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Abstract: Railway track irregularity surveying is important for the construction and the maintenance
of railway lines. With the development of inertial devices, systems based on Inertial Navigation
System (INS) have become feasible and popular approaches in track surveying applications. In order
to overcome the requirement of high precision control points, this paper proposes a railway track
irregularity measurement approach using the INS combined with the Zero Velocity Updates (ZUPT)
technique and sub-decimeter scale landmarks. The equations for calculating track irregularity
parameters from absolute position errors are deduced. Based on covariance analysis, the analytical
relationships among the track irregularity measurements with the drifts of inertial sensors, the initial
attitude errors and the observations of velocity and position are established. Simulations and
experimental results show that the relative accuracy for 30 m chord of the proposed approach for
track irregularity surveying can reach approximately 1 mm (1¢) with gyro bias instability of 0.01° /h,
random walk noise of 0.005°/+/h, and accelerometer bias instability of 50 ug, random noise of
10 ug/+/Hz, while velocity observations are provided by the ZUPT technique at about every 60 m
intervals. This accuracy can meet the most stringent requirements of millimeter scale medium
wavelength track irregularity surveying for railway lines. Furthermore, this approach reduces the
requirement of high precision landmarks which can lighten the maintenance burden of control points
and improve the work efficiency of railway track irregularity measurements.

Keywords: railway track irregularity; INS; ZUPT; Kalman filtering; RTS smoothing; covariance analysis

1. Introduction

Railway track irregularity is one of the most important factors affecting the safe operation
of the train. The irregularity can be assessed by track geometry parameters, the measurement of
which plays a significant role in monitoring the track deformation and guiding the maintenance of
railway lines [1]. Trains with higher speed require higher track smoothness. With the development of
high-speed railways, the demands for track irregularity measurement techniques with high-accuracy
and high-efficiency are increasing rapidly [2].

Traditionally, there are mainly two categories of track irregularity measurement methods namely
dynamic measurement and static measurement. Methods based on Track Recording Coaches (TRCs)
are a kind of dynamic one under wheel loading [1,2]. TRC can measure long wavelength track
irregularities with high work efficiency, but their availability is restricted and the measuring accuracy
does not fulfil the requirements for track renewals [2]. Another method based on manual measuring
devices is a kind of static one. These kinds of devices used for spot assessment are surpassed by
railway track surveying trolleys in terms of data amounts and time efficiency. The lightweight and
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flexible track surveying trolleys can handle different measurement tasks such as measurements during
the construction stage and measurements of shorter stretches of track [1,2].

The most well-known track surveying trolleys, widely deployed in China, are the GPR1000 series
products provided by Amberg Technologies (Regensdorf, Switzerland) [3]. These kinds of trolleys
are all-in-one solutions for surveying railway tracks, enabling the assessment of parameters such
as the cant, track gauge, chainage, alignment and level with high accuracy, and can provide
sub-millimeter absolute accuracy measured by total station in stop-and-go mode. The Swiss Trolley
is another representative track surveying trolley which is developed by the Institute of Geodesy
and Photogrammetry at ETH Zurich [1,2]. Glaus [2] has presented this kind of trolley thoroughly.
The basic devices the Swiss Trolley is equipped with are an inclinator, track gauge measuring system
and odometer can measure gradient, cant, gauge, and chainage. Absolute positioning is done by
Global Positioning System (GPS) and total station. According to Glaus [2], GPS measurements fulfill
most accuracy requirements contrary to the general opinion that submillimeter absolute accuracy has
to be obtained in railway surveying.

With the development of inertial sensors, INS is no longer expensive and bulky. Track surveying
systems based on INS have been widely applied in railway track surveying. A limitation of
a stand-alone INS is its unfavourable error propagation. Error drifts of INS should be depressed
by other sensors providing relative or absolute measurement updates such as ZUPT, Control Points
Coordinate Updates (CUPT) and so on. Luck [4] discussed the design of track measurement systems
based on INS/GPS integration for the dynamic inspection locomotive. Niu and Chen [3] presented an
INS/GPS integrated system to measure railway track irregularities with relative accuracy of 1 mm.
Non-holonomic constraint and ZUPT are implemented in their integration algorithm to improve the
surveying accuracy. In order to implement the measuring task with GPS outages, Li [5] presented
a track irregularity measurement trolley equipped with a laser-aided INS/odometer integration system
for subway applications whose observations of control points for position updates are measured by the
laser scanner. The standard deviations of alighment and vertical irregularities can reach approximately
1 mm. Jiang [6] utilized the Inertial Measurement Unit (IMU)/odometer/landmark integration
technique for railway track surveying and obtained absolute accuracy of 1 mm.

The key issue about INS-based track irregularity surveying systems is suppressing the position
errors produced by drifts of inertial sensors using global position information [5]. In previous works,
a great job about the integrations of INS with position measurement sensors and the data fusion
of INS measurement with position information has been done for track surveying, but there are
few studies about the accuracy requirement of inertial sensors and observation updates that can
meet the demands for railway irregularity measurement theoretically or experimentally. In addition,
the traditional measurement approaches based on global position information have their own
shortcomings. The GPS signal may be disturbed by obstructions which affect the GPS solutions
negatively. The distribution and precision of control points are crucial to ensure measurement accuracy
for approaches based on landmarks. The construction of control points is costly and their maintenance
at millimeter scale is difficult. Even if high precision landmarks can be maintained well, high precise
position observations cannot be provided frequently in order to insure the work efficiency of the
measurement task, especially for environments without GPS signals, for instance tunnels. Therefore,
it is significant to research approaches using less number of landmarks with low precision for railway
track irregularity measurement.

This paper focuses on the issue of the railway track irregularity measurement using a ZUPT-aided
INS to achieve high accuracy measurement of relative track geometry parameters to reduce the
requirement of high precision landmarks. A typical Kalman filter with 12 dimensional error states is
designed in the paper and the Rauch-Tung-Striebel (RTS) smoother is employed to improve the position
accuracy. Aiming at alignment and level irregularities of the track, we established the relationship
between track irregularities and the absolute position deviations. Based on covariance analysis,
the surveying accuracy of alignment and level irregularities is presented, the analytical relationship
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about irregularities with the precisions of inertial sensors, initial attitudes and observation updates are
established. Simulation and experimental results are also presented.

