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Abstract: This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional
direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs).
We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data
information of each subarray, we only perform difference-operation on the auto-correlations, while
the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward
only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed
scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use
more data information of the sample covariance matrix and also suppress the effect of additive noise
more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation
performance largely as compared to the others, in white or colored noise conditions.

Keywords: improved spatial differencing, two-dimensional direction of arrival estimation; uniform
rectangular arrays; difference-operation; sample covariance matrix

1. Introduction

Two-dimensional direction of arrival (2-D DOA) (i.e., elevation and azimuth angles) estimation of
multiple signals with different array geometries is an important problem in many practical applications
such as radars and wireless communications. Various methods have been developed for solving this
problem [1–10], such as the subspace-based methods [1–6], the sparse reconstruction methods [7–9],
and the least-square approach [10].

However, for coherent signals [11–13], the traditional methods, such as the multiple signal
classification (MUSIC) [14] and estimation of signal parameters via rotational invariance technique
(ESPRIT) [15], suffer from performance degradation due to the rank-deficiency of the signal covariance
matrix. The forward backward spatial smoothing (FBSS) technique [16] is very effective in removing the
coherency but at the cost of few degrees of freedom (DOFs). Therefore, spatial smoothing techniques
with URAs are developed by using virtual sensors to increase the DOFs, e.g., the unitary ESPRIT [17]
and spatial smoothing MUSIC [18] algorithms. The 2-D spatial smoothing methods were also
applied for DOA estimation [19] or joint DOA and direction of departure (DOD) estimation [20] with
multi-input multi-output (MIMO) radar, where the transmission and reception diversity smoothing
is derived by constructing a new covariance matrix with decorrelated signal subspace. Besides,
compared with the higher-order cumulants methods [21,22], spatial smoothing methods also have
a lower computational complexity.
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Recently, spatial differencing techniques [23–27] have been introduced to suppress the effect of
additive noise. Aiardi et al. [23] proposed a high-resolution DOA estimation method by performing
the partial spatial differencing operation; the methods in [24,25] can suppress white noise or colored
noise by using the difference between the first and backward subarrays or between the neighboring
subarrays, respectively. Liu et al. [26] developed a generalized covariance differencing algorithm by
using the difference between the FB smoothing matrix and its complex conjugation. In fact, these
methods [23–26] cannot be directly applied for 2-D DOA estimation. Then, similar with the 2-D
configuration, the method in [27] explored four kinds of smoothing techniques including the spatial
difference smoothing (SDS), asymmetric SDS (A-SDS), transmit-receive diversity SDS (TRD-SDS),
and asymmetric TRD-SDS (A-TRD-SDS) for coherent targets with MIMO radar.

Nevertheless, the aforementioned spatial differencing techniques haven’t fully explored the
advantages of the URA. On the one hand, the involved spatial smoothing subarrays can only use part
of the data information of the sample covariance matrix. On the other, the classical spatial differencing
methods only focus on the suppression of additive noise and few ones consider the information
loss caused by the difference-operation. Therefore, in this paper, we propose an improved spatial
differencing (ISD) scheme for 2-D DOA estimation of coherent signals with URAs, where both the
forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed. Simulation
results show the usefulness of the proposed methods. For clarity, the main advantages are given
as follows:

• Classic spatial differencing techniques only use the data information of overlapped smoothing
subarrays, while FO-ISD and FB-ISD can extract all the data information of each row or column
rectangle subarrays.

• Classic spatial differencing techniques perform difference-operation on the whole overlapping
subarrays, while FO-ISD and FB-ISD calculate the differencing matrix for the auto-correlations
and keep the cross-correlations unchanged. So SD-SMS has less information loss, resulting in
a more effective noise suppression.

• FB-ISD can achieve a further improved performance than FO-ISD due to the increased number of
smoothing submatrices.

The rest of the paper is listed as follows. We first introduce the basic signal model of URA for
coherent signals in Section 2. In Section 3, we develop the FO-ISD and FB-ISD methods by using the
row or column rectangular subarrays, where the Cramér-Rao bound (CRB) is also given. Simulation
results are presented in Section 4.1 and we conclude this paper in Section 5.

