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Abstract: Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have
become the state-of-the-art methods in machine learning and achieved amazing success in speech
recognition, visual object recognition, and many other domains. There are several hardware platforms
for developing accelerated implementation of ANN models. Since Field Programmable Gate Array
(FPGA) architectures are flexible and can provide high performance per watt of power consumption,
they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based,
granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized
as granularity variability, scalability, integrated computing, and addressing ability: first, the number
of neurons is variable rather than constant in one core; second, the multi-core network scale can
be extended in various forms; third, the neuron addressing and computing processes are executed
simultaneously. These make the processor more flexible and better suited for different applications.
Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input,
multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate
the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building
ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

Keywords: artificial neural networks; FPGA; neuromorphic processor; granularity variable;
MIMO control

1. Introduction

In recent years, machine learning has entered into our daily life. When we communicate with
smart phones using natural language or get pictures on digital cameras using face detection, artificial
intelligence plays a key role in the process [1]. Over the past decade, Artificial Neural Networks
(ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods and
achieved amazing success in machine learning, especially in visual recognition, speech recognition,
and other domains [2–7]. With significantly higher accuracy than traditional algorithms in various
tasks like face recognition and image processing [8,9], DNNs have attracted the enthusiastic interest of
internet giants such as Google [10,11], Microsoft [12], Facebook [13], and Baidu [14]. There are several
hardware platforms for developing accelerated implementation of DNN models, including multicore
CPUs [15], General Purpose Graphics Processing Units (GPGPUs) [16], Application Specific Integrated
Circuits (ASICs) [17], and Field Programmable Gate Arrays (FPGAs) [18].

CPUs and GPUs are parts of General Purpose Processors (GPPs). The classic platforms based on
CPU and GPU are SpiNNaker and Carlsim, correspondingly. The SpiNNaker machine is a specifically
designed computer for supporting the sorts of communication found in the brain. It is based on the
connection of processing nodes, which have eighteen ARM processor cores in one node. Over hundred
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neurons can be modelled in each processor core and there are one thousand input synapses connected
to each neuron [15]. The Carlsim is a GPU-accelerated simulator which is capable of simulating the
neural model [19]. GPPs can provide a high degree of flexibility and tend to be more readily accessible.
However, the hardware performs with less energy efficiency, which is of particular importance in
embedded, resource-limited applications or server-based large scale deployments [1].

Recently, the development of the neuromorphic processor has received increasing attention.
For GPPs, application level execution relies on the traditional von Neumann architecture. It stores
instructions and data in external memory to be fetched. The von Neumann architecture is non-scalable
and inefficient in executing massive neural networks, and the von Neumann bottleneck can be
mitigated by colocated computation and memory [17].

As seen in Figure 1, the centralized sequential von Neumann architecture computer is different
from the brain’s distributed parallel architecture. The processor’s increasing clock frequencies and
power densities are headed away from the operating point of the brain. As to implementing neural
networks in a von Neumann architecture computer, a central processor has to simulate communication
infrastructure and a great number of neurons. The bottleneck which serves as the communication
channel between the processor and external memory causes power-hungry data movement while
retrieving synapse states and updating neuron states [17]. A single processor is not suitable for
simulating highly interconnected networks, which will cause interprocessor messaging explosions [17].
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computation structure of neural networks implies that the hardware suitable for exploiting pipeline 
parallelism takes advantage. When GPPs execute a parallel based on multiple cores, specially 
designed ASICs and FPGAs can support inherently pipelined and multithreaded applications, which 
are not based on the von Neumann architecture. They have the ability to exploit the large extent of 
pipeline parallelism and distributed on-chip memory. Similar to the brain, the neuromorphic 
processor has distributed and integrated computation and memory, and operate in parallel [1,20]. 
Developing the neuromorphic processor via the ASIC-based or FPGA-based approach shows their 
different advantages. 
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In comparison, the neuromorphic processor has a different architecture. The special computation
structure of neural networks implies that the hardware suitable for exploiting pipeline parallelism
takes advantage. When GPPs execute a parallel based on multiple cores, specially designed ASICs and
FPGAs can support inherently pipelined and multithreaded applications, which are not based on the
von Neumann architecture. They have the ability to exploit the large extent of pipeline parallelism and
distributed on-chip memory. Similar to the brain, the neuromorphic processor has distributed and
integrated computation and memory, and operate in parallel [1,20]. Developing the neuromorphic
processor via the ASIC-based or FPGA-based approach shows their different advantages.