The rest of the paper is organized as follows: Section 2 describes the railway track irregularity and
assessment. Section 3 describes the overview of the measurement system and the algorithm. Section 4
describes the design of Kalman filter and smoother. Section 5 presents the calculation method of
alignment and level irregularities from absolute position as well as the covariance analysis of them.
Section 6 reports the simulation and experimental results of track irregularity. Section 7 concludes
this paper.

2. Railway Track Irregularity and Assessment

Railway tracks can be regarded as a 3-dimensional curve [3,5]. Track irregularity refers to the deviation
of the track from its design geometry, which is usually determined by five geometry parameters, namely
alignment (horizontal alignment), level (vertical alignment), cant (super-elevation or cross-level), twist
and gauge [7-9]. As illustrated in Figure 1, the axes of the rail coordinate system are defined as follows:
the x-axis is in the travelling direction, y-axis parallel to the running surface, and z-axis perpendicular to the
running surface and pointing downwards. Alignment is the track’s displacement in the horizontal plane,
which can be seen as the deviation of actual track from the design one in horizontal plane. Level is the
displacement in the vertical plane [1]. Gauge is the distance between the inner sides of the two railheads.
Cant is the difference between the elevations of the running surface of two rails, representing the tilting of
the track in curves in order to compensate the centripetal force. Twist is defined as the difference in cant
over a given length.

Figure 1. Track coordinate system and geometry parameters.

In this paper, the gauges are estimated from track gauge measurement system. Cant and twist
can be calculated in simple models, and will not be discussed in detail. The alignment and level
irregularities will be evaluated as examples to demonstrate the measuring accuracy.

According to the railway standards [8,9], the alignment and level are measured by the vector
distance value with a chord of fixed length (e.g., 30 m) on the rail surface in the horizontal and vertical
directions respectively. The magnitude of alignment and level irregularities will be calculated by
differential method of 30 m chord. As shown in Figure 2, the red curve represents a segmentation of
railway track in 3-dimensional space; the other two curves are the projections in horizontal plane and
vertical plane respectively. The 30 m long chord is determined by points py,, and p3p,; on the curve.
Take the point ps on the curve as an example. The distance from ps to the chord is the vector distance
of this point represented by d;. Vector distance of the next adjacent point ps5, with 5 m interval is
dsy5,. The track irregularity of point ps can be calculated by Equation (1) [8]:

As = (ds - ds+5m) - (‘Is - 52+5m) = (ds - ‘glvs) - (ds+5m - js+5m) (1)

where d~s and LL+5m represent measurement values of vector distances about points ps and ps. 5.
ds and d,4 5, represent the design values of them. Ag represents the track irregularity of point ps,
projection of which in the horizontal plane is the alignment irregularity and in the vertical plane is the
level irregularity.
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Figure 2. Vector distances of two points with 5 m interval on a 3D curve for 30 m chord.

3. Track Irregularity Measurement System

The track irregularity measurement system is illustrated in Figure 3. The system is equipped
with a T-type trolley, a track gauge sensor, a high precision prism, an odometer, and a navigation
grade IMU. The IMU consists of three high accuracy ring laser gyros (RLGs, bias instability: 0.01°/h
and angular random walk (ARW): 0.005° /v'h) and three high stability quartz accelerometers (bias
instability: 50 pg and random noise: 10 pg/+/Hz). The prism mounted on the trolley is used to
provide position observations worked with a Leica optical total station (1 mm and 0.5”) based on
control points. The odometer of the system can be used as an aid to determine the position of the
irregularity measurements along the track in this paper. The gauge sensor is used to measure the

gauge of the tracks.

Gauge Sensor

| AV
Traveling L v m
wheel IMU /"‘-
Odometer Measuring

Wheel

Figure 3. The track irregularity measurement system and its configuration diagram.

4. Kalman Filtering and Smoothing Algorithm Design

4.1. Overview of Data Processing

Figure 4 illustrates an overview of the data processing procedure of the Kalman filtering and
smoothing algorithm based on ZUPT-aided INS combined with landmarks employed in the paper.
The system makes use of the measurements of IMU (angular increments A® from gyros and specific
force integrations Av from accelerometers) and the initial position measured by total station for initial
alignment to calculate the initial attitudes. After that the trolley is pushed forward manually on the
track at walking speed. After it moves across a certain distance interval (60 m in this paper), the trolley
stops and a zero-velocity observation and a position observation will be updated. Then Kalman
filtering and smoothing algorithm is executed to output the optimized position, velocity and attitude
measurements of the interval. Since the wheels of the trolley can keep continuous contact with the
railway track, the 3-dimensional track geometry can be determined by position and attitude sequences
of the INS uniquely. Then track parameters can be calculated and track irregularities can be detected.
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Figure 4. Block diagram of the filtering and smoothing algorithm.

4.2. System Equations and Measurement Equations of Kalman Filter

The error equations of the attitude, velocity and position for the railway track surveying
application can be expressed as Equation (2) [10]:

P" =-—wl x " +ow! — Cléwh,
~ —wl x @ — Clow?,

V' = x " — 2w+ wh)) X 0V — (26wl + swi) x v + ClIoft )
~ 1 X " — 2w X 6V + CLof

o = ov"

where i-frame is the inertial frame. n-frame is the local level frame (North-East-Down) used
as the navigation frame. b-frame is the body frame of the IMU (Forward-Right-Down).