In this paper, operators (·)T , (·)∗, and (·)H represent transpose, conjugation, and conjugate
transpose, respectively. IN denotes an N × N identity matrix and JM denotes an M×M exchange
matrix with ones on its anti-diagonal and zeros elsewhere. ◦ and ⊕ represent the Khatri-Rao product
and Hadamard product, respectively; diag(·) and blkdiag(·) denote the diagonal matrix or block
diagonal matrix operator. E[·] and vec(·) denote expectation and vectorization, respectively.

2. System Model

As described in Figure 1, we consider K narrowband far-field coherent signals sk(t)
(k = 1, 2, · · · , K) impinging on a URA (M× N sensors). We assume both x and y directions of the URA
are separated by half a wavelength. Then the output can be expressed as [11]

X(t) =
K

∑
k=1

ax(αk, θk)a
T
y (αk, θk)sk(t) + Z(t), (1)

where θk and αk are the elevation and azimuth angles of the k-th signal; ax(αk, θk) = ax(uk) =

[1, e−jπuk , . . . , e−jπ(M−1)uk ]T , ay(αk, θk) = ay(vk) = [1, e−jπvk , . . . , e−jπ(N−1)vk ]T , uk = sin θk cos αk,
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vk = sin θk sin αk. The elements of Z(t) are temporally and spatially complex white Gaussian noises
with zero-mean and variance σ2. Then, vectorizing X(t) yields

x(t) = vec(X(t)) = (Ax ◦Ay)s(t) + z(t), (2)

where Ax = [ax(u1), · · · , ax(uK)]
T , Ay = [ay(v1), · · · , ay(vK)]

T , s(t) = [s1(t), · · · , sK(t)]TK×1,
and z(t) = vec(Z(t)). With L snapshots, we calculate the sample covariance matrix as

R0 = E
[
x(t)xH(t)

]
=

1
L

L

∑
t=1

x(t)xH(t) = ARsAH + σ2IMN . (3)

where t = 1, 2, · · · , L, A = Ax ◦Ay, and Rs = E[s(t)sH(t)] represents the signal covariance matrix.

k
q
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s k K= 

O
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z
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M

Figure 1. The geometry model of a URA.

3. 2-D DOA Estimation with URA

In this section, we firstly review the classic spatial differencing technique in [26] and then we derive
the FO-ISD and FB-ISD methods in detail.

3.1. Classic Spatial Differencing Technique

The main idea of the classic spatial differencing technique is to build QxQy overlapping
rectangular subarrays with size of Px × Py, i.e., sliding windows, where Qx and Qy are the forward
subarrays along the x and y directions, respectively, Qx = M− Px + 1, Qy = N − Py + 1. Then, we can
get the (qx, qy)-th sliding window as

xqxqy(t) = APΦ
qx−1
x Φ

qy−1
y s(t) + zqxqy(t), (4)

where AP = APx ◦APy , APx is the submatrix of the array response matrix Ax consisting of the first
row Px and the submatrix APy of Ay consisting of the first row Py; qx = 1, · · · , Qx, qy = 1, · · · , Qy,
Φx=diag [e−jπu1 , · · · , e−jπuK ], Φy=diag[e−jπv1 , · · · , e−jπvK ], and zqxqy(t) is the corresponding noise
vector. Then the covariance submatrix of xqxqy(t) can be given as

Rqxqy = APΦ
qx−1
x Φ

qy−1
y RsΦ

1−qy
y Φ

1−qx
x AH

P + σ2IPx Py , (5)
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Using the covariance submatrix in (5), we can build the pa-th SDS (i.e., asymmetric SDS, A-SDS)
matrix as [26]

R f
pa =

1
QxQy

Qx

∑
qx=1

Qy

∑
qy=1

Rqxqy −
(

1
QxQy − pa

) Qx

∑
qx=1,qx /∈ma

Qy

∑
qy=1,qy /∈na

Rb
qxqy , (6)

where ma = [m1
a, m2

a, · · · , mpa
a ], mi

a ∈ [1, 2, · · · , Qx], and 1 ≤ i ≤ pa; na = [n1
a, n2

a, · · · , n fa
a ],

nj
a ∈ [1, 2, · · · , Qy], 1 ≤ j ≤ fa; Rb

qxqy = JPx Py R∗qxqy JPx Py .
We can see that A-SDS exploits the asymmetric difference between the complete forward spatially

smoothed matrix and incomplete backward spatially smoothed matrix, and the noise can be suppressed
by the differencing matrices in (6). However, since the forward and backward smoothed matrices have
similar data structures, the difference-operation will have great information loss and performance will
decrease greatly in the low SNR condition.