ASICs are dedicated to a specific application. In recent years, the TrueNorth chip, which is
developed by IBM, has attracted considerable attention. It is a low power, high parallel chip with 4096
neurosynaptic cores. The core is the basic block, which has a crossbar array for synaptic connections
and neurons for calculation. Each core contains 256 input axons, a 64k synaptic crossbar, and 256
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neurons. The TrueNorth chip is a neurosynaptic chip produced via a standard-CMOS manufacturing
process [17,20]. Generally, the ASICs can provide high performance. At the same time, they are
expensive and time consuming to produce and the architectures are relatively fixed and inflexible [1].

Traditionally, we must consider the flexibility, performance, and energy efficiency when evaluating
hardware platforms. On the one hand, GPPs can be highly flexible and easy to use, but perform
relatively inefficiently. On the other hand, ASICs work with high efficiency at the cost of being
inflexible and difficult to produce [1]. As a compromise, the FPGA-based approach has drawn a
significant number of applications from scientists and become one of the most promising alternatives,
due to its low power usage, high performance, reprogrammability, and fast development round [21–26].
FPGAs often provide better performance per watt than GPPs and naturally fit with the neural network
execution [1]. Table 1 shows a comparison of neuromorphic processors and GPPs mentioned above for
implementing the neural network. Microcontroller Unit (MCU), which serves as a kind of low cost
GPP, is also included for full comparison.

Table 1. Comparison of neuromorphic processors and General Purpose Processors (GPPs) for
implementing neural network.

Features General Purpose Processors (GPPs) Neuromorphic Processors

multicore CPU GPGPU MCU ASIC-based FPGA-based

computing process sequential parallel
computing structure centralized distributed

energy-efficiency low best better
development round short longest longer

cost high high low highest moderate

In this paper we propose a FPGA-based granularity variable neuromorphic processor (FBGVNP)
with integrated computing and addressing cells. The presented neuromorphic processor consists
of neuromorphic cores structured by a router, a neural computing unit, and a data-transmission
controller. The router is used to build connections and keep communications between different cores.
Meanwhile, the neural computing unit is composed of neuron computing cells, which can process
computing and addressing simultaneously. Moreover, the data-transmission controller is responsible
for the computing result transmissions. The traits of the neuromorphic processor can be summarized
as follows.

(1) Granularity variability: The number of the cells in one neural computing unit can vary, which will
enhance the flexibility of the neuromorphic core compared with fixed architectures. The neuron
computing cells perform as the basic elements in this architecture. One can expand the size of the
cells as required. That will make the core better suited for different applications.

(2) Scalability: The scalability is achieved by connecting different cores with routers and extending
inner neural computing units. The data interaction through routers links the neuromorphic cores
so they become whole. Generally, routers serve as the communication nodes in the multi-core
network and the network scale can be extended as needed.

(3) Integrated computing and addressing ability: The neuron computing cell combines together
computing and addressing abilities. The data transmission uses the broadcast mechanism.
On this basis, a neuron computing cell serves as a data receiving and processing terminal and the
two processes are executed simultaneously, which makes the computations perform in parallel.

The paper is organized as follows. Section 2 introduces the architecture of the FBGVNP.
In Section 3, a neural network is mapped to the presented neuromorphic processor and applied in a
multi-input multi-output (MIMO) temperature sensing and control test platform. Then, the experiment
results and discussions are given. Finally, the conclusions are drawn in Section 4.
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2. Neuromorphic Processor Architecture

