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Abstract: Research on indoor positioning technologies has recently become a hotspot because of the
huge social and economic potential of indoor location-based services (ILBS). Wireless positioning
signals have a considerable attenuation in received signal strength (RSS) when transmitting through
human bodies, which would cause significant ranging and positioning errors in RSS-based systems.
This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning,
and derives a mathematical expression of the relation between the body-shadowing effect and the
positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing
detection strategy is designed, and an error compensation model is established to mitigate the effect
of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation
(BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor
body-shadowing environments. Experiments are conducted in two indoor test beds, and the
performance of both the BP-BEC algorithm and the algorithms without body-shadowing error
compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the
no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively.
Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the
convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

Keywords: Bluetooth indoor positioning; body-shadowing detection; error compensation model;
range-based positioning

1. Introduction

The indoor location-based service (ILBS) has recently gained considerable attention due to its social
and commercial values, and its market value is predicted to be worth $10 billion by 2020 [1]. Meanwhile,
the demands for accurate localization in indoor environments have increased dramatically [2,3].
Various positioning technologies, including Infrared [4], Ultrasonic [5], Ultra-Wideband (UWB) [6],
Pseudolite [7], Wireless Local Area Network (WLAN) [8], and Bluetooth Low Energy (BLE) [9],
have been proposed, aiming to improve the localization performance indoors. BLE positioning
has aroused great research attention recently because of its stable signal with low fluctuation,
easy implementation with low energy cost, low computational complexity, and high mobility [9].
Meanwhile, an ABI research report on Bluetooth has shown that Bluetooth devices will break 5 billion
shipments by 2021 [10], promoting BLE positioning to one of the most promising solutions for indoor
accurate and robust localization.

BLE indoor positioning can be divided into two different schemes: fingerprint-based and
range-based. Both schemes rely on the Received Signal Strength (RSS) of the Bluetooth signals.
The fingerprint-based scheme consists of two stages: the off-line stage and the on-line stage. In the
off-line stage, the RSS from the anchor points (APs) at test points are collected (also named fingerprints)
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and a fingerprint database is then constructed. In the on-line stage, matching algorithms, such as
the Weighted K-Nearest Neighbor (WKNN) and the Bayesian-based matching, are implemented to
estimate the unknown points’ (UPs) coordinates on the basis of the measured RSS and fingerprint
database. Although fingerprint-based BLE positioning could achieve relatively high positioning
accuracy, one meter in proximity mode [11], the collection and construction of the database would
not be energy-efficient and environment-adaptive. The range-based positioning scheme calculates the
distances between APs and a UP on the basis of the measured RSS and the Path-Loss Model (PLM),
which can be called RSS-based ranging, and conducts trilateration to obtain the coordinates of the
UP. The RSS-based ranging is lightweight and more flexible than fingerprinting, and the trilateration
method could achieve more accurate positioning results when the PLM is correctly modified [12].
However, the RSS easily fluctuates because of the obstacles present indoors, which are, especially,
the human bodies.

Bluetooth signals are predominantly transmitted in the 2.4 GHz frequency band, which is also the
resonance frequency of water [13]. The human body is made of about 72% water [14], therefore the
Bluetooth signals are significantly absorbed when transmitting through human bodies. This absorption
causes a large decay in the RSS of Bluetooth signals, which, as a result, would bring considerable errors
in RSS-based position estimations. Reports show that most ILBS users spend 70%–90% of their time in
indoor or urban areas [15], which indicates that the body-shadowing impairment is an unavoidable
problem when implementing indoor BLE positioning.

The effect of the human bodies on fingerprint-based positioning has been studied in [16–18].
Researchers in [16] identified the effects of user body’s facing on the RSS as a source of errors in
location estimation, and their experimental results indicated that the RSS at a given location varies
about 5 dBm depending on the direction of the user facing. The works in [17] added another source
of errors for the RSS measurements related to the effect of the human body, especially the hands,
considering that the mobile devices are held by the users. Fet et al. [18] analyzed the signal attenuation
by the human body in fingerprinting-based positioning systems, and proposed a signal attenuation
model which is able to generate the fingerprints for multiple orientations. All these works have great
significance on fingerprint database construction and on the implementation of fingerprint-based
positioning. However, these works would not be adaptable enough in range-based positioning systems.
Researches on the impairment of range-based positioning systems due to body-shadowing have also
been done in [19–21]. Della Rosa et al. [19] analyzed the effect of the human body, and especially the
hand, on RSS distance measurements, and concluded that a model for body-shadowing should depend
on several factors, such as the dimensions of the body and the composition of human tissues. The works
in [20] regarded body-shadowing according to different channel models which have different channel
parameters, and gave the parameters of the body-shadowing channels through empirical data and a
manual differentiation of the channels. The researchers in [21] studied the human-induced effects on
RSS ranging measurements under different shadowing states, and showed the human body effects on
RSS-based ranging and position estimation through experiments. Although these works have given
a comprehensive analysis on the effects of body-shadowing on range-based positioning, they either
needed a manual work to a detect shadowing situation, or did not provide an effective method to
mitigate the body-shadowing error when implementing range-based BLE positioning. Researches
considering the human body effect in other domains can also been found in [22–24]. Kilic et al. [22]
analyzed the effect of a human body based on time-of-arrival (TOA) measurements conducted in static
UWB experiments in the 3–5.5 GHz band. Schmitt et al. [23] analyzed the effect of body-shadowing
on Radio Frequency-based (RF-based) localization results and focused on incident management.
Cotton et al. [24] proposed a shadowed fading model that is capable of characterizing shadowed
fading in wireless communication channels for device-to-device communications.