3.2. Improved Spatial Differencing (ISD) Scheme

3.2.1. Analysis for Row Rectangular Subarrays

As described in Figure 2a, we divide the URA into Qx row rectangular subarrays along the
x direction, where each one contains Qy sliding windows along the y direction. We take the first
one as an example and write it as x1x(t) = [xT

1,1, · · · , xT
1,N ]

T , where x1,n denotes the first row Px of xn,
xn = AxΦn−1

y s(t) + zn(t) is the received signal of the sensors in the n-th column of URA, n = 1, · · · , N.
Figure 2b describes the covariance matrix R1x of x1x(t). We can see that the data information within
the blue box is constructed by the covariance submatrices R1qy(t) (qx = 1) in (5). Therefore, in each
row rectangular subarray, the sliding windows (within the blue box) can only use part of the data
information of the covariance matrix Rmx, (m = 1, 2, · · ·M), where Rmx represents the covariance
submatrix of xmx(t). To fully use this data information and also decrease the information loss caused
by difference-operation, the FO-ISD and FB-ISD methods are given as follows.
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Figure 2. (a) The first row rectangular subarray (b) Its covariance matrix.

3.2.2. Forward only ISD (FO-ISD) Method

We continue to take the covariance matrix R1x in Figure 2b as an example. Since the matrix
R1x is symmetric, we can only extract the submatrices below the diagonal ones from top to bottom.
Each column submatrix of R1x can be divided into some column submatrices block, and the information
of n-th (n = 1, · · · , Qy − 1) column can be set as
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R1,n =




x1,n

x1,n+1
...

x1,n+Py−1

 xH
1,n, · · · ,


x1,Qy

x1,Qy+1
...

x1,N

 xH
1,n

 =


APx

APx Φy
...

APx Φ
Py−1
y

Π1,n + σ2Cn = APΠ1,n + σ2Cn, (7)

where x1,n(t) = APx Φn−1
y s(t) + z1,n(t), z1,n(t) is the corresponding noise vector with z(t); Π1,n ={

Φn−1
y RsΦ1−n

y AH
Px

, Φn
yRsΦ1−n

y AH
Px

, · · · , Φ
Qy−1
y RsΦ1−n

y AH
Px

}
, and Cn = [c1, 0Px Py×Px , · · · , 0Px Py×Px ],

and c1 = [IPx , 0Px , · · · , 0Px ]
T . From (9), We observe that only the first submatrix contains

auto-correlations, while the others are constructed from the cross-correlations. So we can perform the
difference-operation on the first one, i.e.,

x1,1

x1,2
...

x1,Py

 xH
1,1 − JPx Py




x1,n

x1,n+1
...

x1,n+Py−1

 xH
1,n



∗

JPx = AP

(
Rs −Θ∗Φ1−n

y R∗s Φn−1
y ΦPx−1

x

)
AH

Px
, (8)

where JPx Py A∗P = ApΘ∗, Θ = diag{e−jπd1 , · · · , e−jπdK}, and dk = (Px − 1)uk + (Py − 1)vk;

JPx A∗Px
= APx ΦPx−1

x . Using the differencing matrix in (8) to replace the first submatrix in (7),
we have

R̄1,n = APΠ̄1,n = APH̄1,ndiag
(

AH
Px

, · · · , AH
Px

)
. (9)

where H̄1,n =
{(

Rs −Θ∗Φ1−n
y R∗s Φn−1

y ΦPx−1
x

)
, · · · , Φ

Qy−1
y RsΦ1−n

y

}
, and the number of AH

Px
is

Qy − n+1. We see that the matrix R̄1,n can suppress the effect of noise by performing the
difference-operation on the auto-correlations.

Then, the remaining Py columns of R1x (i.e., the last sliding window) can be expressed as

R1,Qy = APΦ
Qy−1
y RsΦ

1−Qy
y AH

P + σ2IPx Py , (10)

Likewise, performing the difference-operation on the matrix R1,Qy , we have

Rd
1,Qy

= R1,1 − JPx Py R∗1,Qy
JPx Py = APΠ1,Qy = APH1,Qy AH

P , (11)

where H1,Qy = (Rs −Θ∗Φ
1−Qy
y R∗s Φ

Qy−1
y Θ).

