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Abstract: In this study, a high-Q circular substrate-integrated waveguide (SIW) cavity resonator
is proposed as a non-contact and non-invasive radio frequency (RF) sensor for chemical sensing
applications. The design of the structure utilizes SIW technology along with a circular shape to
achieve a high unloaded Q factor, which is one of the important requirements for RF sensors.
The resonant frequency of the proposed circular SIW cavity sensor changes when a liquid material
or a chemical (microliters) is inserted in the sensitive area of the structure. The sensing of liquid
materials with different permittivities is accomplished via the perturbation of the electric fields in
the SIW configuration. When a microwell that is 4 mm in radius is installed vertically through the
center of the bare circular SIW cavity, the operating frequency varies from 5.26 to 5.34 GHz. Similarly,
when the microwell contains ethanol, the frequency shifts from 5.26 to 5.18 GHz, and the amplitude of
reflection coefficient is shifted from−29 dB to−17 dB; when the microwell contains mixing deionized
(DI)-water, the frequency moves from 5.26 to 4.98 GHz (which is also 0% Ethanol in our study),
and the amplitude of reflection coefficient is shifted from −29 dB to −8 dB. A high unloaded Q factor
is maintained throughout all experimental results. To demonstrate our idea, different concentrations
of ethanol are tested and recorded. The experimental validation yields a close agreement between the
simulations and the measurements.
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1. Introduction

Chemical sensors have been used for many years to identify the purity ranks of numerous fluids
to simplify the arrangement of those fluids for a wide range of industrial applications. It is necessary
to store and classify these fluids or chemicals in accordance with the Globally Harmonized System
of Classification and Labelling of Chemicals. The use of unidentified and unlabeled chemicals in
experiments may have unforeseen consequences, and some of these chemicals may have severe effects
on the human body. For example, methyl alcohol is toxic to the skin and body and can cause blindness,
unconsciousness, and even death [1]. Consequently, fluidic chemical materials should be labeled so
that they are recognized properly. Furthermore, a material safety manual should always be provided
to the experimenters.

Traditional liquid chemical sensors for investigating bioassays or chemical assays and determining
liquid quality require a large amount of fluid for filling the taps or tubes [2,3]. Therefore, during
the process of analysis and measurement, a large amount of fluid is wasted. To solve this problem
of wastage, microfluidic structures have been proposed. A silicon-microfabricated diffusion-based
photosensitive chemical device was proposed for measuring chemical concentrations [4]. This optical
sensing device can measure the analytical concentrations in a tiny volume of a compound taster.
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Furthermore, a liquid-core optical ring-resonator device is discussed in [5]. A bonded silica tube acts
as a ring resonator and transmits the fluid sample. The photosensitive characterization of the ring
resonator is verified with a water–ethanol combination. This optically resonating device exploits the
low liquid consumption, high sensitivity, and compact dimensions.

Figure 1 presents the substrate-integrated waveguide (SIW) configuration. An SIW is a favorable
contender for improvements in planar radiofrequency (RF) circuits for wireless communication
applications [6–12]. Figure 1 clearly shows that the SIW structure comprises two walls of metallic vias
that connect the bottom and top conductors, and there is very low-loss dielectric material between
the two conductors [13]. Because of the simple planar fabrication and its easy integration with other
circuits, SIW modules are widely preferred for low-loss and high-quality reflections, in addition to
a metallic waveguide and planar printed circuit board (PCB). Compared with microstrip structures
and co-planar striplines, SIWs are easy to handle, low-cost, easy to fabricate, easily miniaturized,
and low-profile. SIWs also provide the advantages of the traditional metallic waveguide structure,
i.e., a high quality factor (QF), lowermost losses, appropriate shielding, and all-out power-handling
capability. One of the most important features of these structures is that a full circuit can be constructed
in a planar configuration, which is very important for integration with other circuits, antennas,
transitions, and rectangular or circular waveguides having planar configurations obtained through
typical PCB fabrication procedures.
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Figure 1. Illustration of the SIW structure.