2.1. Architecture of FBGVNP

The architecture of the processor is designed to be granularity variable, scalable, and parallel, with
a router, a neural computing unit, and a data-transmission controller as the basic blocks. The neural
computing unit consists of neuron computing cells, which can conduct computing and addressing
simultaneously. The comparison of TrueNorth and FBGVNP is shown in Figure 2.
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From a structural view, the link relationship of TureNorth is shown in Figure 2a. The structure of
TureNorth core can be divided to three parts. The communication module is used to keep the data
interaction via a connected network. The synapses module is responsible for connecting different
neurons, while the neuron module serves as a neural computation center. The synapses module adopts
crossbar architecture, which makes the number of neurons in one core fixed at 256 [20]. Its basic block is
a core which contains a neural network with 256 inputs and 256 outputs connected through 256-by-256
synaptic connections [17]. As shown in Figure 3a, a TureNorth neurosynaptic core is composed of
input buffers, axons, dendrites, and neurons. The horizontal and vertical lines represent axons and
dendrites correspondingly. Also, the triangles represent neurons. The block dots, which serve as
synapses, represent the connections between axons and dendrites [20]. A synaptic crossbar organizes
the synapses in each core. The neuron’s output is connected to the axon’s input located in the same
core or in a different core over the routing network.

Figure 2b shows the connecting architecture of FBGVNP. In FBGVNP, the neuron and its
corresponding synapses are mixed in one computing cell, which serves as the basic element.
The contents of the synapses vary in different computing cells. A communication module connects
several neural computing units in one core, while the number of neurons can change in one core as
needed. Building on the local, one can link multiple cores together by distributed global connectivity
and construct more complex networks. Unlike TrueNorth, the basic structure of FBGVNP is the neuron
computing cell, and the number of the cells can change in a core as needed. In one cell, the neuron and
its corresponding synapses are mixed together.

The structure of a neuromorphic core in FBGVNP can be seen in Figure 3b. The neuron computing
cell serves as the basic element. It consists of two parts: decoder and neuron. The data transmission
uses broadcast mechanism. The neuron outputs (axons) are passed to the inputs of the neuron
computing cells in a sequence via the routing network. Each neuron can send out an axon packet to a
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target in the same local core or another external core. Then, the decoders in the target core receive the
past axon packet and start to decode. There are different pre-stored dendrite records in each decoder,
and the decoded axon information will be compared with the local dendrite records. After that, the
valid axon information will be transferred to the neuron for computing. Therefore, axonal branching is
executed hierarchically in two steps. Firstly, a connection passes through a long distance between the
cores. Secondly, via a short distance within a core, it is broadcasted to multiple neuron computing cells
after arriving at its target core.
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2.2. FBGVNP Internals

The FBGVNP core is composed of a router, a neural computing unit, and a data-transmission
controller. The details of the neuromorphic core can be seen in Figure 4. The router is used for
communicating with other cores, and the neural computing unit is where the neuron connection
and computing take place. In addition, the data-transmission controller is used for transmitting
neuron outputs.
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The FBGVNP architecture supports the interconnected neural network by building a network
of the presented neuromorphic cores. Connections between cores are implemented by sending data
though the router network. As shown in Figure 4, in a one router, one neural computing unit
structure, each router is decomposed into five separated data transfer directions: (1) left; (2) right;
(3) up; (4) down; and (5) local. Five input ports exist to receive the routing packets from local core or
nearest-neighbor routers in the left, right, up, and down directions. In addition, there are also five
output ports corresponding. The transmitted data packet between routers has the following format as
shown in Table 2, and the data length of each part can be changed as needed.

Table 2. The format of the transmission data packet.

Dx Dy Destination Unit Index Destination Cell Index Neuron Output

8 bits 8 bits 4 bits 8 bits 8 bits

Upon received a packet, the information in the dx or dy fields (number of hops in the left/right
or up/down directions correspondingly) is used to pass the packet out to one of five destinations:
the local neural computing unit or nearest neighbor routers in four different directions. For using
the X-Y dimension order routing strategy, the dx field is decremented to right hop or incremented
to left hop, and packets are routed in the horizontal direction first. When dx becomes 0, the dy field
is decremented to above hop or incremented to below hop. When the dx and dy both become 0, the
destination unit index field, which stores the target neural computing unit address, will be resolved.
Then, after stripping the associated bits, the remaining 16 bits are sent to the target neural computing
unit. The destination cell index field denotes the address of the outputting neuron, which can be
matched by the neurons in the target core. Thus, within a routing window, a packet from any core can
be sent to a neuron at any destination core, and the axon value is stored in the neuron output field.

The neural computing unit is where the neuron connection and the computing take place. The
packet transferred from the router will be broadcasted to all the cells in the neural computing unit.
There are different address-weight pairs pre-storage in the decoders. After the decoding of the packet
in each cell, the neuron output field data (axon value) of the address-matched packet will be sent to
the neuron as well as the corresponding pre-storage weight. In the neuron, the axon value and weight
will be multiplied and then sent to an accumulator. The result of the accumulator will become the
neuron output.

The data-transmission controller serves as the scheduler in computing the result transmissions.
It is used to control the processes of outputting neuron computing results stored in the sending buffer.

Comparably, the number of the neural computing units connected to a router can be extended in
a similar way.

The data transmission of FBGVNP proceeds according to the following steps.

(1) A neuromorphic core receives a packet from the network and resolves it. If not equal to zero, the
dx field will be decremented or incremented and the packet will be sent to the corresponding
right or left routing hop. Then, when dx becomes 0, the dy field will also be decremented or
incremented in a vertical direction transmission until it turns to 0.

(2) The destination unit index field will be resolved to get the target unit neural computing unit
address. The dx, dy, and destination unit index field bits are stripped and the remaining 16 bits
are broadcasted to the cells in the target neural computing unit. The destination cell index
field bits will be compared to the address entries pre-stored in each decoder. If they match, the
corresponding weight in the decoder will be sent to the neuron for computing, as well as to the
neuron output field bits in the packet. If not, the cell will work only when the next packet reaches
the neuron.

(3) The neuron receives weight and neuron output field bits from the decoder and multiplies them.
The result will be sent to an accumulator.
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(4) When a synchronization trigger signal called the global clock arrives, each neuron outputs the
accumulator result to the sending buffer and the core steps in the data sending process.

(5) After the global clock arrives, the core step is in the data transmission period.
The data-transmission controller initializes the N_period signal. It is a number denoting which
neuron’s computing result is selected to be transferred out. At the same time, the N_data_comp
signal pulses once and drives a process verifying the validity of the selected neuron’s computing
result stored in the sending buffer. If invalid, the N_data_null signal pluses once, and the core
goes to another data transmission period. On the other hand, if valid, the N_R_data_en signal
turns to the enabling state, until the end of this period’s data sending.

(6) When the N_R_data_en signal is enabled, the selected neuron’s computing result will be
transferred to the router, if the inner serial peripheral interface (SPI) port’s buffer is not full.
After the transferring, the router controller will send the packet targeting to the destination
core and return back a R_N_data-done signal to the data-transmission controller. Then, the
N_period and N_data_comp signals will be updated along with the core steps in another data
transmission period.

(7) After the transferring of the last neuron’s computing result, the core will keep waiting for the
next arrival of the global clock.

2.3. Features Comparison of FBGVNP and TrueNorth

FBGVNP and TrueNorth both serve as a neuromorphic processor but have their respective
features. The comparison of FBGVNP and TrueNorth can be seen in Table 3.

Table 3. Comparison of FBGVNP and TrueNorth.

Processors Neuron Number Computing and Addressing Scalability Power Consumption

FBGVNP variable integrated internal & external high
TrueNorth fixed separated external low

The main difference between FBGVNP and TrueNorth is from their corresponding structure,
since FBGVNP is developed based on a reprogrammable FPGA, while TrueNorth uses a relatively
fixed crossbar structure and is developed via ASIC-based approach. As mentioned above, ASIC-based
TrueNorth has the highest energy efficiency.

Further, an execution comparison between the two processors based on a fully-connected,
proportional–integral–derivative (PID) neural network (FCPIDNN) is presented as follows.
The structure of the reference FCPIDNN is shown in Figure 5.