Since previous works have not given an effective method to detect body-shadowing situations
and to mitigate the shadowing error, our work aims to propose a body-shadowing error compensation
method with shadowing autonomous detection for indoor range-based BLE positioning and to
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improve both the positioning accuracy and the robustness of the system. This paper firstly analyzes
the body-shadowing influence on RSS-based ranging and derives a mathematical expression of the
relation between the body-shadowing effect and the positioning error. Then, a body-shadowing
situation detection strategy based on the heading information obtained from Inertial Measurement
Units (IMU) is designed and evaluated. Meanwhile, an error compensation model together with
a novel Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is
established and proposed in this paper to mitigate the positioning error. The experiments were
conducted in indoor body-shadowing environments, and the results demonstrated the improvements
of the proposed method. The remainder of this paper is arranged as follows: Section 2 describes the
system model of BLE positioning and analyzes the body-shadowing influence on both RSS-based
ranging and positioning; Section 3 designs the body-shadowing detection strategy, establishes the error
compensation model, and studies the BP-BEC algorithm; the experiments and results are presented in
Section 4 followed by a related discussion; finally, the conclusions are addressed in Section 5.

2. System Model and Body-Shadowing Influence Analysis

This paper mainly focuses on the range-based BLE positioning, and the system model is
presented in this section, together with the body-shadowing influence analysis on RSS-based ranging
and positioning. It should be noted that the shadowing error in RSS measurements is named
Body-Shadowing Influence Error (BSIE) in this paper.

2.1. System Model

The system model of the range-based indoor BLE positioning system utilized in this paper
is shown in Figure 1. This positioning system consists of three main modules: RSS collection,
RSS-based ranging, and range-based positioning. The RSS collection module collects the RSSs from
hearable APs at a UP, and stores the RSS data for position estimation. The RSS-based ranging
module calculates the distance between one AP and a UP (AP–UP distance) based on the PLM
with environment-dependent parameters, and the range-based positioning module utilizes localization
algorithms, like the Least-Square (LS) method and the WKNN, to obtain the final estimation of the
positioning system. The BSIE in measured RSS could impair both the RSS-based ranging and the
range-based positioning, as will be analyzed in detail in following sections.
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Figure 1. System model of range-based Bluetooth Low Energy (BLE) positioning.

where APk (k = 1,2,3) is the k-th Bluetooth anchor point and (xk, yk) (k = 1, 2, 3) is the coordinate of it.
(x0, y0) is the coordinate of the unknown point (UP). IDk and RSSk are the identification and received
signal strength of the k-th AP, respectively. PL0 is the transmitting power of Bluetooth AP, and n is an
environment-depended parameter. dk is the calculated distance between the k-th AP and the UP.
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2.2. Body-Shadowing Influence on Ranging

The RSS-based ranging algorithm calculates the AP–UP distance based on PLM, which is a
theoretical mathematical model representing the relationship between the transmission loss and the
distance of wireless signals. The widely used PLM in the literature is shown in Equation (1).

PLd = PL0 + 10n log
d
d0

+ Xσ (1)

where PLd is the path-loss in dBm of the wireless signals after transmitting to a distance of d, PL0 is the
path-loss after transmitting to a distance of d0, d0 is the reference distance, usually set to one meter,
n is an environment-depended parameter representing the loss coefficient, and Xσ represents the
shadowing error and is generally considered as a normally distributed variable.

In general, the RSS collected at the UP from one AP is the difference between the transmitted
power of AP and the corresponding path-loss, as shown in Equation (2):

RSS = P− PLd (2)

where P is the transmitted power of AP, and PLd is the path-loss. According to Equations (1) and (2),
the relationship between RSS and the corresponding AP–UP distance can be derived as follows:

RSS = P− PL0 − 10n log
d
d0

+ Xσ (3)

According to Equation (3), the RSS-based ranging can be obtained, and the AP–UP distance can
be calculated.

RSS-based ranging needs neither synchronization between an AP and a UP, which is necessary
in Time-of-Arrival (TOA) measurement, nor Round-Trip Time (RTT) measurements to implement
ranging. Meanwhile, this ranging method has low computational complexity and could achieve an
accurate ranging performance when the parameters in PLM are selected or modified appropriately
according to the environment. However, RSS measurements in indoor environments would have a
BSIE because of the presence of human bodies. In order to make the following analysis comprehensive
but not complicated, this paper makes the assumptions that the BSIE is an added noise in RSS, and the
Xσ without body-shadowing error is stable in the same point. Without loss of generality, the reference
distance d0 is set to 1 m. The mathematical relationship between BSIE and ranging error can be derived
as follows:

RSSM = RSS− BSIE = P− PL0 − 10n log
dM
d0

+ Xσ (4)

BSIE = RSS− RSSM = 10n log
dM
d

(5)

∆d = dM − d = d×
(

10
BSIE
10n − 1

)
(6)

where RSSM is the measured RSS with BSIE, BSIE is the body-shadowing error in dB, dM is the AP–UP
distance calculated on the basis of RSSM, d is the AP–UP distance without body-shadowing influence,
and ∆d stands for the ranging error caused by body-shadowing.

According to Equation (6), the ranging error is directly proportional both to the exponent of the
BSIE and to the AP–UP distance. In general, the BSIE in indoor environments could be regarded
as a constant about 6–8 dB [25], and the loss coefficient n could be set to 3.07 in indoor office
environments [26]. The range of the AP–UP distance is decided by the deployment of APs and
could be set within 5 m. According to these assumptions and Equation (6), the ranging error lying in
body-shadowing could reach 1.8 m, which is a large bias in indoor localization. Figure 2 also shows
the relationship between the ranging error and the BSIE when the loss coefficient is set to 3.07.
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2.3. Body-Shadowing Influence on Positioning

According to the analysis in Section 2.2, the body-shadowing influence on RSS measurements
could bring ranging errors, which, as a result, would cause large positioning errors. Meanwhile, the RSS
attenuation caused by body-shadowing could also affect the construction of the fingerprint database
and the matching in fingerprint-based positioning. This paper focuses on the analysis of range-based
positioning and takes trilateration and the WKNN algorithm as examples for the following derivation.