Combining (9) and (11), the new differencing matrix constructed by the data information below
the diagonal line can be rewritten as

R̄1 = [R̄1,1, R̄1,2, · · · , R̄1,Qy−1, Rd
1,Qy

]

= AP

{
H̄1,1, H̄1,2, · · · , H̄1,Qy−1, H1,Qy

}
diag

(
AH

Px
, · · · , AH

Px
, AH

P

)
, (12)

where the number of AH
Px

is
(
(Qy + 1)Qy/2− 1

)
. Similar with the processing of the first row

rectangular subarray, we can extract the information of the qx-th subarray and form the corresponding
differencing matrix Rqx . As a result, the FO-ISD matrix can be defined as

R f =
1

Qx
∑Qx

qx=1 Rqx . (13)
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where

R̄qx = AP

{
H̄qx ,1, H̄qx ,2, · · · , H̄qx ,Qy−1, Hqx ,Qy

}
diag

(
AH

Px
, · · · , AH

Px
, AH

P

)
, (14)

and H̄qx ,n =
{(

Rs −Φ
1−qx
x Θ∗Φ1−n

y R∗s Φn−1
y ΦPx−1

x Φ
qx−1
x

)
, · · · , Φ

qx−1
x Φ

Qy−1
y RsΦ1−n

y Φ
1−qx
x

}
, Hqx ,Qy

= (Rs −Φ
1−qx
x Θ∗Φ

1−Qy
y R∗s Φ

Qy−1
y ΘΦ

qx−1
x )

Based on the definition in (13), we can prove that the FO-ISD matrix R f has the following property.

Theorem 1. Consider a URA consisting of M× N sensors, where both the x and y directions are separated by
half a wavelength. By performing partial difference operation for each row rectangular subarray, we can form
the FO-ISD matrix R f as in (13). Then, if PxPy > K, QxQy > K, Qx, Qy > 1, the rank of R f is equal to the
number of coherent signals.

Proof. See the Appendix A.

3.2.3. Forward Backward ISD (FB-ISD) Method

In this part, using the FB processing, we develop the FB-ISD method as follows.
As in (14), we can calculate that [20]

J((Qy+1)Qy/2−1)Px+Px Py A1 = J((Qy+1)Qy/2−1)Px+Px Py diag
(
A∗Px

, · · · , A∗Px
, A∗P

)
= diag

(
JPx A∗Px

, · · · , JPx A∗Px
, JPx Py A∗P

)
= diag

(
APx Φ1−Px

x , · · · , APx Φ1−Px
x , APΘ∗

)
(15)

= A1diag
(

Φ1−Px
x , · · · , Φ1−Px

x , Θ∗
)

,

where A1 = diag
(

A∗Px
, · · · , A∗Px

, A∗P
)

. Combining (14) and (15), we can get the backward spatial
differencing matrix of Rqx as

Rb
qx = JPx Py R∗qx J((Qy+1)Qy/2−1)Px+Px Py

= APΘ
{

H̄qx ,1, H̄qx ,2, · · · , H̄qx ,Qy−1, Hqx ,Qy

}∗
diag

(
ΦPx−1

x , · · · , ΦPx−1
x , Θ

)
AH

1 .
(16)

Then, the FB-ISD matrix can be defined as

R f b =
1

2Qx
∑Qx

qx=1

(
Rqx + JPx Py R∗qx J((Qy+1)Qy/2−1)Px+Px Py

)
. (17)

Remark 1. Comparing FO-ISD and FB-ISD, Rqx can extract all the information below the diagonal line,
while R∗qx includes the information above the diagonal line. Thus, FB-ISD use more data information than
FO-ISD. Besides, due to the increased number of smoothing sub-matrices, FB-ISD can achieve a further improved
performance than FO-ISD, including accuracy and resolution.

3.2.4. Summary of FO-ISD and FB-ISD Methods

From (13) and (17), both FO-ISD and FB-ISD are proposed using the partial spatial differencing
process for each row rectangular subarray. In fact, as described in Section 3.2.1, to improve the
information utilization of the sample covariance matrix, we can first divide the URA into Qy column
rectangular subarrays. Then, using the ISD scheme in Sections 3.2.2 and 3.2.3, we can develop the
corresponding FO-ISD matrix R f

c and FB-ISD matrix R f b
c . In this case, the final ISD matrices can

be set as

R f
0 =

{
R f , R f

c

}
, R f b

0 =
{

R f b, R f b
c

}
. (18)
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Clearly the final ISD matrices are more effective than R f and R f b, due to the use of more data
information. Then, the summary of proposed methods can be described as Algorithm 1.