" = [ ON P ¢D } ! represents the vector of attitude errors about the north, east and downward
axes of the navigation frame. C; represents the direction cosine matrix. w}, represents the turn rate of
the navigation frame with respect to the inertial frame expressed in the n-frame. It can be obtained by
summing the Earth’s rotation rate with respect to the inertial frame and the turn rate of the navigation
frame with respect to the Earth as: w}, = wi + wy,.
dv" is the vector of velocity errors. f" represents the specific force in navigation axes. 5f’ is the drift
errors of accelerometers. Jr” represents the position error in navigation axes. The errors of inertial
sensors in this paper are normally modeled as piecewise constant values. The position coordinates of

the measured track are expressed in segmentation with ng-frame, which is so near with the n-frame

T
that C;;° ~ I and ér'"0 = C;°0r" ~ 61" = { ory Org Orp } . For medium wavelength (30 m chord)

6 wfb represents the drift errors of gyroscopes.

track irregularity surveying, the track segmentation is set to be 60 m long in this paper. Moreover & w?b
and 0f’ can be expressed as shown by Equations (3) and (4):

n b n T n T
Cb(Swib :é"wib = [ EN € €D } +Cb[ Wex Wgy Wez } 3)

where dw}, is the drifts of gyros expressed in n-frame. ey, ¢ and ¢p are the equivalent gyro biases of
the north, east and downward directions. wqy, wgy and wg, are the random noises of gyros:

ot =o' = [V Ve Vo | +Cf war way wer | @

where 6f" is the drifts of accelerometers expressed in n-frame. Vy, Vg and Vp are the equivalent
accelerometer biases of the north, east and downward directions. w;y, Wqy and w,; are the random
noises of accelerometers.

The railway track surveying application has its own characteristics compared with some
other applications based on inertial measurement such as land vehicle navigation, airborne gravity
measurement and so on. Since the track of high speed railways is almost level and straight with
a very large radius of curvature, trolley maneuvers are rather weak when moving on the track at
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low speed [3,6]. Some error parameters of the INS are coupled together with others, for example,
the orientation error is coupled with the equivalent east gyro bias, and the level errors are coupled
with equivalent horizontal accelerometer biases, so the equivalent east gyro bias e and the equivalent
horizontal accelerometer biases V and Vg are unobservable. They will not be estimated as error
states in the Kalman filter. Since the trolley moves in walking speed (less than 8 km/h [8]) and the
length of the measurement interval is short, the terms of wy, and éw! can be ignored as shown
in Equation (2).

Consider the analysis above, a typical Kalman filter with 12 dimensional error states is established
in this paper. The system error model and the observation model can be expressed as Equation (5):

4() = Ax(1) + Gur) -
©)
z(t) = Hx(t) +v(t)
where the error state vector x(¢) can be written as in Equation (6):
T
x(t) = |: ¢N ¢ ¢p OSuvn Jdvg duvp Ory Org Orp en ep Vp 6)

According to Equation (2), the system error matrix A and the system noise matrix G can be
expressed in simplified form by Equations (7) and (8):

0 —QsinL 0 0 0 0 0 0 0 -1 0 07
QsinL 0 QcosL 0 0 0 0 0 0 O 0 0
0 —QcosL 0 0 0 0 0 0 0 0 -1 0
0 —fp fE 0 —2Q0sinL 0 0 0 0 O 0 o0
fo 0 —fN 20 sin L 0 2QcosL 0 0 0 O 0 o0
A —fE N 0 0 —2QcosL 0 0 0 0 O 0 1 @
0 0 0 1 0 0 0 0 0 O 0 o0
0 0 0 0 1 0 0 0 0 O 0 o0
0 0 0 0 0 1 0 0 0 O 0 o0
0 0 0 0 0 0 0 0 0 O 0 0
0 0 0 0 0 0 0 0 0 O 0 o0
0 0 0 0 0 0 0 0 0 O 0o 0 ]
n
G Cb 0323 (8)
O3x3  Cj

T
z(t) = { ov*t o' } is the filter observation vector and velocity as well as position of the trolley are
used as update information in the Kalman filter. The measurement matrix H is defined by Equation (9):

©)

o | 93x3 Ixs 033 033
03x3 O3x3 Isxz O3xs

w(t) and v(t) are the system noise and the measurement noise, whose Power Spectral Density (PSD)
are Q(t) and R(f) respectively. They can be expressed as Equation (10):

T
w(t):[ng Wey Wer Wax Way waz}, w(t) ~ N(0,Q(t))
Q) = diag([ o3, o3, . o, o, o )
T
v(t)z{va Uop Vop Ury  Urg v,D} , v(t) ~ N(0,R(t))

R(t):diag({agN o, 03, Oh 0F Oh D

(10)
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4.3. Smoothing Algorithm

The position errors and their covariance between two observation updates will increase with time
caused by the residual system errors. It is even more serious for the situations that the observation is
few and not much precise. In order to obtain optimal position estimations during the updates outages,
a smoothing algorithm must be applied utilizing all the past, current and future measurements [11,12].
This paper employs the well-known RTS smoothing algorithm to estimate the states in the measurement
intervals. The RTS smoother consists of a common forward Kalman filter and a backward smoother.
The backward sweep begins at the end of the forward Kalman filter. Figure 5 illustrates the computation
procedure of the RTS smoother.

i - + - +
Forward filter P/A p/k P/‘V P/,\.
. ny =.
X 1 X 1 x/‘\ x;\_
Ly 4 e lii Z lisi e Iy Ly
Bt Xy, Xy
a P,

RTS smoother

Figure 5. The RTS smoothing algorithm computational process.

The forward Kalman filter is the common one, can be expressed in discrete form as Equation (11) shows:

Ky = Py H] { kP HL +Rk}

%fy = X+ Ke |21 — Hkﬁ;k}

P = [I— KeHi Py (11)
Kpoq = Pk

Py = P fkq>,f + T QI

where %7, fi and P fk represent the updated estimate of state vector and its corresponding covariance
matrix of the forward filter at epoch k. X is the optimal predicted estimate and Pﬁc 41 Tepresents its
covariance matrix. Hy is the measurement matrix. K is the gain matrix of forward Kalman filter at
epoch k. @y, is the system state transition matrix which can be calculated by matrix A.

The backward smoother can be expressed in the discrete form as shown by Equation (12) [13,14]:

Ry = f(ij, Py =Py

Hy = Pr® (Pf_kﬂ)il

R % & (12)
Xy = xfk + Hy |:Xk+1 - xfk+1}

—~

Pk fk Hk{ fk+1 _Pk+1} Hk

where X; is the optimal smoothed estimate of state vector at time epoch k. Py is the error state covariance

matrix of the smoother. Hy, is the smoothing gain matrix.

