
sensors

Article

An Inverse Neural Controller Based on the
Applicability Domain of RBF Network Models

Alex Alexandridis 1,*, Marios Stogiannos 1,2, Nikolaos Papaioannou 1, Elias Zois 1 and
Haralambos Sarimveis 2

1 Department of Electronic Engineering, