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Abstract: Railway track irregularity surveying is important for the construction and the maintenance
of railway lines. With the development of inertial devices, systems based on Inertial Navigation
System (INS) have become feasible and popular approaches in track surveying applications. In order
to overcome the requirement of high precision control points, this paper proposes a railway track
irregularity measurement approach using the INS combined with the Zero Velocity Updates (ZUPT)
technique and sub-decimeter scale landmarks. The equations for calculating track irregularity
parameters from absolute position errors are deduced. Based on covariance analysis, the analytical
relationships among the track irregularity measurements with the drifts of inertial sensors, the initial
attitude errors and the observations of velocity and position are established. Simulations and
experimental results show that the relative accuracy for 30 m chord of the proposed approach for
track irregularity surveying can reach approximately 1 mm (1σ) with gyro bias instability of 0.01◦/h,
random walk noise of 0.005◦/

√
h, and accelerometer bias instability of 50 µg, random noise of

10 µg/
√

Hz, while velocity observations are provided by the ZUPT technique at about every 60 m
intervals. This accuracy can meet the most stringent requirements of millimeter scale medium
wavelength track irregularity surveying for railway lines. Furthermore, this approach reduces the
requirement of high precision landmarks which can lighten the maintenance burden of control points
and improve the work efficiency of railway track irregularity measurements.
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1. Introduction

Railway track irregularity is one of the most important factors affecting the safe operation
of the train. The irregularity can be assessed by track geometry parameters, the measurement of
which plays a significant role in monitoring the track deformation and guiding the maintenance of
railway lines [1]. Trains with higher speed require higher track smoothness. With the development of
high-speed railways, the demands for track irregularity measurement techniques with high-accuracy
and high-efficiency are increasing rapidly [2].

Traditionally, there are mainly two categories of track irregularity measurement methods namely
dynamic measurement and static measurement. Methods based on Track Recording Coaches (TRCs)
are a kind of dynamic one under wheel loading [1,2]. TRC can measure long wavelength track
irregularities with high work efficiency, but their availability is restricted and the measuring accuracy
does not fulfil the requirements for track renewals [2]. Another method based on manual measuring
devices is a kind of static one. These kinds of devices used for spot assessment are surpassed by
railway track surveying trolleys in terms of data amounts and time efficiency. The lightweight and
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flexible track surveying trolleys can handle different measurement tasks such as measurements during
the construction stage and measurements of shorter stretches of track [1,2].

The most well-known track surveying trolleys, widely deployed in China, are the GPR1000 series
products provided by Amberg Technologies (Regensdorf, Switzerland) [3]. These kinds of trolleys
are all-in-one solutions for surveying railway tracks, enabling the assessment of parameters such
as the cant, track gauge, chainage, alignment and level with high accuracy, and can provide
sub-millimeter absolute accuracy measured by total station in stop-and-go mode. The Swiss Trolley
is another representative track surveying trolley which is developed by the Institute of Geodesy
and Photogrammetry at ETH Zurich [1,2]. Glaus [2] has presented this kind of trolley thoroughly.
The basic devices the Swiss Trolley is equipped with are an inclinator, track gauge measuring system
and odometer can measure gradient, cant, gauge, and chainage. Absolute positioning is done by
Global Positioning System (GPS) and total station. According to Glaus [2], GPS measurements fulfill
most accuracy requirements contrary to the general opinion that submillimeter absolute accuracy has
to be obtained in railway surveying.

With the development of inertial sensors, INS is no longer expensive and bulky. Track surveying
systems based on INS have been widely applied in railway track surveying. A limitation of
a stand-alone INS is its unfavourable error propagation. Error drifts of INS should be depressed
by other sensors providing relative or absolute measurement updates such as ZUPT, Control Points
Coordinate Updates (CUPT) and so on. Luck [4] discussed the design of track measurement systems
based on INS/GPS integration for the dynamic inspection locomotive. Niu and Chen [3] presented an
INS/GPS integrated system to measure railway track irregularities with relative accuracy of 1 mm.
Non-holonomic constraint and ZUPT are implemented in their integration algorithm to improve the
surveying accuracy. In order to implement the measuring task with GPS outages, Li [5] presented
a track irregularity measurement trolley equipped with a laser-aided INS/odometer integration system
for subway applications whose observations of control points for position updates are measured by the
laser scanner. The standard deviations of alignment and vertical irregularities can reach approximately
1 mm. Jiang [6] utilized the Inertial Measurement Unit (IMU)/odometer/landmark integration
technique for railway track surveying and obtained absolute accuracy of 1 mm.

The key issue about INS-based track irregularity surveying systems is suppressing the position
errors produced by drifts of inertial sensors using global position information [5]. In previous works,
a great job about the integrations of INS with position measurement sensors and the data fusion
of INS measurement with position information has been done for track surveying, but there are
few studies about the accuracy requirement of inertial sensors and observation updates that can
meet the demands for railway irregularity measurement theoretically or experimentally. In addition,
the traditional measurement approaches based on global position information have their own
shortcomings. The GPS signal may be disturbed by obstructions which affect the GPS solutions
negatively. The distribution and precision of control points are crucial to ensure measurement accuracy
for approaches based on landmarks. The construction of control points is costly and their maintenance
at millimeter scale is difficult. Even if high precision landmarks can be maintained well, high precise
position observations cannot be provided frequently in order to insure the work efficiency of the
measurement task, especially for environments without GPS signals, for instance tunnels. Therefore,
it is significant to research approaches using less number of landmarks with low precision for railway
track irregularity measurement.

This paper focuses on the issue of the railway track irregularity measurement using a ZUPT-aided
INS to achieve high accuracy measurement of relative track geometry parameters to reduce the
requirement of high precision landmarks. A typical Kalman filter with 12 dimensional error states is
designed in the paper and the Rauch-Tung-Striebel (RTS) smoother is employed to improve the position
accuracy. Aiming at alignment and level irregularities of the track, we established the relationship
between track irregularities and the absolute position deviations. Based on covariance analysis,
the surveying accuracy of alignment and level irregularities is presented, the analytical relationship
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about irregularities with the precisions of inertial sensors, initial attitudes and observation updates are
established. Simulation and experimental results are also presented.

The rest of the paper is organized as follows: Section 2 describes the railway track irregularity and
assessment. Section 3 describes the overview of the measurement system and the algorithm. Section 4
describes the design of Kalman filter and smoother. Section 5 presents the calculation method of
alignment and level irregularities from absolute position as well as the covariance analysis of them.
Section 6 reports the simulation and experimental results of track irregularity. Section 7 concludes
this paper.

2. Railway Track Irregularity and Assessment

Railway tracks can be regarded as a 3-dimensional curve [3,5]. Track irregularity refers to the deviation
of the track from its design geometry, which is usually determined by five geometry parameters, namely
alignment (horizontal alignment), level (vertical alignment), cant (super-elevation or cross-level), twist
and gauge [7–9]. As illustrated in Figure 1, the axes of the rail coordinate system are defined as follows:
the x-axis is in the travelling direction, y-axis parallel to the running surface, and z-axis perpendicular to the
running surface and pointing downwards. Alignment is the track’s displacement in the horizontal plane,
which can be seen as the deviation of actual track from the design one in horizontal plane. Level is the
displacement in the vertical plane [1]. Gauge is the distance between the inner sides of the two railheads.
Cant is the difference between the elevations of the running surface of two rails, representing the tilting of
the track in curves in order to compensate the centripetal force. Twist is defined as the difference in cant
over a given length.
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Figure 1. Track coordinate system and geometry parameters.

In this paper, the gauges are estimated from track gauge measurement system. Cant and twist
can be calculated in simple models, and will not be discussed in detail. The alignment and level
irregularities will be evaluated as examples to demonstrate the measuring accuracy.

According to the railway standards [8,9], the alignment and level are measured by the vector
distance value with a chord of fixed length (e.g., 30 m) on the rail surface in the horizontal and vertical
directions respectively. The magnitude of alignment and level irregularities will be calculated by
differential method of 30 m chord. As shown in Figure 2, the red curve represents a segmentation of
railway track in 3-dimensional space; the other two curves are the projections in horizontal plane and
vertical plane respectively. The 30 m long chord is determined by points p0m and p30m on the curve.
Take the point ps on the curve as an example. The distance from ps to the chord is the vector distance
of this point represented by ds. Vector distance of the next adjacent point ps+5m with 5 m interval is
ds+5m. The track irregularity of point ps can be calculated by Equation (1) [8]:

∆s = (ds − ds+5m)−
(

d̃s − d̃s+5m

)
=
(

ds − d̃s

)
−
(

ds+5m − d̃s+5m

)
(1)

where d̃s and d̃s+5m represent measurement values of vector distances about points ps and ps+5m.
ds and ds+5m represent the design values of them. ∆s represents the track irregularity of point ps,
projection of which in the horizontal plane is the alignment irregularity and in the vertical plane is the
level irregularity.
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3. Track Irregularity Measurement System

The track irregularity measurement system is illustrated in Figure 3. The system is equipped
with a T-type trolley, a track gauge sensor, a high precision prism, an odometer, and a navigation
grade IMU. The IMU consists of three high accuracy ring laser gyros (RLGs, bias instability: 0.01◦/h
and angular random walk (ARW): 0.005◦/

√
h) and three high stability quartz accelerometers (bias

instability: 50 µg and random noise: 10 µg/
√

Hz). The prism mounted on the trolley is used to
provide position observations worked with a Leica optical total station (1 mm and 0.5”) based on
control points. The odometer of the system can be used as an aid to determine the position of the
irregularity measurements along the track in this paper. The gauge sensor is used to measure the
gauge of the tracks.
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4. Kalman Filtering and Smoothing Algorithm Design

4.1. Overview of Data Processing

Figure 4 illustrates an overview of the data processing procedure of the Kalman filtering and
smoothing algorithm based on ZUPT-aided INS combined with landmarks employed in the paper.
The system makes use of the measurements of IMU (angular increments ∆θ from gyros and specific
force integrations ∆v from accelerometers) and the initial position measured by total station for initial
alignment to calculate the initial attitudes. After that the trolley is pushed forward manually on the
track at walking speed. After it moves across a certain distance interval (60 m in this paper), the trolley
stops and a zero-velocity observation and a position observation will be updated. Then Kalman
filtering and smoothing algorithm is executed to output the optimized position, velocity and attitude
measurements of the interval. Since the wheels of the trolley can keep continuous contact with the
railway track, the 3-dimensional track geometry can be determined by position and attitude sequences
of the INS uniquely. Then track parameters can be calculated and track irregularities can be detected.
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4.2. System Equations and Measurement Equations of Kalman Filter

The error equations of the attitude, velocity and position for the railway track surveying
application can be expressed as Equation (2) [10]:

φn = −ωn
in ×φ

n + δωn
in − Cn

b δωb
ib

≈ −ωn
ie ×φ

n − Cn
b δωb

ib
δ

.
vn

= fn ×φn −
(
2ωn

ie +ω
n
en
)
× δvn −

(
2δωn

ie + δωn
en
)
× vn + Cn

b δfb

≈ fn ×φn − 2ωn
ie × δvn + Cn

b δfb

δ
.
rn

= δvn

(2)

where i-frame is the inertial frame. n-frame is the local level frame (North-East-Down) used
as the navigation frame. b-frame is the body frame of the IMU (Forward-Right-Down).

φn =
[

φN φE φD

]T
represents the vector of attitude errors about the north, east and downward

axes of the navigation frame. Cn
b represents the direction cosine matrix. ωn

in represents the turn rate of
the navigation frame with respect to the inertial frame expressed in the n-frame. It can be obtained by
summing the Earth’s rotation rate with respect to the inertial frame and the turn rate of the navigation
frame with respect to the Earth as: ωn

in = ωn
ie +ω

n
en. δωb

ib represents the drift errors of gyroscopes.
δvn is the vector of velocity errors. fn represents the specific force in navigation axes. δfb is the drift
errors of accelerometers. δrn represents the position error in navigation axes. The errors of inertial
sensors in this paper are normally modeled as piecewise constant values. The position coordinates of
the measured track are expressed in segmentation with n0-frame, which is so near with the n-frame

that Cn0
n ≈ I and δrn0 = Cn0

n δrn ≈ δrn =
[

δrN δrE δrD

]T
. For medium wavelength (30 m chord)

track irregularity surveying, the track segmentation is set to be 60 m long in this paper. Moreover δωb
ib

and δfb can be expressed as shown by Equations (3) and (4):

Cn
b δωb

ib = δωn
ib =

[
εN εE εD

]T
+ Cn

b

[
wgx wgy wgz

]T
(3)

where δωn
ib is the drifts of gyros expressed in n-frame. εN , εE and εD are the equivalent gyro biases of

the north, east and downward directions. wgx, wgy and wgz are the random noises of gyros:

Cn
b δfb = δfn =

[
∇N ∇E ∇D

]T
+ Cn

b

[
wax way waz

]T
(4)

where δfn is the drifts of accelerometers expressed in n-frame. ∇N , ∇E and ∇D are the equivalent
accelerometer biases of the north, east and downward directions. wax, way and waz are the random
noises of accelerometers.