4.4. Alignment Irreqularity and Level Irregularity Calculated from Absolute Poisition Devition

In order to assess the track irregularity, the relative geometry parameters of alignment and
level should be calculated after obtaining the absolute position of the track. As Figure 6 illustrates,

an arbitrarily 30 m chord on the 60 m track segmentation is determined by two points pg,, and
T

. . . ng -
p3om whose coordinates are respectively marked in ng-frame as rp), = | 7po, N TpouE  TpouD
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T
no . .
and 1y, = { TpsomN  TpsomE  "paomD } . The measurement values of their coordinates are marked

as T, = |7, 7 7, Dand¥e = [7 7 7 " respectivel
Pom pouN  "pomE " pomD Paom psomN  "psomE  "psomD P Y- Ps
represents an arbitrary point on the trajectory for this chord, coordinates of which are marked as
T T
rzg = { TpeN TpE  TpD } for the true value and FZS = [ TpN TpE TpD } for the measurement
value. d; is the vector distance from ps to the chord, projections of which in horizontal plane and
vertical plane are alignment and level, respectively.

(a) (b)

Figure 6. (a) Track segmentation and the 30m chord; (b) Alignment and level calculated from the
navigation coordinate.

As shown in Figure 6, the track segmentation is 60 m long for ZUPT and absolute position update.
For arbitrary 30 m chord on the track segmentation, we define a new frame as c-frame, whose x-axis is
identical with the chord and can be obtained by a rotation 6, about z-axis and a rotation 6; about y-axis
of np-frame sequentially. We can calculate the vector distance values for every point of a trajectory
by transforming the coordinates from ng-frame to c-frame. The relationship between ny-frame and
c-frame can be written as Equation (13):

B 1o 1o

Thex cosf 0 —sing, cosf, sinf, 0 ”;;fN - rZOmN
c c _ o« 0 _ 1o
r, = | Ty | = 0 1 0 sinf, cosf, O V’fsE VzomE
C H 0 0
i TPSZ sm 0] 0 cos 0] 0 0 1 rpsD a rpOmD
r . . no no (13)
cosf;cosf, cosfsinf, —sinb TN~ TpouN
- —sinb, cos 6, 0 rZSE - rzng
iné 6 in @, sin 6 0 Mo 4M0
| sinfjcost, sinf;sinb,  cosf "psD ~ oD

According to the definition of alignment and level together with the Figure 6, r;, , represents the
alignment and r}, , represents the level and they can be calculated by Equation (14):

C — no 1o : no _ No
rpsy - (rpsN rpOmN> sinf + (rpsE rpOrnE> cos by

C . L] 1o : nog _ no : : no _ ho
Tpsz = (rPsN B rPomN) sinf; cos 0, + (rpsE rpOmE> sin6; sin 6, + (rpsD rmmD) cos 6,

(14)
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In addition, we can express 6, and 6; by coordinate values as shown in Equation (15) according to
Figure 6:

0 ] ] L]
r —r T —r
sin 9[1 — P3omE " PomE cos Qa — P3omN " pomN
(rno ”0 )2+( ng "O )2, ( ng rno )2+( ) 1'10 )2
P3omN p(Jm p3omE POmE p30mN pomN P3omE pOmE
10 10 5
: _ POm P30m
s 9[ =
T S N C e, L (15)
P3omN pOmN p3omE " PomE p3omD " PomD

2 2

710 Vlo HO _ Vlo
\/( P30m N V[]mN) + (rP3OmE rPOrnE)
2 2 2
nO 710 'HO Vlo V!O _ nO
\/(rp30m VOm ) + ( P3omE VOME) + (rl’3(]mD rf’OmD)
The deviations of r;,sy and r;s , can be calculated by variational method as expressed by Equations (16)
and (17):

cost; =

c py <y oy < o Ipey ", ar;sy 1o Ihy ey
Oy = Br"“ Orpen 570 0N T ar™, or 8r"” O ponE T Jsine, ésinb, + cost, dcos b, (16)
psN " pomN psE PpomE
7§
C — PSZ PSZ PSZ no PSZ PSZ }"Gz 1o
(51’psz = or SNJr or 0N+ (5 E+ or oE+ (5 5D+ 51’0mD
o p P P p p
P p(]m VO mE F’Om D (1 7)
qu sz psZ :
+asm dsinf, + Tl dcosf, + Ising; dsin6; + acose 5cos€l

Substituting Equations (16) and (17) into Equation (1) yields the alignment irregularity and the
level irregularity. Since gradient of the railway track is very small (25 m/1000 m for the largest
gradient) and the turning radius is very large (2000 m) in general, the alignment irregularity and the
level irregularity can be simplified by ignoring the small terms as Equations (18) and (19) show:

Dpy =01y, — 0

(4 pHSYZy ! n n ng n i n i (18)
547 1 : m
~ - Or”SN B 5rﬂ?+5an + ?7: (érpg(lmN B 51’7’81711\1)} sin 9” + [51’,75 B érpO+SmE + % <JYP§OWE B érﬂng)] cos 9“
l
_ ¢ 5. ~ ng  ¢.Np 5m 1o s M0
Apez = 05, — 015~ (‘%D (5rps+5mD) + 3 (5rp30mD o ) (19)
where I, = (rno — o )2 + ( "o o )2 + ( R )2 represents the length of the
¢ pSOmN pOmN pSOm p[)m pSOm pOmD p g

chord. Is,;, = 5m is the distance between points ps and p;_s,,. The derivation processes of Equations (18)
and (19) are shown in Appendix A. As Figure 7 illustrates, even though the absolute position measurements
may have deviations bigger than centimeter scale, the relative deviations can also be millimeter scale due to
the common offset contained by the adjacent points ps and ps 5.

Measured curve Py p
; s+5m

Designed curve

Figure 7. The relationship between absolute deviation and relative deviation.