Sensors 2017, 17, 1941 7 of 13 

 

(5) After the global clock arrives, the core step is in the data transmission period. The data-
transmission controller initializes the N_period signal. It is a number denoting which neuron’s 
computing result is selected to be transferred out. At the same time, the N_data_comp signal 
pulses once and drives a process verifying the validity of the selected neuron’s computing result 
stored in the sending buffer. If invalid, the N_data_null signal pluses once, and the core goes to 
another data transmission period. On the other hand, if valid, the N_R_data_en signal turns to 
the enabling state, until the end of this period’s data sending. 

(6) When the N_R_data_en signal is enabled, the selected neuron’s computing result will be 
transferred to the router, if the inner serial peripheral interface (SPI) port’s buffer is not full. After 
the transferring, the router controller will send the packet targeting to the destination core and 
return back a R_N_data-done signal to the data-transmission controller. Then, the N_period and 
N_data_comp signals will be updated along with the core steps in another data transmission 
period. 

(7) After the transferring of the last neuron’s computing result, the core will keep waiting for the 
next arrival of the global clock.  

2.3. Features Comparison of FBGVNP and TrueNorth  

FBGVNP and TrueNorth both serve as a neuromorphic processor but have their respective 
features. The comparison of FBGVNP and TrueNorth can be seen in Table 3. 

Table 3. Comparison of FBGVNP and TrueNorth. 

Processors 
Neuron 
Number  

Computing and 
Addressing Scalability Power 

Consumption 
FBGVNP variable integrated internal & external high 

TrueNorth fixed separated external low 

The main difference between FBGVNP and TrueNorth is from their corresponding structure, 
since FBGVNP is developed based on a reprogrammable FPGA, while TrueNorth uses a relatively 
fixed crossbar structure and is developed via ASIC-based approach. As mentioned above, ASIC-
based TrueNorth has the highest energy efficiency. 

Further, an execution comparison between the two processors based on a fully-connected, 
proportional–integral–derivative (PID) neural network (FCPIDNN) is presented as follows. The 
structure of the reference FCPIDNN is shown in Figure 5. 

 

Figure 5. Structure diagram of the reference fully-connected, proportional–integral–derivative neural 
network (FCPIDNN). 

Figure 5. Structure diagram of the reference fully-connected, proportional–integral–derivative neural
network (FCPIDNN).



Sensors 2017, 17, 1941 8 of 13

The FCPIDNN is a structure suitable for resolving multi-input, multi-output (MIMO), real-time
control problems [27,28]. It inputs reference and sampled real signals, and outputs control signals
to the actuators. The scale of the FCPIDNN depends on the number of input and output channels.
The presented FCPIDNN in Figure 5 adopts a 300 inputs and 6 outputs configuration. The execution
time comparison of FBGVNP and TrueNorth, based on the reference FCPIDNN, is presented in Table 4.

Table 4. Execution time comparison of FBGVNP and TrueNorth based on FCPIDNN.

Processors 1st Layer
(Gclk Period)

2nd Layer
(Gclk Period)

3rd Layer
(Gclk Period)

4th Layer
(Gclk Period)

FBGVNP 1 1 1 1
TrueNorth 1 1 1 2

It is obvious to see that, based on the FCPIDNN, the execution time of the TrueNorth lasts longer
than the FBGVNP. The main influencing factor lies in the dendrite extension operation. Because the
neuron number is fixed in one TrueNorth core, when there more synapses need to be accumulated
dendrite extension has to be applied, though that takes additional time and hardware resources.

On the other hand, when the number of the neurons connected in one TrueNorth core is less than
256, it will create waste in the unconnected crossbar (memory resources for saving synaptic weights).
For instance, Figure 6 shows the connection condition of the second layer of the reference FCPIDNN.
The valid connection is less than 1% (1/128). That is, over 99% of the crossbar resource is wasted.
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Relatively, FBGVNP employs the methodologies of granularity variability and integrated
computing and addressing. That makes the number of neurons in one core capably vary as needed
without additional hardware resources, which helps to improve the utilization of the hardware
resources and reduce time delays.