SIW modules also permit multiple mount-in chipsets on a single board, which helps them to be
merged with diverse circuit systems that have dissimilar principles and reduce the total loss. Recently,
excellent studies have been reported in the scientific community regarding the miniaturization of
SIW cavities [14]. This extensive investigation has forced the enhancement of design methods in SIW
technology, and a new technique and procedure were presented recently to make SIWs reusable and
more compact [15–18].

Polydimethylsiloxane (PDMS) microfluidic reservoirs make it possible to perform liquid testing
experiments on the microliter or nanoliter scale in RF electronics. A shift in the resonant frequency
may be observed by just testing a very small quantity of the fluid. PDMS, which is a commercial
silicone elastomer with a low Young’s modulus (<2 MPa), is a suitable candidate for making fluidic
geometries [19]. PDMS exhibits a low surface energy and low modulus and is flexible. These properties
allow it to be effortlessly attached onto electronic planes. It has a high loss tangent (0.0373) and a low
dielectric constant (2.66) [20]. As previously mentioned, RF circuits permit the incorporation of fluidic
reservoirs in order to sense different liquid materials, e.g., chemicals or bio-cells. An RF sensing device
using E-shaped fluidic reservoir with a compact size and low loss was proposed in [21].

A very high-Q, non-invasive, and non-contact circular SIW cavity resonator is proposed for liquid
chemical detection. The original configuration employs a circular waveguide combined with an SIW
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construction, which offers various features: (1) lightness; (2) low radiation losses; and (3) a high QF,
as previously discussed [13]. A circular SIW was chosen during the parametric analysis, because it
produced a high unloaded Q factor of 1080, which the other configurations (square, rectangular, and
triangular) failed to produce. The circular shape is derived from the circular waveguide resonator
theory [22]. By combining the circular waveguide resonator with SIW technology, a very high
unloaded Q factor of 1080 was realized in a planar configuration. In the presented research work,
a PDMS microwell is installed in the center of the circularly constructed SIW to achieve a higher
frequency-shifting ability while maintaining a high Q. A PDMS microwell can accommodate a
maximum of 3 µL of liquid material. Therefore, the operating frequency of the proposed device
is significantly affected by testing a very small quantity of fluid at the center of the circular SIW cavity.
Quality control is one of the commercial application for our proposed sensor [23], but it can also be
utilized in local chemistry laboratories for identification and labeling of liquid chemicals. Microwave
cavity modules with such a configuration have been previously reported, along with frequency-tunable
RF resonators [24–28].

2. Sensor Design

2.1. Circular SIW Cavity Resonator Design

The transverse magnetic (TM01) and transverse electric (TE11) modes are the dominant modes
in a circular waveguide, as described in [29]. After deriving the Bessel’s differential equation and
Bessel functions, we express the lowest cutoff frequency of the two dominant modes TM01 and TE11

as follows:
( fc)TM01
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where a is the radius of the circular waveguide, and µ and ε are the permeability and permittivity,
respectively, of the dielectric material. Simultaneously, the resonant frequency of dominant TMnm`

and TEnm` modes in the circular waveguide cavity are defined as [29]:
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where c is the speed of light, Pnm and P’nm are the roots of Bessel’s function Jn(x) and J’n(x), a is the radius
of the circular cavity, d is the depth, and µr and εr are the permeability and permittivity, respectively.