5. Covariance Analysis

The track irregularity measurement accuracy can be presented by its variance. According to
Equations (18) and (19), in order to calculate the variance of track irregularity, the covariances among
51’"0 5rn0 and 5rZ?D (i=0m,s,s +5m,30m) should be calculated. However, the analytical solutions
of the Rlccati equation and the state vector of the filtering and smoothing system are difficult to
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calculate, we will firstly carry out the covariance analysis theoretically for the simplified situation by
ignoring the system noises, and numerically for the general situation with system noises. Since the
projections of the Earth angular velocity through the attitude errors are small and remain constant in
short time interval, they can be equivalent to the gyro drifts. The terms of Coriolis acceleration are so
small that they can also be ignored in a short time interval. Therefore, the system matrix can be further
simplified as expressed in Equation (20) for the simplified situation [10]:

0 0 0 000O0O0O0O-1 0 0
0 0 —QcosL 000000 0 0 O
0 0 0 000O0O0O0O 0 —-10
0 —g 0 0000O0O0O 0O 0 O
g 0 0 0000O0O0 0O 0 O
0 0 0 000O0O0O0O O 0 1
A_oo 0 100000 0 0 O 20)
0 0 0 010000 0 0 O
0 0 0 001000 0 0 O
0 0 0 000O0O0O0O 0O 0 O
0 0 0 0000O0O0O 0O 0 O
0 0 0 000000 0 0 O]

where g is the value of gravity. In addition, in order to simplify the solving process, we suppose that
the railway track is a straight track in north direction without loss of generality. In these conditions,
Equations (18) and (19) can be simplified as expressed by Equations (21) and (22):

l
_ s.C c _ (5,10 1o Sm (50 "o
Apsy = (5rpsy — ers+5my - ((SrpsE - 5rps+5mE) + T (5rp30mE o 5rp0mE> (21)
l
n m, 5m n n
Apsz = (57(;752 - 5r;s+5mz = (&’PSD - 5rpg+5mD) + T (5rpgomD o 5rl’ng) (22)

For a ZUPT-aided INS with landmark integration, the distribution of trolley stop points and
position observations is crucial to ensure the surveying accuracy [5]. In general, higher-frequency
observation updates will result in better accuracy. However higher-frequency observation means more
stop points which will influence the work efficiency. Therefore, in this paper, the distance of two stop
points is 60 m for measuring position and providing zero velocity, and the observation updates are
only provided in the end of every 30 m chord interval as Figure 6 shows.

For the measurement of every 30 m interval, the observation updates are measured at the end time
epoch. For the forward filtering process, the optimal estimate of error state vector and its covariance
matrix at other time epochs with no observations can be expressed as the functions of initial values in
continuous form as Equation (23) shows according to Equation (11) [13]:

o

£7(1) = ®(1,0)%(0)

Ps(t) = @(t,0)Ps(0)@ (t,0) (23)
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where ®(t,0) is the system state transition matrix can be calculated as Equation (24) shows:

(10 0 000000 —t 0 0]
0 1 OtcosL 000000 0 =2l g
0 1 000000 O —t 0
0 —gt _QtzésosL 10000 0 02 g0t36cosL 0
gt 0 0 010000 & 0 0
0 0 0 001000 O 0 t
_ LAt _
O(t0) =e™ = 0 & 0Pl , 0 0 1 0 0 o el (24)
2 6 24

gt of?

£ 0 0 0t o010 £ 0 0
0 0 0 00t 001 0 0 2
0 0 0 000000 1 0 0
0 0 0 000000 O 1 0
0 0 0 000000 0 0 1 ]

and the initial variance matrix can be expressed as Equation (25):

P(O):diag([ Pox  Pge  Ppo  Pooy Pove Poop Pory Pore Poro Pen Peo PV ]) (25)

When the observations update at time epoch T, the updated estimate of state vector and its
covariance can be obtained by disperse Kalman filter as shown in Equation (26):

o =S Ko — i)

= ®(T,0)7(0) + KyHN®(T, 0) [x(0) = %£(0)] + Knvwy
Ply = (I—KyHN)Pry

= (I — KyHy)®(T,0)P¢(0)®" (T, 0)

(26)

For the backward smoothing process, the initial optimal smoothed estimate of state vector and
its covariance are X(T) = X N and P(T) = Pf+N' The optimal smoothed estimate and its covariance at
arbitrarily time epoch t can be expressed in continuous form as Equation (27) shows:

%(t) = ®(t, T)X(T)

P(t) = ®(t, T)P(T)®T (¢, T) (27)

The error of the optimal smoothed estimate of state vector can be obtained by subtracting true
value from its optimal smoothed estimate as Equation (28) shows:

ox(t) = x(t) — x(t)
= ®(t, T)X(T) — ®(t,0)x(0) )
=@, T) {CD(T,O)Af(O) + Ky Hy®(T,0) [x(O) - Af(O)} + KNUN} _o(t0)x(0) ¢
= q)(t, 0)(5Xf(0) - (I)(f, T)KNHNCD(T, 0)(5Xf(0) + q)(f, T)KNUN

From Equation (28), we can get the position error érZ?N 5rZ?E and (SrZ?D expressed by the initial

errors of state vector by setting the corresponding time. Setting pgy = Por = Py, Psoy = Povp =

— — — — — — 2 _ — — — 2 — — 2
Psvp = Pévs Péry = Porg = Porp = Pérr Pen = Pep = Per Oy = Oy = Oy = 0y, Opy = O3 = Oy = 03
pso = 02, and ps, = o2. The time of points ps and ps. 5, are represented by ts and f,5,,, and their
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relationship is ts 5, = ts + Z%T = ts + kT. Substituting (SrZ?E and érZ?D into Equations (21) and (22)
respectively and calculating the variances of Ay, and A, ;, we can obtain:

_ T
Payy = E{AVSVAPsy}
kzngzpq,(r% ((7,2 +9k202 Tz) (21‘5—5kT)2
4[0202+9K2 (0d-+282pp0? ) T2+162k4g% (ppo2+peo? ) TH+1620k6g2 o3 TO+2916k8g4 py pe T8

K2 T2p.0? (07 +9K203T2 ) (324 3k Tt,—35K2T2)’ 29
36[030?+9K2 (04 +282pyo ) T2+162kg2 (ppos-+peoi ) TA+1620k082pe o2 T6+2916k8 g% py pe T8 (29)
K T py peo? (312 —15KTt, +10K2T2 )
20302 +9K2 (0d+282pyo? ) T2+162k4g2 (ppo2+peoi ) TA41620k0g2 peo3 TO+2916k8 g4 py pe T8
n 9kOgATO py peoa (984 —90KTH3+321K> T2 12— 480Kk3 T34, + 325k T4)
20302 +9K2 (04+282pyo? ) T2 4162k g2 (ppo2+peoi ) TA41620k0g2 peo3 TO+2916k8 g4 py pe T8