Algorithm 1: FO-ISD and FB-ISD for 2-D DOA estimation of coherent signals
Input :x(t) = As(t) + z(t), t = 1, 2, . . . , L
Output : Estimated 2-D DOAs (θk, αk) , k = 1, 2, . . . , K

1 Calculate the sample covariance matrix of xqx x(t) as R̂qx x = 1/L ∑L
t=1 xqx x(t)xH

qx x(t);
2 Construct the qx-th spatial differencing matrix by performing partial difference-operation on

the matrix R̂qx x as R̂qx ;
3 Extract the information above diagonal submatrices as

R̄1 = [R̄1,N , R̄1,N−1, · · · , R̄1,N−Py+1, R̄1,1] and compute its backward smoothing matrix R̄b
1;

4 Build the FO-ISD matrix as R̂ f = 1/Qx ∑Qx
qx=1 R̂qx ;

5 Compute the FB-ISD matrix as R̂ f b = 1/(2Qx)∑Qx
qx=1

(
R̂qx + JPx Py R̂∗qx J((Qy+1)Qy/2−1)Px+Px Py

)
;

6 Similar with Step 1∼6, for the column rectangular subarrays, construct the column spatial

differencing matrix as R̂ f
c and R̂ f b

c ;
7 Compute the final ISD matrices as R̂ f

0 =
{

R̂ f , R̂ f
c

}
, R̂ f b

0 =
{

R̂ f b, R̂ f b
c

}
;

8 Perform singular value decomposition (SVD) operation on the final ISD matrices and use 2-D
ESPRIT algorithm for 2-D DOA estimation [28].

Remark 2. AF-SDS and AFB-SDS only use the data information of overlapped smoothing subarrays, while
the proposed scheme can extract all the data information of each row or column rectangle subarrays. Besides,
both FO-ISD and FB-ISD only perform the difference-operation on the auto-correlations and the cross-correlations
are kept unchanged. In this case, both the differencing submatrices and cross-correlations can be used to suppress
the effect of additive noise. Therefore, the ISD scheme can achieve a performance improvement due to less
information loss.

Remark 3. FO-ISD and FB-ISD almost have the same computational complexity, which includes the formation
of ISD matrices, SVD operation, and eigenvalue decomposition (EVD) operation. To avoid the increase of
computational complexity, we can form the ISD matrices by using the sample covariance matrix of received
signals, the cost of which is about LM2N2 + (PxPy)2(PxPy + Qy(Qy + 1)/2) + 2K3. Then, similar to the
proposed methods, we can also get the covariance matrix of the sliding windows for the spatial smoothing
technique [17] or A-SDS method [27] by the same way, the cost of which is about LM2N2 + (PxPy)3 + 2K3.
So the proposed methods can achieve performance improvement with slightly higher computations. To be clear,
we show the runtime of relevant methods in Figure 3 . We can see that FB-ISD has a heavier runtime load than
that of FBSS and A-ISD.

Remark 4. As described in Section 3.2, the proposed methods are developed for ideal sensors without any mutual
coupling. Then, just like the methods in [29,30], the ISD scheme is also suitable for direction finding with
unknown mutual coupling. However, when considering the array imperfections, the ISD scheme will fail due to
the breakdown of array response matrices.
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3.3. Cramér-Rao Bound (CRB)

As described in Section 2, according to [31], the CRB can be obtained as

CRB =
σ2

2L

{
Re
[
DHΠ⊥AD⊕ R̂T

s

]}−1
, (19)

where D =
[

∂a1
∂θ1

, · · · , ∂aK
∂θK

, ∂a1
∂φ1

, · · · , ∂aK
∂φK

]
, R̂s =

[
Rs Rs

Rs Rs

]
, Π⊥A = IMN −A(AHA)−1AH , ak is the kth

column of A, k = 1, · · ·, K.