The railway track surveying application has its own characteristics compared with some
other applications based on inertial measurement such as land vehicle navigation, airborne gravity
measurement and so on. Since the track of high speed railways is almost level and straight with
a very large radius of curvature, trolley maneuvers are rather weak when moving on the track at
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low speed [3,6]. Some error parameters of the INS are coupled together with others, for example,
the orientation error is coupled with the equivalent east gyro bias, and the level errors are coupled
with equivalent horizontal accelerometer biases, so the equivalent east gyro bias εE and the equivalent
horizontal accelerometer biases ∇N and ∇E are unobservable. They will not be estimated as error
states in the Kalman filter. Since the trolley moves in walking speed (less than 8 km/h [8]) and the
length of the measurement interval is short, the terms of ωn

en and δωn
in can be ignored as shown

in Equation (2).
Consider the analysis above, a typical Kalman filter with 12 dimensional error states is established

in this paper. The system error model and the observation model can be expressed as Equation (5):

.
x(t) = Ax(t) + Gw(t)
z(t) = Hx(t) + υ(t)

(5)

where the error state vector x(t) can be written as in Equation (6):

x(t) =
[

φN φE φD δvN δvE δvD δrN δrE δrD εN εD ∇D

]T
(6)

According to Equation (2), the system error matrix A and the system noise matrix G can be
expressed in simplified form by Equations (7) and (8):

A =



0 −Ω sin L 0 0 0 0 0 0 0 −1 0 0
Ω sin L 0 Ω cos L 0 0 0 0 0 0 0 0 0

0 −Ω cos L 0 0 0 0 0 0 0 0 −1 0
0 − fD fE 0 −2Ω sin L 0 0 0 0 0 0 0
fD 0 − fN 2Ω sin L 0 2Ω cos L 0 0 0 0 0 0
− fE fN 0 0 −2Ω cos L 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(7)

G =

[
−Cn

b 03×3

03×3 Cn
b

]
(8)

z(t) =
[

δvn δrn
]T

is the filter observation vector and velocity as well as position of the trolley are
used as update information in the Kalman filter. The measurement matrix H is defined by Equation (9):

H =

[
03×3 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

]
(9)

w(t) and υ(t) are the system noise and the measurement noise, whose Power Spectral Density (PSD)
are Q(t) and R(t) respectively. They can be expressed as Equation (10):

w(t) =
[

wgx wgy wgz wax way waz

]T
, w(t) ∼ N(0, Q(t))

Q(t) = diag
([

σ2
wgx σ2

wgy σ2
wgz σ2

wax σ2
way σ2

waz

])
υ(t) =

[
υvN υvE υvD υrN υrE υrD

]T
, υ(t) ∼ N(0, R(t))

R(t) = diag
([

σ2
vN

σ2
vE

σ2
vD

σ2
rN

σ2
rE

σ2
rD

])
(10)
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4.3. Smoothing Algorithm

The position errors and their covariance between two observation updates will increase with time
caused by the residual system errors. It is even more serious for the situations that the observation is
few and not much precise. In order to obtain optimal position estimations during the updates outages,
a smoothing algorithm must be applied utilizing all the past, current and future measurements [11,12].
This paper employs the well-known RTS smoothing algorithm to estimate the states in the measurement
intervals. The RTS smoother consists of a common forward Kalman filter and a backward smoother.
The backward sweep begins at the end of the forward Kalman filter. Figure 5 illustrates the computation
procedure of the RTS smoother.

Sensors 2017, 17, 2083  7 of 23 

 

4.3. Smoothing Algorithm 

The position errors and their covariance between two observation updates will increase with 
time caused by the residual system errors. It is even more serious for the situations that the 
observation is few and not much precise. In order to obtain optimal position estimations during the 
updates outages, a smoothing algorithm must be applied utilizing all the past, current and future 
measurements [11,12]. This paper employs the well-known RTS smoothing algorithm to estimate the 
states in the measurement intervals. The RTS smoother consists of a common forward Kalman filter 
and a backward smoother. The backward sweep begins at the end of the forward Kalman filter. 
Figure 5 illustrates the computation procedure of the RTS smoother. 

kt1kt − 1kt +1t0t 1Nt − Nt

ˆ−
fkx

−
fkP

+
fkP

ˆbkxbkP

ˆ+
fNxˆ−

fNx

−
fNP

+
fNP

ˆbNx

bNP

ˆ+
fkx

 

Figure 5. The RTS smoothing algorithm computational process. 

The forward Kalman filter is the common one, can be expressed in discrete form as Equation 
(11) shows: 

[ ]

1

1

1

1

ˆ ˆ ˆ

ˆ ˆ

−− −

+ − −
+

+ −

− +
+

− +
+

 = + 
 = + − 

= −

= Φ

= Φ Φ + Γ Γ

x x z x

x x



T T
k fk k k fk k k

fk fk k k k fk

fk k k fk

fk k fk

T T
fk k fk k k k k

K P H H P H R

K H

P I K H P

P P Q

 (11)

where ˆ fk
+x  and fkP

+  represent the updated estimate of state vector and its corresponding covariance 
matrix of the forward filter at epoch k. 1ˆ fk

−
+x  is the optimal predicted estimate and 1fkP

−
+  represents 
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The forward Kalman filter is the common one, can be expressed in discrete form as Equation (11) shows:

Kk = P−f k HT
k

[
HkP−f k HT

k + Rk

]−1

x̂+f k = x̂−f k + Kk

[
z̃k+1 − Hkx̂−f k

]
P+

f k = [I − Kk Hk]P−f k
x̂−f k+1 = Φkx̂+f k
P−f k+1 = ΦkP+

f kΦT
k + ΓkQkΓT

k

(11)

where x̂+f k and P+
f k represent the updated estimate of state vector and its corresponding covariance

matrix of the forward filter at epoch k. x̂−f k+1 is the optimal predicted estimate and P−f k+1 represents its
covariance matrix. Hk is the measurement matrix. Kk is the gain matrix of forward Kalman filter at
epoch k. Φk is the system state transition matrix which can be calculated by matrix A.

The backward smoother can be expressed in the discrete form as shown by Equation (12) [13,14]:

x̂N = x̂+f N , PN = P+
f N

_
Hk = P+

f kΦT
k

(
P−f k+1

)−1

x̂k = x̂+f k +
_
Hk

[
x̂k+1 − x̂−f k+1

]
Pk = P+

f k −
_
Hk

[
P−f k+1 − Pk+1

]_
H

T

k

(12)

where x̂k is the optimal smoothed estimate of state vector at time epoch k. Pk is the error state covariance

matrix of the smoother.
_
Hk is the smoothing gain matrix.

4.4. Alignment Irregularity and Level Irregularity Calculated from Absolute Poisition Devition

In order to assess the track irregularity, the relative geometry parameters of alignment and
level should be calculated after obtaining the absolute position of the track. As Figure 6 illustrates,
an arbitrarily 30 m chord on the 60 m track segmentation is determined by two points p0m and

p30m whose coordinates are respectively marked in n0-frame as rn0
p0m =

[
rp0m N rp0mE rp0mD

]T
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and rn0
p30m =

[
rp30m N rp30mE rp30mD

]T
. The measurement values of their coordinates are marked

as r̃n0
p0m =

[
r̃p0m N r̃p0mE r̃p0mD

]T
and r̃n0

p30m =
[

r̃p30m N r̃p30mE r̃p30mD

]T
respectively. ps

represents an arbitrary point on the trajectory for this chord, coordinates of which are marked as

rn0
ps =

[
rps N rpsE rpsD

]T
for the true value and r̃n0

ps =
[

r̃ps N r̃psE r̃psD

]T
for the measurement

value. ds is the vector distance from ps to the chord, projections of which in horizontal plane and
vertical plane are alignment and level, respectively.
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Figure 6. (a) Track segmentation and the 30m chord; (b) Alignment and level calculated from the
navigation coordinate.