Our proposed structure is a combination of a circular waveguide and SIW technology. The reason
for not choosing a typical rectangular SIW cavity structure is its lower Q factor compared to that of
the circular SIW cavity. Therefore, to achieve our goals of attaining higher unloaded Q factor and
better ethanol sensitivity with SIW technology compared to RF resonators, a circular waveguide cavity
resonator is used along with the SIW technology; the structure becomes planar, and thus has a TE10 as
the dominant mode of operation in our proposed research. The QF comparison between rectangular
and circular SIW cavities is shown in Figure 2.
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The unloaded quality factor (Q) of a resonator can be defined as [29]:

Q = 2π f0
Wm + We

Ploss
(5)

where f 0 is the resonant frequency and Ploss is the dissipated power. Wm and We are the average stored
magnetic and electric energies, respectively. The Q factor can be calculated from the 3 dB bandwidth as:

Q =
f0

fH,3dB − fL,3dB
(6)

where f H,3dB and f L,3dB are the high and low frequencies at 3 dB below peak, respectively. In this
work, we have used Equation (6) to calculate the unloaded Q factors for the simulated and measured
reflection coefficient results. The above concept of unloaded Q-factor calculations for a one-port
reflection resonator (our case) or for a two-port transmission and absorption cases is clearly explained
in the these excellent works [30–33].

Figure 3 shows the design of the circular SIW cavity resonator. It is fed by a 50-Ω microstrip line.
The Rogers RT/Duroid 5880 (Rogers Corporation, Connecticut, CT, USA) dielectric material (thickness
= 1.575 mm, dielectric constant = 2.2, loss tangent = 0.0014) is selected to realize the idea. Initially,
the structure was designed to resonate at 5 GHz. The detailed geometric parameters of the design are
presented in Table 1. Figure 4 illustrates the electric-field (e-field) circulation of the simulated design
when there is no microwell installed on the structure. Figure 4 clearly indicates that the magnitude
of the e-field is concentrated at the center of the circular waveguide. A circular SIW cavity resonator
is used in this study because of its lower scrounging loss, higher QF, and ease of PCB fabrication
compared with other SIW shapes [14,17,34,35].

The operating frequency of the proposed device is directly proportional to the effective dielectric
constant of the dielectric material. Furthermore, its effective permittivity is changed by testing fluidic
chemicals or liquid biomaterials inside the microwell on the SIW cavity. Consequently, the suggested
SIW cavity sensor can sense the permittivity of several fluidic chemicals by observing the change in
the resonant frequency of the device. The e-fields of the structure are disturbed, which causes shifts in
the frequency.
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Table 1. Detailed geometric parameters of the design.

Number Parameter Dimension (mm) Description

1 x 75 Width of substrate and metallic bottom ground
2 y 75 Height of substrate and metallic bottom ground
3 l 27 Length of microstrip line feeding
4 w 4.75 Width of microstrip line feeding
5 d 32 Diameter of circular SIW patch
6 p 1.7 Pitch (center to center) distance between vias
7 v 0.45 Diameter of SIW vias
8 id 2 Inner diameter of microwell
9 od 4 Outer diameter of microwell

10 h 1.575 Height of Rogers substrate
11 hmw 2.5 Height of microwell
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2.2. PDMS Microwell Design

A microwell with PDMS material is constructed and installed at a location where the magnitude
of the e-field is strong (center). It is constructed to contain a maximum liquid volume of 3 µL. Each of
the liquid samples tested in this study is 3 µL in volume. The microwell reservoir is 2 mm in height
and 2 mm in diameter. As shown in Table 1, the diameter of the microwell is chosen to be 4 mm.
This value is selected on the basis of parametric simulations, for checking the frequency sensitivity
and maintaining a high Q, which are important features of an RF sensor. Figure 5 shows the detailed
PDMS microwell construction for testing liquid materials.
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To justify the dimensions of the microwell, the microwell diameter is chosen as 4 mm on the basis
of a parametric study. Figure 6 shows the simulation results for the case where the outer diameter of
microwell varied from 2 to 6 mm. It must be noted that outer diameter is always a double of inner
diameter. For instance, when the outer diameter is 2 mm, the inner diameter is 1mm; and when the
outer diameter is 3 mm, the inner diameter is 1.5 mm, respectively. The parametric study revealed
that 4 mm was the optimal outer diameter (2 mm inner diameter as seen in Figure 6) for installing the
microwell in the structure to maintain a suitable QF of the circular SIW cavity and allow a significant
frequency shift (between ethanol filled and empty microwell).
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3. Simulation Results

After the design process, a full wave computer simulation is performed using an ANSYS
high-frequency structure simulator (HFSS). A microwell using a PDMS reservoir is examined, and its
material specifications are extracted to produce a physical object in the computer software. Ethanol is
also examined at a frequency of 5 GHz and is stored inside the microwell to validate our notion of
sensing. The simulated reflection coefficients of the bare resonator (without the microwell), the ethanol-
filled microwell, and the empty microwell are predicted to have distinct frequency responses.

Figure 7 shows the frequency responses for the three aforementioned cases, where the circular
SIW resonator does not have a microwell, has a water-filled microwell, and has a microwell reservoir
filled with ethanol. The corresponding operating frequencies observed are 5.24, 4.99, and 5.16 GHz.
The unloaded QFs for these three cases are 1080 (bare), 431 (water-filled), and 463 (ethanol), respectively.
The structure exhibits a very high Q, which is important for the ability of RF sensors to detect liquid
materials having a high permittivity. Consequently, it can be predicted that this sensor device can
function as a chemical concentration sensor and can sense many liquid materials with dissimilar
relative permittivity.
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and the microwell filled with ethanol. The unloaded Q factor is shown in a box for each result.

4. Experimental Demonstration

Figure 8 shows photographs of the proposed sensor. Figure 8a shows a fabricated circular
SIW cavity resonator that has undergone a PCB etching process on a Rogers Duroid 5880 substrate.
Figure 8b shows that a PDMS microwell has been inserted into the 4-mm hole at the center of the
cavity. The drilled holes around the cavity are copper-plated metallic vias that connect the top copper
patch with the bottom ground, making it an SIW cavity.
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Figure 8. Fabricated sensor prototype: (a) circular SIW cavity resonator with metallic vias zoomed,
and (b) with PDMS microwell in the center (microwell zoomed).

Ethanol is injected in the microwell, and the frequency responses for the previously discussed
three cases are logged using an HP 8510C vector network analyzer (VNA) manufactured by Hewlett
Packard, Palo Alto, CA, USA. In Figure 9, the simulation results are compared with the measurement
results. The measured resonant frequencies exhibit good agreement with the simulated resonant
frequencies. We can observe the difference between the simulated and measured reflection coefficients
due to error in imaginary values of complex permittivity. In general, the real values of complex
permittivity determines the resonant frequency, while the imaginary values of complex permittivity
determines the reflection coefficient. However, it is difficult to extract the accurate imaginary values of
complex permittivity rather than the real values of complex permittivity.
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Figure 9. Measurement results plotted alongside simulated results.

Next, we aimed to employ this device as a purity sensor for ethanol. We prepared different
concentrations of ethanol by mixing deionized (DI) water and measured the frequency responses.
Figure 10 shows the measured reflection coefficients when the concentration of ethanol is sensed from
5% to 100%. The total amount of liquid that can fill the microwell is 3 µL, and 50% ethanol means
1.5 µL of ethanol mixed with 1.5 µL of DI water.
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Figure 10. Measured reflection coefficients of different concentrations of ethanol, ranging from 5%
to 100%.