4. Simulation Results

We now evaluate the estimation performance of the ISD methods through in-depth numerical
experiments. We assume the number of sensors is M = N = 9. The wavelength of transmitted signals
is set as 1m and the estimation performance is examined over 500 Monte Carlo trials. To evaluate the
performance, the root-mean-square-error (RMSE) can be defined as

RMSE =

√√√√ 1
2N̄K

N̄

∑
i=1

K

∑
k=1

[(
αk − α̂

(i)
k

)2
+
(

θk − θ̂
(i)
k

)2
]

. (20)

where N̄ denotes the total independent trials and (αk, θk) and (α̂k, θ̂k) represent the true and estimated
2-D DOAs of the k-th signals, respectively.

4.1. Effectiveness Evaluation

In this experiment, we examine the effectiveness of the FB-ISD method for Gaussian white noise
and colored noise, respectively. The colored noise is of a second-order autoregressive (AR) model
with coefficients a = [1,−0.7, 0.6] [11–16]. The size of the subarrays are Px = Py = 6 and the signals
are located at α = [10o, 20o, 30o, 40o], θ = [20o, 30o, 40o, 50o]. The number of snapshots is L = 300 and
the signal to noise ratio (SNR) is 15 dB. Figure 4 shows the estimation results of FB-ISD with 200 Monte
Carlo trials in white and colored noise conditions, respectively. As expected, all the 2-D DOAs can be
estimated effectively and accurately. Besides, FB-ISD with white noise performs better than that of
colored noise, especially for the first two signals.
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Figure 4. The estimated 2-D DOAs of FB-ISD method with 200 Monte Carlo trials.

Then, we compare the resolution ability by resolving two closely located signals in white and
colored noise conditions, where the signals are located at α = [10o, 12o], θ = [20o, 22o], the SNR is
10 dB, and the number of snapshots is 200. Figure 5 describes the estimated DOAs of FB-ISD and
A-SDS with 200 Monte Carlo trials. We can observe that FB-ISD can resolve the two signals successfully
by using the difference-operation, while A-SDS fails to distinguish the signals.
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Sensors 2017, 17, 1956 10 of 14

4.2. RMSE Performance in the Case of White Noise

In this experiment, we examine the performance of the proposed methods versus SNR and
the number of snapshots in the white noise condition. Here we assume the signal locations as
α = [10o, 20o, 30o], θ = [20o, 30o, 40o], and we compare the proposed methods with other existing
methods, including the forward only spatial smoothing (FOSS) method, FBSS method [16], and A-SDS
method [27] (pa = 3). Moreover, the CRB is provided for comparison.

Performance versus SNR: Figure 6 shows the RMSE versus SNR in the white noise condition, where
we assume Px = Py = 7 and L=300. It is observed that, the performance of FB-ISD is better than that
of other methods due to the full use of data information. Since the partial difference-operation has less
information loss than that of A-SDS, the performance of FB-ISD is much better, especially in the low
SNR condition. Then, FB-ISD performs a little better than FO-ISD due to the FB processing. We also
see that the RMSE curve of FB-ISD is very close to the CRB. In addition, combining with Figure 3,
we can conclude that the proposed methods have a better performance but also higher computations.

Performance versus the number of snapshots: Here, we evaluate the performance in terms of the
number of snapshots, where the SNR is 0 dB and Px = Py = 7. As shown in Figure 7, when the number
of snapshots is small, FB-SMS still outperforms other methods and also matches closely to the CRB
due to the use of more data information. Then, A-SDS performs much worse for the small number of
snapshots, and the reason is that the information loss caused by difference-operation becomes greater
with the decrease of snapshots. Besides, just like Figure 6, since spatial smoothing based methods
suffer from aperture loss, all these methods cannot converge to the CRB in the limit for very high
SNR condition.
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Figure 6. RMSE curves versus the SNR in the white noise condition.
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4.3. RMSE Performance in Case of Colored Noise

In this experiment, we focus on the performance analysis of the proposed methods in a colored
noise condition, where the performance for the white noise and colored noise conditions is also
compared systematically.

Performance versus SNR: Figure 8 presents the RMSE curves in terms of SNR in the colored noise
condition, where the parameters are the same as Figure 7 except for the SNR varying from 0 dB to 35 dB.
From Figure 8, we can see that the performance of FB-ISD is better than those of methods in [16,27].
Then, in the colored noise condition, FB-ISD and FO-ISD perform much better than others due to the
partial difference-operation. Compared with Figure 6, we can summarize that the proposed scheme can
suppress the effect of colored noise more effectively, and the reason is that the colored noise covariance
matrix has significant values for diagonal and non-diagonal elements. Then, compared with A-SDS,
we can also reach the following conclusion: FB-ISD can improve the performance greatly by only by
performing the difference-operation on auto-correlations, for both colored noise and white noise.
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Figure 8. RMSE curves versus the SNR in the colored noise condition.