As shown in Figure 6, the track segmentation is 60 m long for ZUPT and absolute position update.
For arbitrary 30 m chord on the track segmentation, we define a new frame as c-frame, whose x-axis is
identical with the chord and can be obtained by a rotation θa about z-axis and a rotation θl about y-axis
of n0-frame sequentially. We can calculate the vector distance values for every point of a trajectory
by transforming the coordinates from n0-frame to c-frame. The relationship between n0-frame and
c-frame can be written as Equation (13):

rc
ps =

 rc
psx

rc
psy

rc
psz

 =

 cos θl 0 − sin θl
0 1 0

sin θl 0 cos θl


 cos θa sin θa 0
− sin θa cos θa 0

0 0 1


 rn0

ps N − rn0
p0m N

rn0
psE − rn0

p0mE
rn0

psD − rn0
p0mD


=

 cos θl cos θa cos θl sin θa − sin θl
− sin θa cos θa 0

sin θl cos θa sin θl sin θa cos θl


 rn0

ps N − rn0
p0m N

rn0
psE − rn0

p0mE
rn0

psD − rn0
p0mD


(13)

According to the definition of alignment and level together with the Figure 6, rc
psy represents the

alignment and rc
psz represents the level and they can be calculated by Equation (14):

rc
psy = −

(
rn0

ps N − rn0
p0m N

)
sin θa +

(
rn0

psE − rn0
p0mE

)
cos θa

rc
psz =

(
rn0

ps N − rn0
p0m N

)
sin θl cos θa +

(
rn0

psE − rn0
p0mE

)
sin θl sin θa +

(
rn0

psD − rn0
p0mD

)
cos θl

(14)
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In addition, we can express θa and θl by coordinate values as shown in Equation (15) according to
Figure 6:

sin θa =
r

n0
p30mE−r

n0
p0mE√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
, cos θa =

r
n0
p30m N−r

n0
p0m N√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

sin θl =
r

n0
p0m D−r

n0
p30m D√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2

cos θl =

√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2

(15)

The deviations of rc
psy and rc

psz can be calculated by variational method as expressed by Equations (16)
and (17):

δrc
psy =

∂rc
psy

∂rn0
ps N

δrn0
ps N +

∂rc
psy

∂rn0
p0m N

δrn0
p0m N +

∂rc
psy

∂rn0
ps E

δrn0
ps E +

∂rc
psy

∂rn0
p0m E

δrn0
p0m E +

∂rc
psy

∂ sin θa
δ sin θa +

∂rc
psy

∂ cos θa
δ cos θa (16)

δrc
psz =

∂rc
psz

∂r
n0
ps N

δrn0
ps N +

∂rc
psz

∂r
n0
p0m N

δrn0
p0m N +

∂rc
psz

∂r
n0
psE

δrn0
psE +

∂rc
psz

∂r
n0
p0mE

δrn0
p0mE +

∂rc
psz

∂r
n0
ps D

δrn0
psD +

∂rc
psz

∂r
n0
p0m D

δrn0
p0mD

+
∂rc

psz
∂ sin θa

δ sin θa +
∂rc

psz
∂ cos θa

δ cos θa +
∂rc

psz
∂ sin θl

δ sin θl +
∂rc

psz
∂ cos θl

δ cos θl

(17)

Substituting Equations (16) and (17) into Equation (1) yields the alignment irregularity and the
level irregularity. Since gradient of the railway track is very small (25 m/1000 m for the largest
gradient) and the turning radius is very large (2000 m) in general, the alignment irregularity and the
level irregularity can be simplified by ignoring the small terms as Equations (18) and (19) show:

∆psy = δrc
psy − δrc

ps+5my

≈ −
[
δrn0

ps N − δrn0
ps+5m N + l5m

lc

(
δrn0

p30m N − δrn0
p0m N

)]
sin θa +

[
δrn0

ps E − δrn0
ps+5m E + l5m

lc

(
δrn0

p30m E − δrn0
p0m E

)]
cos θa

(18)

∆psz = δrc
psz − δrc

ps+5mz ≈
(

δrn0
psD − δrn0

ps+5mD

)
+

l5m

lc

(
δrn0

p30mD − δrn0
p0mD

)
(19)

where lc =

√(
rn0

p30m N − rn0
p0m N

)2
+
(

rn0
p30mE − rn0

p0mE

)2
+
(

rn0
p30mD − rn0

p0mD

)2
represents the length of the

chord. l5m = 5m is the distance between points ps and ps+5m. The derivation processes of Equations (18)
and (19) are shown in Appendix A. As Figure 7 illustrates, even though the absolute position measurements
may have deviations bigger than centimeter scale, the relative deviations can also be millimeter scale due to
the common offset contained by the adjacent points ps and ps+5m.
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5. Covariance Analysis

The track irregularity measurement accuracy can be presented by its variance. According to
Equations (18) and (19), in order to calculate the variance of track irregularity, the covariances among
δrn0

pi N
δrn0

piE
and δrn0

pi D
(i = 0 m, s, s + 5 m, 30 m) should be calculated. However, the analytical solutions

of the Riccati equation and the state vector of the filtering and smoothing system are difficult to
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calculate, we will firstly carry out the covariance analysis theoretically for the simplified situation by
ignoring the system noises, and numerically for the general situation with system noises. Since the
projections of the Earth angular velocity through the attitude errors are small and remain constant in
short time interval, they can be equivalent to the gyro drifts. The terms of Coriolis acceleration are so
small that they can also be ignored in a short time interval. Therefore, the system matrix can be further
simplified as expressed in Equation (20) for the simplified situation [10]:

A =



0 0 0 0 0 0 0 0 0 −1 0 0
0 0 −Ω cos L 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 −g 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(20)

where g is the value of gravity. In addition, in order to simplify the solving process, we suppose that
the railway track is a straight track in north direction without loss of generality. In these conditions,
Equations (18) and (19) can be simplified as expressed by Equations (21) and (22):

∆psy = δrc
psy − δrc

ps+5my =
(

δrn0
psE − δrn0

ps+5mE

)
+

l5m

lc

(
δrn0

p30mE − δrn0
p0mE

)
(21)

∆psz = δrc
psz − δrc

ps+5mz =
(

δrn0
psD − δrn0

ps+5mD

)
+

l5m

lc

(
δrn0

p30mD − δrn0
p0mD

)
(22)

For a ZUPT-aided INS with landmark integration, the distribution of trolley stop points and
position observations is crucial to ensure the surveying accuracy [5]. In general, higher-frequency
observation updates will result in better accuracy. However higher-frequency observation means more
stop points which will influence the work efficiency. Therefore, in this paper, the distance of two stop
points is 60 m for measuring position and providing zero velocity, and the observation updates are
only provided in the end of every 30 m chord interval as Figure 6 shows.