2.3.1. Influence on Positioning Using Trilateration

Positioning based on trilateration can be simplified as a problem which calculates the solution of
the equations shown in Equation (7):

√
(x− x1)

2 + (y− y1)
2 + (z− z1)

2 = d1√
(x− x2)

2 + (y− y2)
2 + (z− z2)

2 = d2√
(x− x3)

2 + (y− y3)
2 + (z− z3)

2 = d3√
(x− x4)

2 + (y− y4)
2 + (z− z4)

2 = d4

(7)

where (x, y, z) represent the coordinates of UP, (xk, yk, zk), k = 1, 2, 3, 4 are the coordinates of APk,
and dk, k = 1, 2, 3, 4 stands for the ranging results based on RSS and PLM mentioned in Section 2.2.
This paper utilizes the LS method to derive the localization results based on trilateration as follows in
Equations (8)–(10):

(x− xk)
2 + (y− yk)

2 + (z− zk)
2 − ((x− x1)

2 + (y− y1)
2 + (z− z1)

2) = d2
k − d2

1 (8)

2(xk − x1)x + 2(yk − y1)y + 2(zk − z1)z = d2
1 − d2

k +
(

x2
k − x2

1

)
+
(

y2
k − y2

1

)
+
(

z2
k − z2

1

)
(9)

L =
(

AT A
)−1

ATC (10)

where the vector L = (x, y, z)T represents the localization results, and the definitions of matrix A and
C are shown in the following Equations (11) and (12). The parameter k in Equations (8) and (9) equals
to 2,3,4.

A =

 2(x2 − x1) 2(y2 − y1) 2(z2 − z1)

2(x3 − x1) 2(y3 − y1) 2(z3 − z1)

2(x4 − x1) 2(y4 − y1) 2(z4 − z1)

 (11)
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C =

 d2
1 − d2

2 + x2
2 − x2

1 + y2
2 − y2

1 + z2
2 − z2

1
d2

1 − d2
3 + x2

3 − x2
1 + y2

3 − y2
1 + z2

3 − z2
1

d2
1 − d2

4 + x2
4 − x2

1 + y2
4 − y2

1 + z2
4 − z2

1

 (12)

According to Equations (10)–(12), A is a constant matrix when the deployment of APs is fixed.
The localization error lies in the measurements of the AP–UP distance, and the BSIE will occur when
the signal’s transmission path is blocked by human bodies. In order to evaluate the body-shadowing
influence on positioning, we introduce the ranging error analyzed in Section 2.2 into Equation (12).
Without loss of generality, we assume that the AP1 is under a body-shadowing situation, which in other
words means that there is a ranging error ∆d1 in the measured distance d1. The positioning results
under this situation can be derived as follows in Equations (13)–(15). Body-shadowing situations on
other APs could be evaluated similarly to this situation.

CM =

 (d1 + ∆d1)
2 − d2

2 + x2
2 − x2

1 + y2
2 − y2

1 + z2
2 − z2

1
(d1 + ∆d1)

2 − d2
3 + x2

3 − x2
1 + y2

3 − y2
1 + z2

3 − z2
1

(d1 + ∆d1)
2 − d2

4 + x2
4 − x2

1 + y2
4 − y2

1 + z2
4 − z2

1

 ∆
= C + ∆C (13)

∆C =

 2d1∆d1 + ∆d2
1

2d1∆d1 + ∆d2
1

2d1∆d1 + ∆d2
1

, ∆d1 = d1 ×
(

10
BSIE1

10n − 1
)

(14)

LM =
(

AT A
)−1

ATCM = L +
(

AT A
)−1

AT∆C (15)

where CM is the matrix C under a body-shadowing situation, ∆C is an error matrix caused by
body-shadowing, LM = (xM, yM, zM)T is the positioning result corresponding to CM, ∆d1 is the
ranging error in AP1–UP distance calculation, and BSIE1 is the corresponding body-shadowing
influence error. According to Equations (10) and (15), the localization error caused by body-shadowing
in range-based positioning systems can be represented as follows:

Error = ||LM − L2|| = ||
(

AT A
)−1

AT∆C ||2 (16)

where Error stands for the localization error in meters and ||> ||2 is the 2-norm operation of the matrix.
In order to represent the relationship between localization error and BSIE, this paper makes the

assumptions that all the distances between APs are 5 m and the coefficient n is 3.07. According to
Equation (16), the relationship between the localization error and the BSIE under the situation that
only one AP is shadowed can be represented as in Figure 3.
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2𝑑1∆𝑑1 + ∆𝑑1
2

2𝑑1∆𝑑1 + ∆𝑑1
2

], ∆𝑑1 = 𝑑1 × (10
𝐵𝑆𝐼𝐸1
10𝑛 − 1) (14) 

𝐿𝑀 = (𝐴
𝑇𝐴)−1𝐴𝑇𝐶𝑀 = 𝐿 + (𝐴

𝑇𝐴)−1𝐴𝑇∆𝐶 (15) 

where 𝐶𝑀 is the matrix C under a body-shadowing situation, ∆𝐶 is an error matrix caused by body-

shadowing, 𝐿𝑀 = (𝑥𝑀, 𝑦𝑀, 𝑧𝑀)
𝑇  is the positioning result corresponding to 𝐶𝑀 , ∆𝑑1  is the ranging 

error in AP1–UP distance calculation, and BSIE1 is the corresponding body-shadowing influence 

error. According to Equations (10) and (15), the localization error caused by body-shadowing in 

range-based positioning systems can be represented as follows: 

𝐸𝑟𝑟𝑜𝑟 = ‖𝐿𝑀 − 𝐿‖2 = ‖(𝐴
𝑇𝐴)−1𝐴𝑇∆𝐶‖2 (16) 

where Error stands for the localization error in meters and ‖⋇‖2 is the 2-norm operation of the matrix. 

