MD)-based multi-class classifier to differentiate between the four wrist MI
movements. The average classification accuracy was 82.2%.

In comparison with the studies presented in [5,9], for the intact subjects, Table 4 indicates that
using any of the five TFFs categories, our proposed approach outperforms the results reported in [5,9].
For example, using the TFFs of C3, CN5 was able to discriminate between the wrist flexion/extension
and wrist ulnar/radial deviation MI tasks with average classification accuracies of 84.4% and 60.3%
for SDTP and SITP, respectively. Similarly, using the TFF of C1, CN5 was able to discriminate between
the wrist flexion/extension and wrist ulnar/radial deviation MI tasks with average classification
accuracies of 94.9% and 86.9% for SDTP and SITP, respectively.

In another study, Yong and Menon [8] proposed an EEG-based BCI system that can discriminate
between four MI tasks within the same limb, including rest, grasp movement, elbow movements,
and goal-oriented elbow movements. EEG signals were recorded for twelve intact subjects using 32
electrodes. Several configurations of feature extraction and classification methods were evaluated,
and the best classification accuracies were achieved using the logarithmic band-power feature
extraction method and the SVM classifier. The training of the SVM classifier was performed using a
subject-dependent procedure. The average classification accuracies reported for the differentiation
between rest versus grasp, rest versus elbow, and rest versus goal-oriented elbow movements were
80.5%, 75.1% and 76.6%, respectively. Moreover, the average three-way classification accuracies in
discriminating between rest, grasp, and elbow was 56.2% and between rest, grasp, and goal-oriented
elbow was 60.7%. In comparison, the CN1 of our proposed approach was able to discriminate between
the rest configuration of the hand and the 10 different HMITs of the intact subjects with average
classification accuracies of 85.1% and 76.6% for SDTP and SITP, respectively, using the TFF of C1.
Furthermore, using the TFF of C1, CN3 was able to discriminate between three task-oriented MI
grasp-related movements, namely small diameter grasp, lateral grasp, and extension-type grasp,
which were performed by the intact subjects, with average classification accuracies of 87.6% and
80.8% for SDTP and SITP, respectively. Therefore, the results of our proposed approach show an
improvement over the work presented in [8] with respect to the number of HMITs being classified and
the ability to generalize to new subjects.

5. Conclusions and Future Work

In this paper, we investigated the capability for decoding eleven MI tasks within the same hand
using EEG signals. In particular, the CWD was employed to extract a set of TFFs from the EEG signals.
The extracted TFFs are processed using a four-layer hierarchical classification model to classify each
EEG segment into one of the eleven MI tasks. Two different performance evaluation analyses were
conducted to quantify the effect of utilizing different combinations of EEG channels and TFFs on the
capability of the proposed approach to decode MI tasks within the same hand. These performance
evaluation analyses were applied to the EEG signals obtained from eighteen intact subjects and four
amputated subjects. For the intact subjects, the results of the channel-based and TFF-based analyses
show that the proposed system achieved average accuracies of 88.8% and 80.8% for the SDTP and
SITP, respectively, using the TFF of C1 that are extracted from the EEG channels in G1. Similarly,
for the amputated subjects, the results of the channel-based and TFF-based analyses show that our
proposed system achieved average accuracies of 90.2% and 87.8% for SDTP and SITP, respectively,
using the TFF of C1 that are extracted from the EEG channels in G1. The results reported in this study
demonstrate the feasibility of utilizing the CWD as a time-frequency representation of EEG signals to
enable the extraction of TFFs that can effectively discriminate between the MI tasks within the same
hand for both intact and amputated subjects. Moreover, the results reported for the SITP indicate that
the CWD-based TFFs capture the inter-personal variations in the EEG signals for different HMITs.
In fact, such a capability can increase the control dimension of EEG-based BCI systems to better control
dexterous prosthetic hands.



Sensors 2017, 17, 1937 24 of 27

Although the main goal of our proposed approach is to investigate the possibility of classifying
MI tasks within the same hand using EEG signals, the current study did not consider the problem of
describing the kinematic information of the MI tasks based on EEG signals. The kinematic information
of the hand’s joints, such as the fingers and wrist joint angles, is important to effectively control the
prosthetic hand in performing dexterous tasks. Therefore, we believe that combining the MI tasks
classification, which is considered in the current study, and the hand kinematic information, which
we plan to investigate in the near future, would enable better real-time control of prosthetic hands.
Moreover, our future research directions include comparing the performance of our proposed approach
in recognizing different MI tasks based on EEG signals that are acquired from closed-eyes subjects
with the performance achieved when the eyes are open. Such a comparison can be of great benefit to
assess the performance of real-world applications that involve subjects controlling prosthetic hands
while their eyes are open.
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