For the measurement of every 30 m interval, the observation updates are measured at the end time
epoch. For the forward filtering process, the optimal estimate of error state vector and its covariance
matrix at other time epochs with no observations can be expressed as the functions of initial values in
continuous form as Equation (23) shows according to Equation (11) [13]:

x̂ f (t) = Φ(t, 0)x̂ f (0)
Pf (t) = Φ(t, 0)Pf (0)ΦT(t, 0)

(23)
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where Φ(t, 0) is the system state transition matrix can be calculated as Equation (24) shows:

Φ(t, 0) = eAt =



1 0 0 0 0 0 0 0 0 −t 0 0
0 1 Ωt cos L 0 0 0 0 0 0 0 −Ωt2 cos L

2 0
0 0 1 0 0 0 0 0 0 0 −t 0

0 −gt −Ωt2 cos L
2 1 0 0 0 0 0 0 gΩt3 cos L

6 0

gt 0 0 0 1 0 0 0 0 − gt2

2 0 0
0 0 0 0 0 1 0 0 0 0 0 t

0 − gt2

2 − gΩt3 cos L
6 t 0 0 1 0 0 0 gΩt4 cos L

24 0
gt2

2 0 0 0 t 0 0 1 0 − gt2

6 0 0
0 0 0 0 0 t 0 0 1 0 0 t2

2
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



(24)

and the initial variance matrix can be expressed as Equation (25):

P(0) = diag
([

pφN pφE pφD pδvN pδvE pδvD pδrN pδrE pδrD pεN pεD p∇D

])
(25)

When the observations update at time epoch T, the updated estimate of state vector and its
covariance can be obtained by disperse Kalman filter as shown in Equation (26):

x̂+f N = x̂−f N + KN

(
z̃N − HN x̂−f N

)
= Φ(T, 0)x̂ f (0) + KN HNΦ(T, 0)

[
x(0)− x̂ f (0)

]
+ KNυN

P+
f N = (I − KN HN)P−f N

= (I − KN HN)Φ(T, 0)Pf (0)ΦT(T, 0)

(26)

For the backward smoothing process, the initial optimal smoothed estimate of state vector and
its covariance are x̂(T) = x̂+f N and P(T) = P+

f N . The optimal smoothed estimate and its covariance at
arbitrarily time epoch t can be expressed in continuous form as Equation (27) shows:

x̂(t) = Φ(t, T)x̂(T)
P(t) = Φ(t, T)P(T)ΦT(t, T)

(27)

The error of the optimal smoothed estimate of state vector can be obtained by subtracting true
value from its optimal smoothed estimate as Equation (28) shows:

δx(t) = x̂(t)− x(t)
= Φ(t, T)x̂(T)−Φ(t, 0)x(0)

= Φ(t, T)
[
Φ(T, 0)x̂ f (0) + KN HNΦ(T, 0)

[
x(0)− x̂ f (0)

]
+ KNυN

]
−Φ(t, 0)x(0)

= Φ(t, 0)δx f (0)−Φ(t, T)KN HNΦ(T, 0)δx f (0) + Φ(t, T)KNυN

(28)

From Equation (28), we can get the position error δrn0
pi N

δrn0
piE

and δrn0
pi D

expressed by the initial
errors of state vector by setting the corresponding time. Setting pφN = pφE = pφ, pδvN = pδvE =

pδvD = pδv, pδrN = pδrE = pδrD = pδr, pεN = pεD = pε, σ2
vN

= σ2
vE

= σ2
vD

= σ2
v , σ2

rN
= σ2

rE
= σ2

rD
= σ2

r ,
pδv = σ2

v , and pδr = σ2
r . The time of points ps and ps+5m are represented by ts and ts+5m, and their
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relationship is ts+5m = ts +
l5m
lc

T = ts + kT. Substituting δrn0
piE

and δrn0
pi D

into Equations (21) and (22)
respectively and calculating the variances of ∆psy and ∆psz, we can obtain:

P∆psy = E
{

∆psy∆T
psy

}
=

k2g2T2 pφσ2
v(σ2

r +9k2σ2
v T2)(2ts−5kT)2

4[σ2
v σ2

r +9k2(σ4
v+2g2 pφσ2

r )T2+162k4g2(pφσ2
v+pεσ2

r )T4+1620k6g2 pεσ2
v T6+2916k8g4 pφ pεT8]

+
k2g2T2 pεσ2

v(σ2
r +9k2σ2

v T2)(3t2
s+3kTts−35k2T2)

2

36[σ2
v σ2

r +9k2(σ4
v+2g2 pφσ2

r )T2+162k4g2(pφσ2
v+pεσ2

r )T4+1620k6g2 pεσ2
v T6+2916k8g4 pφ pεT8]

+
k4g4T4 pφ pεσ2

r (3t2
s−15kTts+10k2T2)

2

2[σ2
v σ2

r +9k2(σ4
v+2g2 pφσ2

r )T2+162k4g2(pφσ2
v+pεσ2

r )T4+1620k6g2 pεσ2
v T6+2916k8g4 pφ pεT8]

+
9k6g4T6 pφ pεσ2

v(9t4−90kTt3
s+321k2T2t2

s−480k3T3ts+325k4T4)
2[σ2

v σ2
r +9k2(σ4

v+2g2 pφσ2
r )T2+162k4g2(pφσ2

v+pεσ2
r )T4+1620k6g2 pεσ2

v T6+2916k8g4 pφ pεT8]

(29)

P∆psz = E
{

∆psz∆T
psz

}
=

k2 p∇D σ2
v T2(5kT − 2ts)

2

4
[
σ2

v + 18k2 p∇D T2
] (30)

Calculating the partial derivatives about variables of Equations (29) and (30) respectively, we can

get
∂P∆psy

∂pφ
≥ 0,

∂P∆psy
∂pε

≥ 0,
∂P∆psy

∂σ2
r
≥ 0,

∂P∆psy

∂σ2
v

> 0 and
∂P∆psz
∂p∇D

≥ 0,
∂P∆psz

∂σ2
v
≥ 0. This means that the

variances of alignment irregularity and level irregularity are monotone increasing functions. Only with
variances about initial state errors and observations less than certain values can the measurements of
track irregularity satisfy the surveying accuracy demands. According to Equation (30), the position
error (pδr and σ2

r ) has no effect on level irregularity. As a matter of fact, the influence of position error
on the alignment irregularity is also so small than other error terms that can be ignored. When σ2

r → ∞
which means that there is no position observation, the variance of alignment irregularity can be
converted as Equation (31):

lim
σ2

r→∞
P∆psy =

k2g2T2 pφσ2
v (2ts−5kT)2

4(σ2
v+18k2g2 pφT2+162k4g2 pεT4)

+
k2g2T2 pεσ2

v(3t2
s+3kTts−35k2T2)

2

36(σ2
v+18k2g2 pφT2+162k4g2 pεT4)

+
k4g4T4 pφ pε(3t2

s−15kTts+10k2T2)
2

2(σ2
v+18k2g2 pφT2+162k4g2 pεT4)

(31)

We can verify that the value of lim
σ2

r→∞
P∆psy − lim

σ2
r→0

P∆psy is very small by a numerical method.