+

_|_

K2py, 02T (SKT — 2t;)?
4 [(TUZ + 18kzva TZ]

Pa,. = E{8pa]} = (30)

Calculating the partial derivatives about variables of Equations (29) and (30) respectively, we can

9P, EYN 9P, FYR P, EYN ]
psy psy psy psy Psz psz
get <5, = 0 —=p 2052 2057 >0 and vy 20,—7 20 This means that the

variances of alignment irregularity and level irregularity are monotone increasing functions. Only with
variances about initial state errors and observations less than certain values can the measurements of
track irregularity satisfy the surveying accuracy demands. According to Equation (30), the position
error (ps, and ¢7) has no effect on level irregularity. As a matter of fact, the influence of position error
on the alignment irregularity is also so small than other error terms that can be ignored. When ¢ — oo
which means that there is no position observation, the variance of alignment irregularity can be
converted as Equation (31):

K22 T2 pyo? (2ts—5kT)?

g}}g‘mp Bosy T A(02 41822 py T2 +162K4g7pe TY)
K242 T2 peo? (312 +3k Tt —~35K72) (31)
36(02+18k2g2py T2+162kg2p. T4)
K g4 T4 py pe (32— 15k Tt +10K272)’
2(02+18k2g2py T2 +162k4 g2 p T4)
We can verify that the value of lim Py, — lim Py, is very small by a numerical method.

02 —s00 02 =0
Consider that Py, , is a monotone increasing function of 02, itis feasible to implement track irregularity
surveying tasks without position observations updating for the ZUPT-aided INS. As a result,
the requirements of high precise landmarks are reduced at a large extent. The landmarks can be
only used as a determination of the track segmentation that sub-decimeter scale can meet the demand.
And they may be replaced by a sub-decimeter scale INS/odometer integration system in short time
interval as well.

For the general situation, the system noises cannot be ignored and we carry out the covariance
analysis in a numerical method. The measurement accuracy of alignment irregularity and level
irregularity are related with the variances of initial error states, the accuracy of inertial sensors and
the accuracy of observation update. Here, we suppose that the railway track is a straight track in the
direction of north by east 45 degrees without loss of generality. The system matrix is the full form as
Equation (7) shows without ignoring the projections of the Earth angular velocity through the attitude
errors and the terms of Coriolis acceleration. Considering the previous analysis, we will only make
use of the velocity observation to update the Kalman filter.

Firstly, we assess the influences of the observation accuracy on the irregularity measurement
accuracy without position observation. Setting the tilt error to 0.006° and the orientation error is 0.06°.
Setting the gyro bias instability to 0.01°/h and ARW is 0.005° /v/h, and setting the accelerometer bias
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instability to 50 pg and random noise is 10 ug/+/Hz. The measurement accuracy is also affected by
the measurement time of every interval or the velocity of the trolley. Shorter measurement time means
less integral time of the errors, and will result in higher measurement accuracy. Here we set the trolley
velocity to 1 m/s (8 km/h at most for track surveying trolley), and 30 s will be consumed for every
30 m distance interval. The relationship between railway track irregularities measurement accuracy
and the velocity observation accuracy as well as initial position accuracy are illustrated in Figure 8.

[
w o

el
o

o

std of level irregularity (m)

std of alignment irregularity (m)
n

oo
-0

06 Sty

0.4 «10°
05, 02 y (S

7o) 0 0 \oC
n ad of V

(a)

Figure 8. (a) The relationship between level irregularity and accuracy of velocity observation as well as

initial position; (b) The relationship between alignment irregularity accuracy and accuracy of velocity
observation as well as initial position.

According to Figure 8, under the supposed conditions above, the observation accuracy of velocity
causes larger influences than the initial position error for the track irregularities measurement accuracy.
The initial position error has no effect on the track irregularity, which is coincident with the theoretical
analysis previously. In order to satisfy the relative accuracy demand of 1mm, the accuracy of velocity
observation should be less than 0.15 mm/s and ZUPT can satisfy the accuracy demand of velocity.
A higher level of inertial sensors than the system above should be employed to satisfy the high-speed
railway accuracy demand of 0.5 mm.

Secondly, we assess the influence of the random noises of inertial sensors on the irregularity
measurement accuracy. Setting the tilt error to 0.006° and the orientation error is 0.06°. Setting the
gyro bias instability to 0.01° /h, the accelerometer bias instability is 50 pg. and setting the accuracy
of initial position to 10 cm the velocity observation is 0.1 mm/s. The relationship between track
irregularities measurement accuracy and random noises of gyro and accelerometer are illustrated in
Figure 9, where under the supposed conditions above, the ARW of gyro should less than 0.0071° /v/h at
most and random noise of accelerometer should less than 14.7 ug/+/Hz at most to satisfy the demand
accuracy of 1 mm both with and without position observation.

Thirdly, the influences of the tilt errors and orientation error on the irregularity measurement accuracy
have been assessed. Other parameters are fixed as described values previously. The relationship between
track irregularities measurement accuracy and attitude errors are illustrated in Figure 10.

As illustrated in Figure 10, the attitude errors have no effect on the level irregularity, which is
coincident with the theoretical analysis as Equation (30) shows. Since the orientation error is much
bigger, it has a larger effect on alignment irregularity than the tilt errors.

Finally, the influences of the equivalent biases of gyros and accelerometers on the irregularities
measurement accuracy are assessed as illustrated in Figure 11. Other parameters are also fixed at the
previously described values.
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(m)

std of level irregularity
std of alignment irregularity (m)
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Figure 9. (a) The relationship between level irregularity measurement accuracy and noises of gyro and
accelerometer; (b) The relationship between alignment irregularity measurement accuracy and noises
of gyro and accelerometer.
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Figure 10. (a) The relationship between level irregularity measurement accuracy and attitude errors;
(b) The relationship between alignment irregularity measurement accuracy and attitude errors.
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Figure 11. (a) The relationship between level irregularity measurement accuracy and the biases of
inertial sensors; (b) The relationship between alignment irregularity measurement accuracy and the
biases of inertial sensors.