Performance versus the number of snapshots: Figure 9 shows the RMSE against the number of
snapshots in the colored noise condition, where the parameters are the same as Figure 7. As described
in Figure 9, the performance of FB-ISD is superior to the other methods. Then, compared to Figure 7,
the major distinction is that the performance for these methods is not much affected by the number
of snapshots in the colored noise condition. The reason is that the information loss caused by
difference-operation can also change with the number of snapshots. Besides, the proposed methods
still have better performance, especially for the small number of snapshots.
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Figure 9. RMSE curve versus the number of snapshots in the colored noise condition.
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5. Conclusions

In this paper, we have proposed an ISD scheme for 2-D DOA estimation of coherent signals with
URAs, including FO-ISD and FB-ISD methods. By extracting all the data information of each row or
column rectangular subarrays, we only performed the difference-operation on the auto-correlations,
while the cross-correlations were kept unchanged. In this case, the reconstructed submatrices can
use more data information of the sample covariance matrix and also suppress the effect of additive
noise more effectively. Then, both the FO-ISD and FB-ISD methods were developed using the spatial
smoothing submatrices. Simulation results demonstrated that, compared with other recently spatial
smoothing and spatial differencing techniques, the performance of proposed methods was superior in
white or colored noise conditions, in terms of accuracy and resolution ability.

Appendix A

Combining (13) and (14), we have

R f = (1/Qx)∑Qx
qx=1

(
AP

{
H̄qx ,1, H̄qx ,2, · · · , H̄qx ,Qy−1, Hqx ,Qy

}
diag

(
AH

Px
, · · · , AH

Px
, AH

P

))
(A1)

In the case of rank (AP) > K, the rank of D f can be simplified as

rank
(

R f
)
= rank

(
1

Qt

Qt

∑
qt=1

{
H̄qx ,1, H̄qx ,2, · · · , H̄qx ,Qy−1, Hqx ,Qy

})
, (A2)

Considering that the rank of a matrix is unchanged by a permutation of its column, we can rewrite
rank

(
D f
)

as

rank
(

R f
)
= rank

({(
Rs −Θ∗

Qx
∑

qx=1
Φ

1−qx
x R∗s Φ

qx−1
x ΦPx−1

x

)
, · · · ,(

Rs −Θ∗Φ
1−Qy
y

Qx
∑

qx=1
Φ

1−qx
x R∗s Φ

qx−1
x ΦPx−1

x Φ
1−Qy
y

)})
,

(A3)

Using

Qx

∑
qx=1

Φ
1−qx
x R∗s Φ

qx−1
t = CCH , C = diag (p∗)AH

Qx
, Rs = ppH , (A4)

we have

rank
(

R f
)
= rank

({(
Rs −Θ∗CCHΦPx−1

x

)
, · · · ,

(
Rs −Θ∗Φ

1−Qy
y CCHΦ

Qy−1
y ΦPx−1

x

)})
, (A5)

where Θ = Φ
Py−1
y ΦPx−1

x . Then, by assuming F =
{

p∗, Φ1−Px
x C, · · · , p∗, Φ1−Px

x Φ
1−Qy
y C

}
and

G =
{

IK,−Φ
1−Py
y , · · · , IK,−Φ

1−Py
y

}
, the rank of D f can be represented as

rank
(

R f
)

= rank (Gblkdiag (F) blkdiag (F)) = rank (Gblkdiag (F)) = rank (F)

= rank
{

C, · · · , Φ
1−Qy
y C

}
= rank

(
diag (p∗)

(
AQx ◦ AQy

)H
)

,
(A6)

From (A6), since both AQx and AQy are Vandermonde matrices, the rank of R f is equal to K,

if rank
(

AQx ◦AQy

)
> K.
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Thus, we can conclude that, in the case of rank
(

APx ◦APy

)
> K and rank

(
AQx ◦AQy

)
> K,

the rank of R f is equal to the number of sources. That is, if PxPy > K, QxQy > K, Qx, Qy > 1, the rank
of R f is equal to the number of coherent signals.

This completes the proof.
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