In order to represent the relationship between localization error and BSIE, this paper makes the 

assumptions that all the distances between APs are 5 m and the coefficient n is 3.07. According to 

Equation (16), the relationship between the localization error and the BSIE under the situation that 

only one AP is shadowed can be represented as in Figure 3. 

 

Figure 3. Relationship between the localization error and the BSIE using the LS method. 

  

Figure 3. Relationship between the localization error and the BSIE using the LS method.



Sensors 2018, 18, 304 7 of 21

2.3.2. Influence on Positioning Using WKNN

Range-based positioning utilizing WKNN can be considered as a geometry method to estimate
the position of a UP. The WKNN algorithm selects the k nearest APs of a UP based on the measured
RSS, and calculates the weighted geometric center of the selected APs for localization estimation.
The estimated coordinates of a UP using WKNN can be described by Equations (17)–(19). Considering
that the APs are usually deployed on the ceilings, this section only evaluates the BSIE influence in the
X-Y plane.

(x0, y0) =

(
K

∑
i=1

wi × xi,
K

∑
i=1

wi × yi

)
(17)

wi = w′i /
K

∑
i=1

w′i (18)

w′i = 1/di (19)

where di is the calculated distance between a UP and the i-th selected neighboring AP, K is the number
of selected APs for WKNN positioning, w′i stands for non-normalized weight of the i-th neighboring
AP, wi is the corresponding normalized weight, and (xi, yi) and (x0, y0) are the coordinates of i-th AP
and the localization estimation using WKNN, respectively.

In order to make the following derivations simple but comprehensible, we set the parameter K in
Equation (17) as 2, and make the assumption that the BSIE in measured RSS does not affect the AP
selection results. It should be noted that in some real indoor environments, the BSIE could probability
affect the AP selection in WKNN, which can bring a large positioning error for positioning using
WKNN. With the assumptions above, the position estimation results can be derived as follows:

(x0, y0) =

(
d2

d1 + d2
x1 +

d1

d1 + d2
x2,

d2

d1 + d2
y1 +

d1

d1 + d2
y2

)
(20)

In order to evaluate the BSIE influence on positioning using WKNN, we also introduce the
ranging error analyzed in Section 2.2 into Equation (20). Without loss of generality, we assume that the
measured RSS from AP1 exists the BSIE. Then, the estimated position of a UP under body-shadowing
can be derived as follows:

(xM, yM) =

(
d2

d1 + ∆d1 + d2
x1 +

d1 + ∆d1

d1 + ∆d1 + d2
x2,

d2

d1 + ∆d1 + d2
y1 +

d1 + ∆d1

d1 + ∆d1 + d2
y2

)
(21)

where (xM, yM) is the positioning results using WKNN under a body-shadowing situation and ∆d1 is
the ranging error caused by BSIE. The positioning error using WKNN can be shown as follows:

errorw =

√
(xM − x0)

2 +
(
yM − y0

)2
=

∆d1 × d2

(d1 + d2)× (d1 + ∆d1 + d2)
× d12 (22)

where errorw is the positioning error using WKNN and d12 is the distance between AP1 and AP2.
Considering that the deployment of APs is usually not very high up on the ceilings, this section
assumes that the approximately equals to d1 + d2, and the relationship between the positioning error
and the BSIE can be derived by Equation (23), according to Equations (14) and (22):

errorw =

d1 ×
(

10
BSIE1

10n − 1
)
× (d12 − d1)(

d12 + d1 ×
(

10
BSIE1

10n − 1
)) (23)

The relationship between the positioning error and the BSIE can also be shown as in Figure 4,
with the parameters d12 and n set as 5 m and 3.07, respectively.
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Figure 4. Relationship between the localization error and the BSIE using Weighted K-Nearest Neighbor
(WKNN).

2.4. Factors that May Affect Body-Shadowing Influence Error

Body-shadowing could considerable impair both ranging and positioning based on RSS, according
to the analyses in Sections 2.1 and 2.2. Meanwhile, there are still some factors that may affect the
value of the BSIE when considering body-shadowing error compensation. The shadowing angle from
AP to UP, the distance between shadowed AP and UP, the features of the human bodies that cause
body-shadowing are some of the factors that can cause different BSIEs. The shadowing angle from AP
to UP corresponds to the relative position of AP and UP in this research and can be divided into three
states: back, front, and side. The distance factor indicates how far is AP from UP in the X-Y plane,
given that the APs are generally deployed on the ceilings. The features of the human bodies mainly
consist of the human’s gender, height, and weight. This paper mainly focuses on the shadowing angle
and the distance factors in the following analyses on BSIE compensation. Moreover, the shadowing
angles are decided on the basis of the relative position of AP and UP, and the descriptions of these
three shadowing states, namely, front, side, and back, used in this paper are shown in Figure 5.
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The “front-state” is the situation in which the AP is in front of the UP, corresponding to the green
point in Figure 5. The “back-state” is the situation in which the AP is behind the UP, as indicated by
the blue point. The “side-state” is the situation in which the AP is behind and on the side of the UP,
as indicated by the purple point. In other words, the “side-state” means that the Bluetooth signal is
partly shadowed by the human body. The range of coordinates for these three shadowing states can be
represented by Equation (24) according to the description in Figure 5:

shadowing state =


f ront, when : ya ≥ yk and xa ∈ R
back, when : yc < yk and xc = xk
side, when : yb < yk and xb 6= xk

(24)

3. BLE Positioning with Body-Shadowing Error Compensation

Since body-shadowing, which could bring large localization errors, is an unavoidable problem
for indoor positioning systems, an error compensation should be conducted when implementing
RSS-based positioning. This section designs an IMU-aided body-shadowing detection strategy based
on the coarse positioning results and establishes the BSIE compensation model based on the empirical
data. The BP-BEC algorithm is then proposed to mitigate the BSIE for indoor BLE positioning.