3. Experiments and Discussion

3.1. Experiment Setup

In this section, a FCPIDNN is mapped to the neuromorphic processor and applied in a temperature
sensing and control system. The control system includes a mockup, a power supply, temperature
sensors distributed in the mockup, a data monitoring computer, and a data processing circuit.
The presented neuromorphic processor is realized in a FPGA placed on the data processing circuit.
The structure of the temperature control system is shown in Figure 7.
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Figure 7. Structure of the temperature control system.

The configuration of the mockup contains six fans indicated as Fan1 to Fan6 and six inside modules
indicated as module 1 to module 6. The modules inside the mockup have different volumes and shapes.
A heater for generating heat is placed inside each module. The six heaters have different levels of
power. The temperature control actuators inside the mockup are cooling fans. The local temperatures
around the six modules are detected by distributed temperature sensors. The data processing circuit
acquires the temperatures from the sensors through the universal asynchronous receiver-transmitter
(UART) port, runs the temperature controller, and outputs the pulse width modulation (PWM) control
signals to the actuators. The data monitoring computer is used to collect the temperature information
via the UART port from the data processing circuit [28]. The prototypes of the data processing printed
circuit board (PCB) and the temperature sensing and control mockup are shown in Figure 8.
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3.2. Experiment Results and Discussions

We conduct experiments to validate the effectiveness of the FBGVNP-based temperature controller.
Figure 9 shows the response process when the temperature targets for all modules are set to constant.
Figure 10 shows the response process with multi-targets or the variational target.
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Figure 9. Experimental results of temperature control response when the target temperature is set to
constant. (a,c) Temperature responses of different modules (target temperature is 30 ◦C and 32 ◦C,
respectively); (b,d) changes of cost function values corresponding to the temperature responses shown
in (a,c).

In Figure 9, it indicates that the different modules’ temperatures approach the set target, and the
differences between the actual and target temperatures decrease. The cost function value is formulated
as the following Equation (1).

J(n ) =

√√√√1
2

6

∑
m=1

e2
m(n) (1)

where the difference between the target and actual temperature is represented by e, the number of the
module is represented by m, and the sample number is represented by n.

Figure 10 shows the results using the FBGVNP-based controller to deal with the temperature
control with different targets, which further validates the effectiveness of the temperature control and
exhibits its good robustness and adaptability to different scenarios. Figure 10a,b shows the control
results when two different targets were set. In the process, the target temperature of module 3 was set
to 33 ◦C and others were 30 ◦C. It can be seen that the cost function gradually reached the minimal and
the modules’ temperatures approached their specific targets. Figure 10c,d shows the control results
when the target temperature for modules 3 to 4 was set to 33 ◦C and the target temperature for other
modules was 30 ◦C. The modules approached both their targets, respectively. Figure 10e,f show the
control results if the modules’ targets varied, i.e., 33 ◦C at the beginning and then turned to 30 ◦C.
The FBGVNP-based controller modulated the modules’ temperature to the set targets successfully and
the cost functions got to minimal at last.
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Figure 10. Temperature control scenarios. (a,b) Temperature target of module 3 is set to 33 ◦C and
others are set to 30 ◦C. (c,d) Temperature target of modules 3 to 4 is set to 33 ◦C and others are set to
30 ◦C. (e,f) Temperature target is set to 33 ◦C at first 1800 s and then turned to 30 ◦C; (b,d,f) are the cost
function values corresponding to (a,c,e).

4. Conclusions

In this paper, we propose a FPGA-based granularity variable neuromorphic processor FBGVNP.
The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing,
and addressing ability: First, the number of the neurons is variable rather than constant in one
core; second, the number of internal neural computing units and the scale of the multi-core network
can be extended as needed; third, the neuron addressing and computing processes are executed
simultaneously. Additionally, a comparison between the FBGVNP and an existing neurosynaptic chip
TrueNorth is conducted. Moreover, a neural network-based controller is mapped to FBGVNP and
applied to a multi-input, multi-output (MIMO), temperature-sensing and control system. Experiments
validate the effectiveness of the presented neuromorphic processor. The FBGVNP provides a new
scheme for building ANNs, which is flexible and highly energy-efficient, and can be widely applied in
many areas with the support of the state-of-the-art algorithms in machine learning.
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