The lowest bound of chemical recognition for the proposed sensor is 5% ethanol. To prepare
5% ethanol, 1 mL of DI water is stirred with 50 µL of pure ethyl alcohol. Absolute grade ethanol
solvent (CH3CH2OH, part number 32,205) was purchased from Sigma–Aldrich (St. Louis, MO, USA).
This solvent contained 789 g of solute in 1 L of water [36], which means that 5% ethanol corresponds
to 39,450 ppm in our experimental demonstration. The material loss of 100% ethanol is higher than the
material loss of 5% ethanol; however, because of the very high Q of the proposed SIW resonator, the QF
is decent and does not degrade with different chemical concentrations. The relationship between
the frequency and the ethanol concentration is almost linear, described as y = 1.9 × 10−3 x + 4.98 for
ethanol purities ranging from 5% to 100%. When the sensitivity of the proposed device as an ethanol
sensor is resolute by the slope angle of the fitting curve, it is 1.9 × 106 Hz/percentage. The sensitivity
plot is shown in Figure 11 where error range is between −10 MHz to 10 MHz.
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To demonstrate the repeatability of the sensor, 10 experiments for 20% ethanol, 40% ethanol,
and 80% ethanol are repeatedly performed under the same measurement setup. For the three
aforementioned ethanol concentrations, the resonant frequency remained the same after emptying
the microwell and re-injecting the solution in the microwell. The room temperature was controlled
to 22 ◦C throughout our experiments. Figure 12 shows that the proposed sensor is reliable and the
measurement results are reproducible using the same fabricated prototype.
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A comparison of proposed device with other recently reported SIW ethanol sensors is presented
in Table 2. The unloaded Q factors are compared, when the resonators do not have an ethanol sample.
All of the measurement results indicate that the proposed sensor device has a higher unloaded Q factor
when there is no ethanol sample inside the resonator’s sensitive area (bare resonator). Our proposed
circular SIW cavity sensor also achieved a largest frequency shift and highest sensitivity for ethanol
chemical. Some highly appreciated works using GHz-THz frequency band, sensing biomaterials,
petrol, propanol, and other aqueous solutions using both optical and RF sensing mechanism are
mentioned here [38–45].

Table 2. Performance of the proposed sensor compared with other SIW-based ethanol sensors.

Reference Sensing Frequency Shift
(∆f ) ‡ (MHz)

Sensitivity
(MHz/εr)

Technology QF Volume (µL)

[21] Ethanol liquid 145 26.36 SIW 39.12 10
[34] Ethanol liquid 70 12.73 SIW 51 1
[37] Ethanol liquid 38 5.84 SIW 334.6 500,000

This work Ethanol purity 380 69.07 Circular SIW 1080 3
‡ Frequency shift (∆f ) and sensitivity (∆f /∆εr) are calculated from air and ethanol; εr of air and ethanol are 1 and
6.5, respectively [38]. Unloaded QF are calculated when there is no ethanol sample (bare resonator).

5. Conclusions

A chemical and chemical-purity sensor is proposed. The device employs a circular SIW
configuration. A microfluidic microwell made of PDMS is installed at the most subtle location
of the SIW cavity (center). When a microfluid (maximum of 3 µL) is dropped on the PDMS microwell,
the frequency of the device changes because of the change in the effective dielectric constant. The
proposed sensor is constructed on a Rogers/Duroid 5880 dielectric material using the typical PCB
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etching procedure, and the microwell is constructed over the PDMS material using a laser-etching
engine, which is a simple and brief procedure. Our proposed idea is confirmed by close agreement
between the simulation and measurement results. In addition, the measured results indicate a
distinguishable frequency response when the ethanol purity is varied from 5% to 100% or when
a different bio-cell is measured. The proposed sensor is planar, non-invasive, very high-Q, contracted,
reusable, and non-contacting, and it accepts a very minute liquid sample for sensing. It is a low-cost
device that can easily be manufactured through a typical PCB procedure. In this study, it was
successfully demonstrated that the proposed circular SIW cavity sensor can detect chemicals and
the purity level of ethanol. The repeatability and reliability of the presented sensor was confirmed
by conducting more than 10 similar experiments. The proposed sensor discriminates various liquid
chemicals having different dielectric constants. However, it is the limitation of RF sensors that they
cannot differentiate between mixtures of chemicals or biomaterials having similar dielectric constants.
Thus, we have proposed this device particularly as an ethanol concentration sensor. Quality control
is one of the commercial applications for our proposed sensor, but it can also be utilized in local
chemistry laboratories for identification and labeling of liquid chemicals. We are confident that in the
future, we will produce this sensor on a flexible or inkjet-printed low-cost paper substrate for its use in
wearable electronics or e-health because of increased advances.
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