3.1. Body-Shadowing Detection Strategy

In order to compensate the BSIE in the measured RSS, the APs which are shadowed by human
bodies should be detected firstly. Cully et al. [20] utilized a manual differentiation of body-shadowing
situations based on the time information and location information. Other statistical methods to
detect body-shadowing conditions have also been shown in [27]. The detection strategies mentioned
above might not be intelligent or flexible enough to detect the body-shadowing situation in real-time
localization. This paper utilizes the coarse BLE positioning results and the heading information
obtained from IMU to detect the body-shadowing conditions.

IMU can measure one’s attitude and acceleration using accelerometers and gyroscopes and has
been generally integrated in off-the-shelf smartphones. The heading information could be derived
according to ones’ angular velocity and acceleration based on the iteration of quaternion [28].
This paper makes the assumption that the smartphone is carried in front of the human body when is
located, and the heading information could be used to represent the orientation of the human body.
In addition, the body-shadowing detection strategy in this paper utilizes the projections of AP and
UP in the X-Y plane and the heading information to distinguish the shadowing states mentioned in
Figure 5. The diagram of the proposed strategy is shown in Figure 6, and the definitions of the symbols
in Figure 6 are given in Table 1.
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Figure 6. Body-shadowing detection strategy diagram: (a) diagram of the front condition; (b) diagram
of the side condition; (c) diagram of the back condition.
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Table 1. Symbol definitions in the diagram of the body-shadowing detection strategy.

Symbol Definition

APk The projection of the k-th anchor point, represents the shadowed Bluetooth beacon
UP The projection of the unknown point, represents the point being located

(xk, yk) The coordinates of the k-th AP which is shadowed by a human body
(x0, y0) The coordinates of coarse positioning resulting from BLE positioning

d The distance between the projections of shadowed AP and UP

ϕ
The heading information obtained from IMU, indicating the clockwise angle between the
North and the body’s orientation, ranging from 0◦ to 360◦

θ The angle information utilized to detect the shadowing state, ranging from 0◦ to 180◦

As shown in Figure 6, the proposed body-shadowing detection strategy could detect three
shadowing conditions in the shadowing angle factor mentioned in Section 2.4. This strategy utilizes
the cosine of shadowing angle θ to distinguish these three states, and the mathematical description of
the body-shadowing detection strategy can be represented by the following Equations (25) and (26).
Given that there may be noise in measurements and calculations, the boundaries of the “front-side”
state and “side-back” state are both set to a range of 15◦, around 0◦ and 180◦. As a result, the thresholds
are set to −0.2588 and −0.9659 for the “front-side” and “side-back” states, respectively.

cos θ =
(xk − x1, yk − y1)·(sin ϕ, cos ϕ)√

(xk − x1)
2 + (yk − y1)

2
=

(xk − x1) sin ϕ + (yk − y1) cos ϕ√
(xk − x1)

2 + (yk − y1)
2

(25)

shadowing_state =


f ront, when : cos θ ≥ −0.2588
side, when : −0.9659 < cos θ < −0.2588
back, when : cos θ ≤ −0.9659

(26)

3.2. BSIE Compensation Model

Considering that both the shadowing angle and the distance between shadowed AP and UP can
affect the value of the BSIE, the BSIE compensation model should consist of these two parameters and
have the general expression shown in Equation (27):

BSIEcompensate = f (d, θ) (27)

where BSIEcompensate is the BSIE value in dB, which should be compensated in the measured RSS to
obtain an accurate ranging result, and f (d, θ) is an abstract function of the shadowing angle θ and the
distance d between shadowed AP and UP.

This paper conducts experiments on the relationship among the BSIE, the shadowing angle, and
the distance, and specifies the function in the BSIE compensation model on the basis of the analyses
mentioned in Section 2 and the empirical data obtained. The BSIE compensation model used in this
paper is represented as follows by Equation (28), and the experimental results corresponding to this
model are shown in Section 4.2.

f (θ) =


0, when : cos θ ≥ −0.2588

10n log
( σ1

d + µ1
)
, when : −0.9659 < cos θ < −0.2588

10n log
( σ2

d + µ2
)
, when : cos θ ≤ −0.9659

(28)

where (σ1, µ1) and (σ2, µ2) are the compensation coefficients for “side” shadowing and “back”
shadowing mentioned in Section 3.1, respectively. The values of these compensation coefficients
are given in Section 4.2 according to curve fitting of the empirical data.
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3.3. BP-BEC Algorithm

Based on the body-shadowing detection strategy and the BSIE compensation model, the BP-BEC
algorithm is proposed to mitigate the effect of body-shadowing and improve the performance of
positioning systems in terms of accuracy and robustness. The flow chart of the BP-BEC algorithm
is shown in Figure 7. The BP-BEC algorithm performs positioning process in two stages: coarse
positioning and fine positioning. In the coarse-positioning stage, the RSS measurements from different
APs are collected at a UP, and a Kalman filter is utilized to filter the measurement noise and to smooth
the measurements. Then, the LS method or WKNN algorithm is implemented to obtain the coarse
positioning results. It should be noted that these positioning results are called coarse results because of
the existence of the body-shadowing error.