As illustrated in Figure 11, the gyro biases have no effect on the level irregularity, which is
coincident with the theoretical analysis as shown in Equation (30) and the influence of the accelerometer
bias on the level irregularity is small. In addition, the accelerometer bias has no effect on the alignment
irregularity as well as Equation (29) shows.
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6. Simulations and Experimental Results

6.1. Simulations

Monte Carlo simulations of the alignment irregularity and level irregularity surveying accuracy for
the proposed approach have been implemented based on the real random noises of INS. The simulated
trajectory is a straight line in the direction of north by east 45 degrees. The random noises of gyros
and accelerometers are measured by the mentioned INS in static state. The ARW of RLG gyro in this
paper is about 0.005° / \/H, and the bias instability is set to 0.01° /h. The random noise of accelerometer
is about 10 pg/+/Hz, and the bias is set to 50 ug. According to the accuracy of the inertial sensor,
the initial attitude errors are set to 0.006° and the initial orientation error is set to 0.06°. The position
standard deviations are set to 10 cm, and 0.1 mm/s for the velocity observation. The high precise
velocity observation can be provided by ZUPT technique. The velocity of the trolley is set to 1 m/s,
and the length of the trajectory is set to 30 m. The observation updates are provided at the beginning
and the end of the trajectory. We take the maximum value of track irregularity error to test the statistical
accuracy. Five hundred groups of Monte Carlo simulation results based on ZUPT-aided INS approach
without position observation are shown in Figure 12.

the distribution of alignment irregularity the distribution of alignment irregulari

[llevel irregularity [ alignment irregularity

24

20+ —

frequency (%)
N
frequency(%)

0
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 1 05 0 05 1 15 > 25
level irregularity -3

x 10 alignment irregularity

(@) (b)

Figure 12. (a) The distribution of level irregularity measurement accuracy; (b) The distribution of
alignment irregularity measurement accuracy.

According to Figure 12, the Root Mean Square (RMS) of measurement accuracy is about 0.70 mm
for the level irregularity and 0.99 mm for the alignment irregularity. This is consistent to the result
calculated by the covariance analysis previously. The results of Monte Carlo simulation based on
ZUPT-aided INS approach with position observation are the same.

6.2. Experimental Results

Real tests were carried out on an experimental railway line. The railway track is about 120 m long
as shown in Figure 13. The absolute position is provided by a Leica optical total station with a high
precision prism mounted on the trolley based on Control Points (CPIII) as shown in the figure.

At the beginning of the tests the trolley is put on the track for 15 min static initial alignment, and loading
initial position measured by total station. Then pushing the trolley moves forward on the track at walking
speed (about 1.5 m/s) and implementing the measurement of the track irregularities. Two different
experiments have been carried out.

The first experiment is the comparison test of accuracy between the proposed approach and the
total station. For this group of tests, the trolley stops at every 60 m distance interval and the velocity
observation provided by ZUPT will be updated for the INS. The track irregularities measured by
ZUPT-aided INS will compared with the measurements provided by total station. Since the high precise



Sensors 2017, 17, 2083 16 of 22

position measurements are measured by total station in every 3 m interval, the distance of two adjacent
points calculating the irregularity in Equation (1) is chosen as 6 m. For 30 m chord, the deviation of
measurement results between these two approaches is shown in Figure 14. As illustrated, the RMS of
alignment irregularity is about 0.82 mm and level irregularity is 1.02 mm. The 3D spatial trajectories
of first 60 m track segmentation measured by total station and ZUPT-aided INS are illustrated in
Figure 14c. As shown in the figure, even though the absolute deviations between these two approaches
are bigger, the relative deviations can still achieve millimeter scale.

Gauge Sensor

level irregularity deviation (m)
alignment irregularity deviation (m)

distance (m)

@) (b)

°
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|
|
|
|

|

|
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—O— total station

°
2

0.005.

vertical position (m)

%
’4@0 057 10 20 30
% east position (M)

()

Figure 14. (a) Level irregularity deviation for 30 m chord between ZUPT-aided INS and total station;
(b) Alignment irregularity deviation for 30 m chord between ZUPT-aided INS and total station; (c) 3D
spatial trajectory of 60 m track segmentation measured by ZUPT-aided INS and total station.

The second experiment is the repeatability test. For this experiment, six groups of measurements
of the same track segment were carried out. Since the designed vector distance is unknown, we just
calculate the difference of two points in 5 m intervals, namely ds — d;5,, to estimate the repeatability
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of track irregularity. The comparison of track irregularity sequences obtained by ZUPT-aided INS in
six runs is illustrated in Figure 15. As shown in the figure, the distance of two adjacent sample points
is 0.5 m and only the track irregularities of the first 30 m chord are plotted in the figure.

level irregularity repeatability (m)
alignment irregularity repeatability (m)

distance (m) distance (m)

(a) (b)

Figure 15. (a) Level irregularity measurement repeatability for 30 m chord; (b) Alignment irregularity
measurement repeatability for 30 m chord.

The irregularity differences at the same railway track points between different runs indicate the
repeatability of the measurement. The results of statistic deviation of alignment and level irregularities
are listed in Table 1. As Table 1 shows, the standard deviations of differences in alignment irregularity
and level irregularity are approximately 1mm, which is consistent with the theoretical analysis as well
as the simulation results.

Table 1. Statistic of alignment irregularity and level irregularity differences.

N Alignment Irregularity (mm) Level Irregularity (mm)
© Max Mean Std Max Mean Std
G12 3.075 —0.028 1.006 3.854 —0.221 1.296
G13 1.164 0.012 0.445 3.005 —0.131 1.147
Gl14 1.617 —0.032 0.783 2.954 —0.077  1.082
G15 2.184 —0.088 0.677 2.767 -0.103  0.772
Gl16 1.403 —0.054 0.527 2.667 —0.071 1.123
G23 3.034 0.040 1.037 2.248 0.089 1.062
G24 1.799 —0.004 0.542 2.250 0.144 0.842
G25 1.340 —0.060 0.654 2.579 0.118 1.161
G26 1.987 —0.026 0.887 2.795 0.150 1.256
G34 1.900 —0.044 0.821 2.192 0.054 1.097
G35 2.143 —0.099 0.707 2.662 0.028 1.104
G36 1.361 —0.066 0.524 3.021 0.060 1.048
G45 1.485 —0.056 0.550 2.947 —0.026 0914
G46 2.029 —0.022 0.737 3.626 0.006 1.246
G56 1.085 0.034 0.534 2.960 0.032 1.225

Note: Gij represents the difference between group i and group j.