Consider that P∆psy is a monotone increasing function of σ2
r , it is feasible to implement track irregularity

surveying tasks without position observations updating for the ZUPT-aided INS. As a result,
the requirements of high precise landmarks are reduced at a large extent. The landmarks can be
only used as a determination of the track segmentation that sub-decimeter scale can meet the demand.
And they may be replaced by a sub-decimeter scale INS/odometer integration system in short time
interval as well.

For the general situation, the system noises cannot be ignored and we carry out the covariance
analysis in a numerical method. The measurement accuracy of alignment irregularity and level
irregularity are related with the variances of initial error states, the accuracy of inertial sensors and
the accuracy of observation update. Here, we suppose that the railway track is a straight track in the
direction of north by east 45 degrees without loss of generality. The system matrix is the full form as
Equation (7) shows without ignoring the projections of the Earth angular velocity through the attitude
errors and the terms of Coriolis acceleration. Considering the previous analysis, we will only make
use of the velocity observation to update the Kalman filter.

Firstly, we assess the influences of the observation accuracy on the irregularity measurement
accuracy without position observation. Setting the tilt error to 0.006◦ and the orientation error is 0.06◦.
Setting the gyro bias instability to 0.01◦/h and ARW is 0.005◦/

√
h, and setting the accelerometer bias
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instability to 50 µg and random noise is 10 µg/
√

Hz. The measurement accuracy is also affected by
the measurement time of every interval or the velocity of the trolley. Shorter measurement time means
less integral time of the errors, and will result in higher measurement accuracy. Here we set the trolley
velocity to 1 m/s (8 km/h at most for track surveying trolley), and 30 s will be consumed for every
30 m distance interval. The relationship between railway track irregularities measurement accuracy
and the velocity observation accuracy as well as initial position accuracy are illustrated in Figure 8.
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Figure 8. (a) The relationship between level irregularity and accuracy of velocity observation as well as
initial position; (b) The relationship between alignment irregularity accuracy and accuracy of velocity
observation as well as initial position.

According to Figure 8, under the supposed conditions above, the observation accuracy of velocity
causes larger influences than the initial position error for the track irregularities measurement accuracy.
The initial position error has no effect on the track irregularity, which is coincident with the theoretical
analysis previously. In order to satisfy the relative accuracy demand of 1mm, the accuracy of velocity
observation should be less than 0.15 mm/s and ZUPT can satisfy the accuracy demand of velocity.
A higher level of inertial sensors than the system above should be employed to satisfy the high-speed
railway accuracy demand of 0.5 mm.

Secondly, we assess the influence of the random noises of inertial sensors on the irregularity
measurement accuracy. Setting the tilt error to 0.006◦ and the orientation error is 0.06◦. Setting the
gyro bias instability to 0.01◦/h, the accelerometer bias instability is 50 µg. and setting the accuracy
of initial position to 10 cm the velocity observation is 0.1 mm/s. The relationship between track
irregularities measurement accuracy and random noises of gyro and accelerometer are illustrated in
Figure 9, where under the supposed conditions above, the ARW of gyro should less than 0.0071◦/

√
h at

most and random noise of accelerometer should less than 14.7 µg/
√

Hz at most to satisfy the demand
accuracy of 1 mm both with and without position observation.

Thirdly, the influences of the tilt errors and orientation error on the irregularity measurement accuracy
have been assessed. Other parameters are fixed as described values previously. The relationship between
track irregularities measurement accuracy and attitude errors are illustrated in Figure 10.

As illustrated in Figure 10, the attitude errors have no effect on the level irregularity, which is
coincident with the theoretical analysis as Equation (30) shows. Since the orientation error is much
bigger, it has a larger effect on alignment irregularity than the tilt errors.

Finally, the influences of the equivalent biases of gyros and accelerometers on the irregularities
measurement accuracy are assessed as illustrated in Figure 11. Other parameters are also fixed at the
previously described values.
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Figure 9. (a) The relationship between level irregularity measurement accuracy and noises of gyro and
accelerometer; (b) The relationship between alignment irregularity measurement accuracy and noises
of gyro and accelerometer.
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Figure 10. (a) The relationship between level irregularity measurement accuracy and attitude errors;
(b) The relationship between alignment irregularity measurement accuracy and attitude errors.Sensors 2017, 17, 2083  15 of 23 
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Figure 11. (a) The relationship between level irregularity measurement accuracy and the biases of
inertial sensors; (b) The relationship between alignment irregularity measurement accuracy and the
biases of inertial sensors.

As illustrated in Figure 11, the gyro biases have no effect on the level irregularity, which is
coincident with the theoretical analysis as shown in Equation (30) and the influence of the accelerometer
bias on the level irregularity is small. In addition, the accelerometer bias has no effect on the alignment
irregularity as well as Equation (29) shows.
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6. Simulations and Experimental Results

6.1. Simulations

Monte Carlo simulations of the alignment irregularity and level irregularity surveying accuracy for
the proposed approach have been implemented based on the real random noises of INS. The simulated
trajectory is a straight line in the direction of north by east 45 degrees. The random noises of gyros
and accelerometers are measured by the mentioned INS in static state. The ARW of RLG gyro in this
paper is about 0.005◦/

√
h, and the bias instability is set to 0.01◦/h. The random noise of accelerometer

is about 10 µg/
√

Hz, and the bias is set to 50 µg. According to the accuracy of the inertial sensor,
the initial attitude errors are set to 0.006◦ and the initial orientation error is set to 0.06◦. The position
standard deviations are set to 10 cm, and 0.1 mm/s for the velocity observation. The high precise
velocity observation can be provided by ZUPT technique. The velocity of the trolley is set to 1 m/s,
and the length of the trajectory is set to 30 m. The observation updates are provided at the beginning
and the end of the trajectory. We take the maximum value of track irregularity error to test the statistical
accuracy. Five hundred groups of Monte Carlo simulation results based on ZUPT-aided INS approach
without position observation are shown in Figure 12.
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Figure 12. (a) The distribution of level irregularity measurement accuracy; (b) The distribution of
alignment irregularity measurement accuracy.

According to Figure 12, the Root Mean Square (RMS) of measurement accuracy is about 0.70 mm
for the level irregularity and 0.99 mm for the alignment irregularity. This is consistent to the result
calculated by the covariance analysis previously. The results of Monte Carlo simulation based on
ZUPT-aided INS approach with position observation are the same.

6.2. Experimental Results

Real tests were carried out on an experimental railway line. The railway track is about 120 m long
as shown in Figure 13. The absolute position is provided by a Leica optical total station with a high
precision prism mounted on the trolley based on Control Points (CPIII) as shown in the figure.