In the fine-positioning stage of the BP-BEC algorithm, the heading information from IMU and
the coarse-positioning results are integrated to distinguish the shadowed APs from all hearable
APs on the basis of the detection strategy proposed in Section 3.1. Then, the BSIE compensation
model in Section 3.2 is applied to compensate the measured RSSs of shadowed APs. After the error
compensation process, the positioning process is conducted again using the compensated RSS, and a
new location result is obtained. The processes of compensation and positioning are iterated until the
distance between two positioning results is smaller than the given threshold, or the iteration number
is larger than the given number. A fine-positioning result could be obtained after the iteration, and this
is the final output result of the BP-BEC. In this paper, the distance threshold is set as 0.1 m through
measurements and empirical data, and the iteration number is set to 50 with the consideration of
real-time localization.
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Figure 7. The flow chart of the body-shadowing error compensation (BP-BEC) algorithm.

4. Experiments and Results

4.1. Experimental Scenario and Implementation

We conducted our experiments in two indoor body-shadowing environments in order to evaluate
the body-shadowing effect and the performance of the proposed BP-BEC algorithm. One of the
experimental environments consisted of two indoor rooms in our office (indicated as Test bed 1),
and the other was a space at the ninth floor of the Scientific Research Building in our university
(indicated as Test bed 2). All the RSSs were collected using a smartphone with Bluetooth module
(named terminal), which was held in front of the body by the testers. The BLE beacons and the terminal
used in this work are shown in Figure 8.



Sensors 2018, 18, 304 12 of 21

Sensors 2018, 18, 304  12 of 21 

 

Figure 8. The BLE beacons and terminal used in this work. 

Figure 9 shows the planer graph and the deployment of the BLE beacons (also named APs) in 
the Test bed 1. This test bed, with an area of 8 m by 16.46 m, consists of two office rooms, which are 
separated by a glass wall in the middle. The whole area in Test bed 1 was covered with Bluetooth 
signals from four beacons with different Universally Unique Identifiers (UUIDs), and the beacons 
were deployed around the room corners up on the ceilings, as shown in Figure 9. The test points are 
indicated by black crosses. The operating frequency of the BLE beacons was 2.4 GHz, and the signal 
transmitting frequency was about 2 Hz, which, in other words, means that we could collect two RSSs 
in one second. We conducted experiments to evaluate the body-shadowing influence on RSS in Test 
bed 1. 

 
Figure 9. Experimental environment for Test bed 1. 

The planer graph of Test bed 2 and the deployment of APs are shown in Figure 10, along with 
the implementation of the test points. This area is 25.86 m wide and 59.05 m long, and was covered 
with Bluetooth signals from 30 BLE beacons with unique UUIDs. The deployment of the beacons 
was ordered as T-shape lines with an interval of about 5 m, indicated by the red dots in Figure 10. 
Experiments on positioning performance evaluation were conducted in Test bed 2, and the 
locations of the test points are shown as black crosses in Figure 10. 

9 11

21 25

BLE Beacon × Test Points

× ××× × × × × × ×

10m

1m
×

×
×

×
×

×
×

×
×

×

Glass Wall

Figure 8. The BLE beacons and terminal used in this work.

Figure 9 shows the planer graph and the deployment of the BLE beacons (also named APs) in
the Test bed 1. This test bed, with an area of 8 m by 16.46 m, consists of two office rooms, which are
separated by a glass wall in the middle. The whole area in Test bed 1 was covered with Bluetooth
signals from four beacons with different Universally Unique Identifiers (UUIDs), and the beacons
were deployed around the room corners up on the ceilings, as shown in Figure 9. The test points are
indicated by black crosses. The operating frequency of the BLE beacons was 2.4 GHz, and the signal
transmitting frequency was about 2 Hz, which, in other words, means that we could collect two RSSs
in one second. We conducted experiments to evaluate the body-shadowing influence on RSS in Test
bed 1.
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Figure 9. Experimental environment for Test bed 1.

The planer graph of Test bed 2 and the deployment of APs are shown in Figure 10, along with
the implementation of the test points. This area is 25.86 m wide and 59.05 m long, and was covered
with Bluetooth signals from 30 BLE beacons with unique UUIDs. The deployment of the beacons
was ordered as T-shape lines with an interval of about 5 m, indicated by the red dots in Figure 10.
Experiments on positioning performance evaluation were conducted in Test bed 2, and the locations of
the test points are shown as black crosses in Figure 10.
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Figure 10. Experimental environment for Test bed 2.

4.2. BSIE Evaluation and Analysis

Experiments were conducted in Test bed 1 to evaluate the influence of body-shadowing on
RSS and the factors that affect the body-shadowing error. We measured RSSs from one AP with an
AP–UP distance ranging from 1m to 10m and with different shadowing angles, namely, “front”, “side”,
and “back”. We collected 240 pieces of RSS data at each AP–UP distance with each shadowing angle
for one pair of AP–UP, and four pairs of AP–UP (AP9–UP, AP11–UP, AP21–UP, and AP25–UP) were
evaluated, so that, totally, 28,800 pieces of RSS data were collected for BSIE evaluation. Without loss
of generality, this section chooses the AP9–UP pair to verify and to represent the body-shadowing
influence on RSS. The mean values of BSIE at the same test point for the same shadowing angle of all
the test points were calculated for the analyses. This paper considered the RSS of the “front” state as a
reference; the measured BSIE can be derived as follows by Equations (29) and (30).

BSIEside,d =
4

∑
k=1

(
RSS f ront,d,k − RSSside,d,k

)
(29)

BSIEback,d =
4

∑
k=1

(
RSS f ront,d,k − RSSback,d,k

)
(30)

where BSIEside,d and BSIEback,d are the BSIE in the “side” shadowing angle and the “back” shadowing
angle at the distance d, respectively, and RSS f ront,d,k, RSSside,d,k, and RSSback,d,k are the mean values of
filtered RSS data in these three shadowing angles at the distance d for the k-th AP-UP pair.

