A simple and selective fluorescent sensor chip for indole-3-butyric acid in mung bean sprouts based on molecularly imprinted polymer coatings

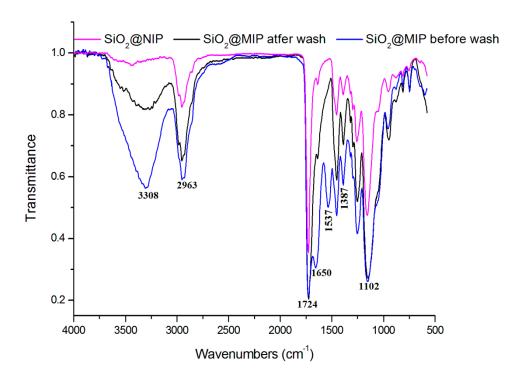
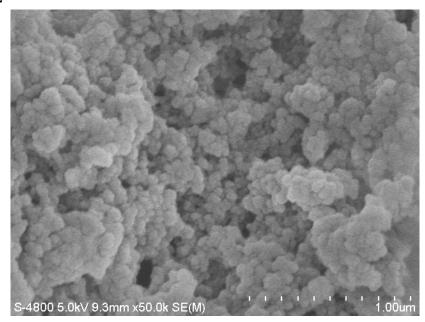
Jiahua Chang ¹, Bota Bahethan ¹, Turghun Muhammad ^{1,*}, Burabiye Yakup ¹ and Mamatimin Abbas ²

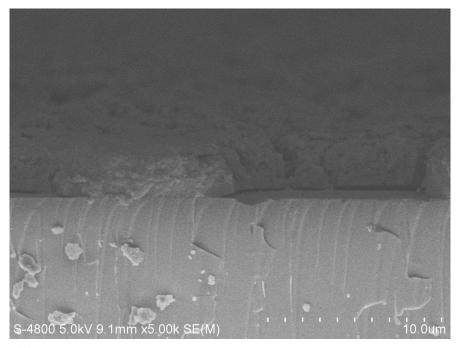
¹ College of Chemistry & Chemical Engineering, Xinjiang University, Xinjiang Key laboratory of Oil and Gas Fine Chemicals, Urumqi 830046, People's Republic of China

² Université de Bordeaux, CNRS, IMS, UMR 5218, F-33400 Talence, France

* Corresponding author: Dr. Turghun Muhammad, College of Chemistry & Chemical Engineering, Xinjiang University, Urumqi 830046, People's Republic of China Tel.:+86 9918582564; Fax.: +86 9918582809; Email: turghunm@sina.com

Supporting information


Figure.S1. ATR-FTIR spectra of SiO₂@NIP; SiO₂@MIP after wash; SiO₂@MIP before wash

NIP coating, MIP coating before and after wash presented quite similar infrared spectra, as shown in Fig.S1. Before washing, MIP coating showed clear absorbance at 1537 cm⁻¹, which is attributed to IBA. After washing, the band is disappeared. That is the clear evidence of complete elution of the imprinted molecule from the imprinted sites.

Figure S2

 $\emph{Fig. S2(a)}$. Scanning electron microscope image of surface of the MIP coated chip

 $\emph{Fig. S2(b)}$ Scanning electron microscope image of side of the MIP coated chip cut view

Figure S3

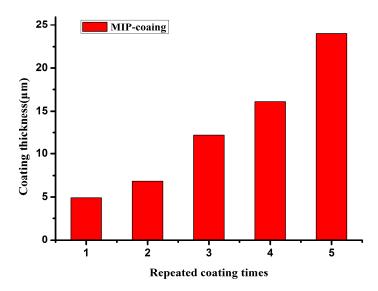


Fig.S3. The relationship between times of MIP coating and coating thickness