At the beginning of the tests the trolley is put on the track for 15 min static initial alignment, and loading
initial position measured by total station. Then pushing the trolley moves forward on the track at walking
speed (about 1.5 m/s) and implementing the measurement of the track irregularities. Two different
experiments have been carried out.

The first experiment is the comparison test of accuracy between the proposed approach and the
total station. For this group of tests, the trolley stops at every 60 m distance interval and the velocity
observation provided by ZUPT will be updated for the INS. The track irregularities measured by
ZUPT-aided INS will compared with the measurements provided by total station. Since the high precise
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position measurements are measured by total station in every 3 m interval, the distance of two adjacent
points calculating the irregularity in Equation (1) is chosen as 6 m. For 30 m chord, the deviation of
measurement results between these two approaches is shown in Figure 14. As illustrated, the RMS of
alignment irregularity is about 0.82 mm and level irregularity is 1.02 mm. The 3D spatial trajectories
of first 60 m track segmentation measured by total station and ZUPT-aided INS are illustrated in
Figure 14c. As shown in the figure, even though the absolute deviations between these two approaches
are bigger, the relative deviations can still achieve millimeter scale.
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Figure 14. (a) Level irregularity deviation for 30 m chord between ZUPT-aided INS and total station;
(b) Alignment irregularity deviation for 30 m chord between ZUPT-aided INS and total station; (c) 3D
spatial trajectory of 60 m track segmentation measured by ZUPT-aided INS and total station.

The second experiment is the repeatability test. For this experiment, six groups of measurements
of the same track segment were carried out. Since the designed vector distance is unknown, we just
calculate the difference of two points in 5 m intervals, namely d̃s − d̃s+5m to estimate the repeatability
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of track irregularity. The comparison of track irregularity sequences obtained by ZUPT-aided INS in
six runs is illustrated in Figure 15. As shown in the figure, the distance of two adjacent sample points
is 0.5 m and only the track irregularities of the first 30 m chord are plotted in the figure.
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Figure 15. (a) Level irregularity measurement repeatability for 30 m chord; (b) Alignment irregularity
measurement repeatability for 30 m chord.

The irregularity differences at the same railway track points between different runs indicate the
repeatability of the measurement. The results of statistic deviation of alignment and level irregularities
are listed in Table 1. As Table 1 shows, the standard deviations of differences in alignment irregularity
and level irregularity are approximately 1mm, which is consistent with the theoretical analysis as well
as the simulation results.

Table 1. Statistic of alignment irregularity and level irregularity differences.

NO.
Alignment Irregularity (mm) Level Irregularity (mm)

Max Mean Std Max Mean Std

G12 3.075 −0.028 1.006 3.854 −0.221 1.296
G13 1.164 0.012 0.445 3.005 −0.131 1.147
G14 1.617 −0.032 0.783 2.954 −0.077 1.082
G15 2.184 −0.088 0.677 2.767 −0.103 0.772
G16 1.403 −0.054 0.527 2.667 −0.071 1.123
G23 3.034 0.040 1.037 2.248 0.089 1.062
G24 1.799 −0.004 0.542 2.250 0.144 0.842
G25 1.340 −0.060 0.654 2.579 0.118 1.161
G26 1.987 −0.026 0.887 2.795 0.150 1.256
G34 1.900 −0.044 0.821 2.192 0.054 1.097
G35 2.143 −0.099 0.707 2.662 0.028 1.104
G36 1.361 −0.066 0.524 3.021 0.060 1.048
G45 1.485 −0.056 0.550 2.947 −0.026 0.914
G46 2.029 −0.022 0.737 3.626 0.006 1.246
G56 1.085 0.034 0.534 2.960 0.032 1.225

Note: Gij represents the difference between group i and group j.

7. Conclusions

The measurement of railway track irregularity plays a significant role in monitoring the track
deformation and guiding the maintenance of railway lines. This paper makes use of the ZUPT-aided
INS for the track irregularity measuring applications. The RTS smoothing algorithm is employed to
improve the performance of the surveying system.

The calculation equations of the track irregularity parameter from absolute positions have been
deduced in the paper. Based on covariance analysis, the analytical relationships between the track
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irregularity with the drifts of inertial sensors, the accuracy of attitude and the accuracy of velocity
observations as well as the accuracy of initial position are established. The theoretical analysis and
numerical analysis show that the position observation of the Kalman filter has no effect on the
measurement accuracy of the alignment irregularity and level irregularity, and we can implement
track relative geometry surveying based on ZUPT-aided INS without position observation updates.
The landmarks can be only used to determine track segmentation, sub-decimeter scale accuracy of
which can satisfy the track surveying demand.

Simulations and experimental results show that the relative accuracy for 30 m chord of the
proposed approach for track irregularity surveying can reach approximately 1 mm (1σ) with gyro
bias instability of 0.01◦/h, random walk noise of 0.005◦/

√
h and accelerometer bias instability of

50 µg, random noise of 10 µg/
√

Hz, while only velocity observations are provided by the ZUPT
technique in about every 60 m interval. This accuracy can meet the most stringent requirements of the
track irregularity surveying for railway lines. For higher accuracy demand of irregularity surveying,
the higher level of inertial sensors than that of this paper should be employed.

This paper proposes a relative geometry parameter measuring approach for the railway track.
It reduces the requirement of high precision landmarks significantly and lightens the maintenance
burden of control points to a large extent. In addition, it also can improve the work efficiency of
railway track irregularity measurement task.
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Appendix A : The derivation processes of Equations (18) and (19).

According to Equation (16), the deviation of rc
psy can be calculated by variational method as

expressed by Equation (A1):

δrc
psy =

∂rc
ps y
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(A1)

According to Equation (15), the differential of sin θa and cos θa in Equation (A1) can be derived by
Equation (A2):
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The partial derivative items of Equation (A2) can be expressed as shown by Equations (A3) and (A4):
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Combining Equations (A2) and (A4) and rearranging yields Equation (A5):

δ sin θa = −
(

δr
n0
p30m N−δr

n0
p0m N

)
sin θa cos θa−

(
δr

n0
p30mE−δr

n0
p0mE

)
cos2 θa√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

δ cos θa =

(
δr

n0
p30m N−δr

n0
p0m N

)
sin2 θa−

(
δr

n0
p30mE−δr

n0
p0mE

)
sin θa cos θa√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

(A5)

Combining Equations (1), (A1) and (A5) and rearranging we can obtain the Equation (A6):
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Considering the small gradient and the large turning radius of the railway track Equation (A6)
can be simplified as Equation (18) by ignoring the small terms.