The original RSS data and the filtered RSS data at a distance of 3 m for three shadowing
angles of AP9–UP pair are shown in Figure 11a. The Cumulative Distribution Function (CDF)
of the measured RSS is also shown in Figure 11b in order to give a better demonstration of the
body-shadowing influence.
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Figure 12. The relation between the BSIE and the AP–UP distance for different shadowing angles: 

(a) the relation between the BSIE and the distance in the “back” state and the curve fitting results; 

(b) the relation between the BSIE and the distance in the “side” state and the curve fitting results. 
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Figure 11. The RSS data for AP9–UP pair at a distance of 3 m for three shadowing angles: (a) the
original measured RSS data and the filtered data through Kalman filter for the three angle states; (b) the
Cumulative Distribution Function (CDF) of the measured RSS data for the three angle states.

As shown in Figure 11, the body-shadowing influence on RSS is obvious and could cause a
considerable attenuation in the RSS. The RSS attenuation for the AP9–UP pair under body-shadowing
is 10 dB for the “back” state and 3dB for the “side” state. It can also be concluded that different
shadowing angles can influence differently the RSS measurements.

The relations between the measured BSIE and the AP–UP distance for both the “back” and the
“side” shadowing angles were evaluated and represented in Figure 12. Meanwhile, the curve fitting
was done based on the BSIE compensation model proposed in Section 3.2 utilizing the measured
data. The fitting results are also shown in Figure 12, and the comparison of fitting curves for different
shadowing angles together with the curve parameters are shown in Figure 13 and Table 2. Curve fitting
was also done to estimate the parameters of PLM in our experimental environments; the PL0 was
−50.06 and n was 2.33.
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Figure 12. The relation between the BSIE and the AP–UP distance for different shadowing angles:
(a) the relation between the BSIE and the distance in the “back” state and the curve fitting results;
(b) the relation between the BSIE and the distance in the “side” state and the curve fitting results.
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Table 2. The parameters for the BSIE compensation model from curve fitting.

Shadowing Angle Parameter Value

Side
µ1 6.531
σ1 0.2093

Back
µ2 7.854
σ2 0.2589

4.3. Positioning Performance Evaluation and Analysis

In order to evaluate the positioning performance of the BP-BEC algorithm proposed in this paper,
experiments were conducted in Test bed 2, and both the positioning accuracy and the robustness of
the positioning system were presented. Two evaluation indicators, namely, positioning error and
robustness error, were utilized in this paper to represent the system’s performance in terms of
positioning accuracy and positioning robustness, respectively. This section firstly gives the descriptions
of the evaluation indicators, and then the experimental results in a static scenario are shown and
discussed. Moreover, the convergence time of the BP-BEC algorithm was evaluated, and continuous
positioning results using the proposed algorithm are also presented.

4.3.1. Performance Evaluation Indicators

The performance evaluation indicators in this paper consist of the positioning error and the
robustness error. The positioning error refers to the relative position of the real position and calculated
position using the positioning algorithms of a UP, which in other words means the distance between
the real position and the calculated position. The mathematical expression of the positioning error is
as follows:

errora,m =

√(
xm − x′m

)2
+
(
ym − y′m

)2 (31)

where errora,m stands for the positioning error at the m-th test point, (xm, ym) is the true coordinates of
the m-th test point, and

(
x′m, y′m

)
is the localization result of the m-th test point.

The robustness error used in this paper represents the stability performance of the system when
the body-shadowing state at a UP changes, for example from “front” to “back”. The works in [16]
demonstrated that different human body’s directions can cause different attenuations in the RSS of
WLAN signals, which has also been shown in Section 4.2 for Bluetooth signals. According to the
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characteristics of Test bed 2 in Figure 10, we selected two directions, i.e., North-facing and South-facing,
in each test point for robustness evaluation. The robustness error in this paper is the difference of the
positioning results under different facing directions; the corresponding mathematical expression is
shown in Equation (32):

errorr,m =

√(
x′m,N − x′m,S

)2
+
(

y′m,N − y′m,S

)2
(32)

where errorr,m stands for the robustness error at the m-th test point, and (x′m,N , y′m,N) and (x′m,S, y′m,S)

are the localization results when the human with a smartphone is facing North and South, respectively.
Considering the deployment of APs and the Geometric Dilution of Precision (GDOP) when

performing positioning algorithms, this paper used both the LS method and the WKNN algorithm
in the BP-BEC algorithm. The LS method was applied in four rooms with good GDOP (Room 905,
Room 906, Room 907, and Room 908), and the WKNN algorithm was applied in the corridor of Test
bed 2. As a control, algorithms without body-shadowing error compensation (called no-BEC) were
also be implemented in Test bed 2. This paper selected 17 test points, and both North-facing and
South-facing RSS were collected for robustness evaluation. We collected 60 pieces of RSS data that
were averaged at each point for each facing direction, providing 34 results for accuracy evaluation and
17 results for robustness evaluation.

4.3.2. Positioning Accuracy Measurements and Analysis

Experiments on positioning accuracy for both the BP-BEC algorithm and the no-BEC algorithm
were designed and conducted in Test bed 2, and all the positioning errors at the test points were
calculated according to Equation (30). The comparisons of positioning are shown in Figure 14
and Table 3. It can be concluded that the BP-BEC algorithm outperforms the no-BEC algorithm in
positioning accuracy because of the compensation of the body-shadowing error. The mean positioning
accuracy was improved by about 60.1% using BP-BEC compared to no-BEC.
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Figure 14. The comparison of positioning accuracy between the BP-BEC algorithm and the algorithm
without body-shadowing error compensation (no-BEC): (a) positioning error comparison in scatter
diagram; (b) positioning error comparison in CDF.