7. Conclusions

The measurement of railway track irregularity plays a significant role in monitoring the track
deformation and guiding the maintenance of railway lines. This paper makes use of the ZUPT-aided
INS for the track irregularity measuring applications. The RTS smoothing algorithm is employed to
improve the performance of the surveying system.

The calculation equations of the track irregularity parameter from absolute positions have been
deduced in the paper. Based on covariance analysis, the analytical relationships between the track
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irregularity with the drifts of inertial sensors, the accuracy of attitude and the accuracy of velocity
observations as well as the accuracy of initial position are established. The theoretical analysis and
numerical analysis show that the position observation of the Kalman filter has no effect on the
measurement accuracy of the alignment irregularity and level irregularity, and we can implement
track relative geometry surveying based on ZUPT-aided INS without position observation updates.
The landmarks can be only used to determine track segmentation, sub-decimeter scale accuracy of
which can satisfy the track surveying demand.

Simulations and experimental results show that the relative accuracy for 30 m chord of the
proposed approach for track irregularity surveying can reach approximately 1 mm (1¢) with gyro
bias instability of 0.01°/h, random walk noise of 0.005°/+v/h and accelerometer bias instability of
50 pg, random noise of 10 pg/+/Hz, while only velocity observations are provided by the ZUPT
technique in about every 60 m interval. This accuracy can meet the most stringent requirements of the
track irregularity surveying for railway lines. For higher accuracy demand of irregularity surveying,
the higher level of inertial sensors than that of this paper should be employed.

This paper proposes a relative geometry parameter measuring approach for the railway track.
It reduces the requirement of high precision landmarks significantly and lightens the maintenance
burden of control points to a large extent. In addition, it also can improve the work efficiency of
railway track irregularity measurement task.
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Appendix A : The derivation processes of Equations (18) and (19).

According to Equation (16), the deviation of r;, , can be calculated by variational method as
expressed by Equation (Al):
ors,

c — Ppsy Ihsy 7o psy 1o Ihsy 710 sy sy
érl/’sy /0 or) N + ar'0 NJ pomN + or psE + ”0 E(S pomE + Jsinf, dsinf, + dcosf, 0 cos by
psN P V

(A1)
— (57';2 — (Srp[) N) sin6, + (‘”Z?E — (Srp[)mE> cosf, — (rZSN - r;&”N)ésin 0. + (rz E— rpg E)(Scos 0,

According to Equation (15), the differential of sin 6, and cos 6, in Equation (A1) can be derived by
Equation (A2):

6sin6a _ Osinf, 5 N+ dsin 6, 51,710 N+ asm@a (5 E+ asm9,7(5rno

ar'o P30m 10 Pom Paom 10 pomE
P3om N V()m P30m F’Om (AZ)
_ dcosb, dcos b, J cos 0, J cos 0,
dcosb, = o or’ PmmN + 570 5rp0 N + p30 E + §rp0 E
P 30m N pomN P omE
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The partial derivative items of Equation (A2) can be expressed as shown by Equations (A3) and (A4):

(s 30) )
dsinfl; __ _ p30mE " pomE ) \"P3omN " pomN _ sin 6 cos 0,
3’Z§o N o s V(0 o \? ;o 0 7o ) (o s )
m 04 (0 ~T5un) (80 =7360E)
[ ( P3omN pOm N) + ( p3omE " PomE P3omN " pomN p3omE " pomE
dsinf, __ sin 6, cos 6,
> =
or0 2 2
PomN ( N N) + ( "0 E —r0 E)
P3omN " Pom F’BOm Pom A3
(rno - }’ ) ( )
dsinf, __ P30m N pgm N _ cos? 6,
n, - 3
or0 2 215 \/ n n 2 n n 2
P3omE 1o 1o o 1o ( 0 —r0 ) +< 0 0 )
[ (rPSOm N _rpOm N) * ( P3omE rPOm E) ] P3omN " pomN PsomE " PomE
dsinf, _ cos? 0,
e —
or.0 2 2
PomE ( P — N) +<rn0 E_,,”o E)
P3omN " Pom P30m Pom
dcosf, __ sin? 0, d cos 0 — _ sin? 6,
n, - 7
a}’ 0 n, 1, 2 n, n, 2 a 1, n, 2 M, n, 2
P3omN (ro 70 ) (,,0 —r 0 ) F’O (ro —r 0 ) (,,0 —r0 )
" P3omN " pomN + p3omE " PomE mN p3omN " PomN + p3omE " PomE (A4)
dcosby . sin 6, cos 6, dcosb, __ sin 6, cos 6,
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P3omE (r 0 70 ) +< "0 0 ) P3omE <r 0 70 ) +< S )
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Combining Equations (A2) and (A4) and rearranging yields Equation (A5):

570 —5¢70 )sine cos 0, — <§r —5r0 >c0529
_ ( P3omN PomN “ a P3omE PomE “

osinf, =
“ VBt (e e)
P30m pomN P3omE POm (A5)

n n,
or 0 B ) sin? 0, — (5r 0 —5r70 ) sin 6, cos 6
( P3om N Pom N 7 P3omE PomE 7 a

2 2
n, n, 1, n,
(7 i~ NTT 0 N) ( O E=r0 E)
P30m Pom p3omE " Pom

Combining Equations (1), (A1) and (A5) and rearranging we can obtain the Equation (A6):

dcosb, =
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Considering the small gradient and the large turning radius of the railway track Equation (A6)
can be simplified as Equation (18) by ignoring the small terms.
Similarly, the deviation of r;s . can be calculated by a variational method as expressed by Equation (A7):
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According to Equation (15), the differential of sin 6; and cos 6; in Equation (A6) can be derived by
Equation (A8):
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The partial derivative items of Equation (A8) can be expressed as Equations (A9) and (A10) show:
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Combining Equations (A9) and (A10) and rearranging yields Equation (A11):
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By combining Equations (1), (A5), (A7) and (A11) and rearranging we can obtain the Equation (A12):
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Similarly, Equation (A12) can be simplified as Equation (19) by ignoring the small terms.
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