Similarly, the deviation of rc
psz can be calculated by a variational method as expressed by Equation (A7):
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δ cos θl

(A7)

According to Equation (15), the differential of sin θl and cos θl in Equation (A6) can be derived by
Equation (A8):

δ sin θl =
∂ sin θl

∂r
n0
p30m N

δrn0
p30m N + ∂ sin θl

∂r
n0
p0m N

δrn0
p0m N + ∂ sin θl

∂r
n0
p30mE

δrn0
p30mE

+ ∂ sin θl
∂r

n0
p0mE

δrn0
p0mE + ∂ sin θl

∂r
n0
p30m D

δrn0
p30mD + ∂ sin θl

∂r
n0
p0m D

δrn0
p0mD

δ cos θl =
∂ cos θl

∂r
n0
p30m N

δrn0
p30m N + ∂ cos θl

∂r
n0
p0m N

δrn0
p0m N + ∂ cos θl

∂r
n0
p30mE

δrn0
p30mE

+ ∂ cos θl
∂r

n0
p0mE

δrn0
p0mE + ∂ cos θl

∂r
n0
p30m D

δrn0
p30mD + ∂ cos θl

∂r
n0
p0m D

δrn0
p0mD

(A8)
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The partial derivative items of Equation (A8) can be expressed as Equations (A9) and (A10) show:

∂ sin θl
∂r

n0
p30m N

=

(
r

n0
p30m N−r

n0
p0m N

)(
r

n0
p30m D−r

n0
p0m D

)
[(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
= −

(
r

n0
p30m N−r

n0
p0m N

)
sin θl

l2
c

∂ sin θl
∂r

n0
p0m N

= −
(

r
n0
p30m N−r

n0
p0m N

)(
r

n0
p30m D−r

n0
p0m D

)
[(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
=

(
r

n0
p30m N−r

n0
p0m N

)
sin θl

l2
c

∂ sin θl
∂r

n0
p30mE

=

(
r

n0
p30mE−r

n0
p0mE

)(
r

n0
p30m D−r

n0
p0m D

)
[(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
= −

(
r

n0
p30mE−r

n0
p0mE

)
sin θl

l2
c

∂ sin θl
∂r

n0
p0mE

= −
(

r
n0
p30mE−r

n0
p0mE

)(
r

n0
p30m D−r

n0
p0m D

)
[(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
=

(
r

n0
p30mE−r

n0
p0mE

)
sin θl

l2
c

∂ sin θl
∂r

n0
p30m D

= −
(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

[(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
= − cos2 θl

lc

∂ sin θl
∂r

n0
p0m D

=

(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2

[(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
] 3

2
= cos2 θl

lc

(A9)

∂ cos θl
∂r

n0
p30m N

= cos θa sin2 θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= cos θa sin2 θl

lc

∂ cos θl
∂r

n0
p0m N

= − cos θa sin2 θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= − cos θa sin2 θl

lc

∂ cos θl
∂r

n0
p30mE

= sin θa sin2 θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= sin θa sin2 θl

lc

∂ cos θl
∂r

n0
p0mE

= − sin θa sin2 θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= − sin θa sin2 θl

lc

∂ cos θl
∂r

n0
p30m D

= sin θl cos θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= sin θl cos θl

lc

∂ cos θl
∂r

n0
p0m D

= − sin θl cos θl√(
r

n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30mE−r

n0
p0mE

)2
+
(

r
n0
p30m D−r

n0
p0m D

)2
= − sin θl cos θl

lc

(A10)
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Combining Equations (A9) and (A10) and rearranging yields Equation (A11):

δ sin θl = ∂ sin θl
∂r

n0
p30m N

δrn0
p30m N + ∂ sin θl

∂r
n0
p0m N

δrn0
p0m N + ∂ sin θl

∂r
n0
p30m E

δrn0
p30m E

+ ∂ sin θl
∂r

n0
p0m E

δrn0
p0m E + ∂ sin θl

∂r
n0
p30m D

δrn0
p30m D + ∂ sin θl

∂r
n0
p0m D

δrn0
p0m D

= −
(

r
n0
p30m N−r

n0
p0m N

)
sin θl

l2c

(
δrn0

p30m N − δrn0
p0m N

)
−
(

r
n0
p30m E−r

n0
p0m E

)
sin θl

l2c

(
δrn0

p30m E − δrn0
p0m E

)
− cos2 θl

lc

(
δrn0

p30m D − δrn0
p0m D

)
δ cos θl = ∂ cos θl

∂r
n0
p30m N

δrn0
p30m N + ∂ cos θl

∂r
n0
p0m N

δrn0
p0m N + ∂ cos θl

∂r
n0
p30mE

δrn0
p30mE

+ ∂ cos θl
∂r

n0
p0mE

δrn0
p0mE + ∂ cos θl

∂r
n0
p30m D

δrn0
p30mD + ∂ cos θl

∂r
n0
p0m D

δrn0
p0mD

= cos θa sin2 θl
lc

(
δrn0

p30m N − δrn0
p0m N

)
+ sin θa sin2 θl

lc

(
δrn0

p30mE − δrn0
p0mE

)
+ sin θl cos θl

lc

(
δrn0

p30mD − δrn0
p0mD

)

(A11)

By combining Equations (1), (A5), (A7) and (A11) and rearranging we can obtain the Equation (A12):

∆psz = δrc
psz − δrc

ps+5mz

=
(

δrn0
ps N − δrn0

ps+5m N

)
sin θl cos θa +

(
δrn0

ps E − δrn0
ps+5m E

)
sin θl sin θa +

(
δrn0

ps D − δrn0
ps+5m D

)
cos θl

+

(
r

n0
ps N−r

n0
ps+5m N

)
sin θa−

(
r

n0
ps E−r

n0
ps+5m E

)
cos θa√(

r
n0
p30m N−r

n0
p0m N

)2
+
(

r
n0
p30m E−r

n0
p0m E

)2
sin θl

[(
δrn0

p30m N − δrn0
p0m N

)
sin θa −

(
δrn0

p30m E − δrn0
p0m E

)
cos θa

]

−
(

r
n0
ps N−r

n0
ps+5m N

)
cos θa+

(
r

n0
ps E−r

n0
ps+5m E

)
sin θa

lc

(
r

n0
p30m N−r

n0
p0m N

)
lc

(
δrn0

p30m N − δrn0
p0m N

)
sin θl

−
(

r
n0
ps N−r

n0
ps+5m N

)
cos θa+

(
r

n0
ps E−r

n0
ps+5m E

)
sin θa

lc

(
r

n0
p30m E−r

n0
p0m E

)
lc

(
δrn0

p30m E − δrn0
p0m E

)
sin θl

−
(

r
n0
ps N−r

n0
ps+5m N

)
cos θa+

(
r

n0
ps E−r

n0
ps+5m E

)
sin θa

lc

(
δrn0

p30m D − δrn0
p0m D

)
cos2 θl

+

(
r

n0
ps D−r

n0
ps+5m D

)
lc

(
δrn0

p30m N − δrn0
p0m N

)
cos θa sin2 θl

+

(
r

n0
ps D−r

n0
ps+5m D

)
lc

(
δrn0

p30m E − δrn0
p0m E

)
sin θa sin2 θl

+

(
r

n0
ps D−r

n0
ps+5m D

)
lc

(
δrn0

p30m D − δrn0
p0m D

)
sin θl cos θl

(A12)

Similarly, Equation (A12) can be simplified as Equation (19) by ignoring the small terms.
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