Table 3. Positioning error comparisons between the BP-BEC and the no-BEC algorithms

Algorithm Mean Positioning Error (m) 90% Positioning Error (m)

BP-BEC 0.77 1.553
no-BEC 1.93 4.187
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4.3.3. Positioning Robustness Evaluation and Analysis

The robustness error for all test points was calculated according to Equation (31), and the
comparison in terms of positioning robustness for these two algorithms are presented in Figure 15 and
Table 4. It can be concluded that the BP-BEC algorithm could improve the positioning robustness by
about 73.6% compared to the no-BEC algorithm, and the mean error with different heading directions
in the BP-BEC algorithm was 0.92m, compared to 3.49m in the no-BEC algorithm.
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Figure 15. The comparison of positioning robustness between the BP-BEC algorithm and the traditional
algorithm: (a) positioning robustness error comparison in scatter diagram; (b) positioning robustness
error comparison in CDF.

Table 4. Robustness error comparison between the BP-BEC and the no-BEC algorithms

Algorithm Mean Robustness Error (m) 90% Robustness Error (m)

BP-BEC 0.92 1.273
no-BEC 3.49 6.42

4.3.4. Positioning Evaluation under a Dynamic Situation

Positioning algorithms should meet the demands of localization in dynamic environments, which,
in other words, means that the speed of providing positioning results should also be considered when
evaluating a positioning system. In this section, the speed of convergence for the BP-BEC algorithm
and the time of providing results for the no-BEC algorithm are shown and discussed. Moreover,
continuous localization trajectories in Test bed 2 for the BP-BEC and the no-BEC algorithms are also
shown and analyzed.

For the purpose of convergence speed evaluation, both the BP-BEC and the no-BEC algorithms
were used in the same computer on the collected RSS data for all the 17 test points. The execution
times of these two algorithms for each test point were recorded and are shown in Figure 16.

As shown in Figure 16, the mean execution time of the BP-BEC algorithm was 18.5 ms, whereas
that of the no-BEC algorithm was 9.1 ms. It can be concluded that the execution time of the BP-BEC
algorithm is longer than that of the no-BEC algorithm, because there are iterative processes in the
BP-BEC in order to compensate the body-shadowing error. However, the execution time of the
BP-BEC algorithm is still at a millisecond level, while the walking speed of humans is usually about
0.8~1.3 m/s [29], and an amount of some tens of milliseconds is much lower than the reaction time
of the human body, which means that the convergence speed would not affect the localization of a
real-case walking situation.
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Figure 16. The execution time comparison between the BP-BEC and no-BEC algorithms.

In order to evaluate the performance of the proposed algorithm under a dynamic situation,
experiments were conducted in Test bed 2, and two trajectories were selected. The device was held by
the tester in front of the body while the tester moved at a walking speed. The real trajectories in Test
bed 2 are shown in Figure 17a,b. With an IMU-aided method, the RSS data at a UP was collected and
filtered in each step interval for both the BP-BEC and the no-BEC algorithms to generate positioning
results, and the positioning results in a moving condition along the trajectories for both algorithms are
shown in Figure 17c,d. It can be concluded that the real-case situation localization is not affected by
the convergence speed of the BP-BEC algorithm, and both the positioning accuracy and the robustness
were improved compared to the no-BEC algorithm.
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Figure 17. The real trajectories in Test bed 2 and the positioning results comparison between the
BP-BEC and the no-BECalgorithms: (a) the real trajectory 1 in Test bed 2; (b) the real trajectory 2 in Test
bed 2; (c) the positioning results comparison along trajectory 1; (d) the positioning results comparison
along trajectory 2.

4.4. Discussion of the Strengths and Weaknesses of the Proposed Method

The strength of the BP-BEC algorithm mainly consist of the improvements in both positioning
accuracy and robustness, which were demonstrated by the experimental results. The BP-BEC improves
the positioning accuracy and robustness by about 60.1% and 73.6%, respectively, compared to the
no-BEC. In addition, our works could also provide an alternative strategy when considering the
body-shadowing error mitigation. The weakness of the proposed algorithm lies in the execution
time of BP-BEC algorithm. The execution time of the BP-BEC algorithm is longer than that of
the no-BEC algorithm because it implies iterations in order to compensate the BSIE. However,
the speed of generating localization results of the BP-BEC algorithm is still at the millisecond level,
which would have an insignificant effect on real-time localizations according to the experimental
results in Section 4.3.4.

5. Conclusions

In this paper, an IMU-aided body-shadowing error compensation method has been proposed,
analyzed, and evaluated. The body-shadowing impairment on both RSS-based ranging and
trilateration positioning was studied, and a mathematical expression of the relation between the
BSIE and the positioning error was derived based on PLM. Factors which may affect the BSIE were
given and studied, and an IMU-aided body-shadowing detection strategy was designed to distinguish
the shadowed APs in the positioning system. In addition, a body-shadowing error compensation
model was established and the BP-BEC algorithm was proposed to improve the positioning accuracy
and robustness in indoor BLE positioning. Experiments were designed and conducted in two test beds
to validate the improvement of the proposed algorithm. The results showed that the BP-BEC algorithm
could improve the positioning accuracy and robustness by about 60.1% and 73.6%, respectively,
compared to the no-BEC algorithm. Moreover, the speed of generating the positioning results for the
BP-BEC algorithm was also evaluated and discussed. Although the convergence speed of positioning
is partly sacrificed in the BP-BEC algorithm because of the body-shadowing error compensation,
the localization results in a real-case situation with movements at a walking speed is not affected.
Our work could be helpful for the implementation of indoor RSS-based positioning systems and it
could also be a guidance for body-shadowing error mitigation and performance improvement of
indoor positioning systems.
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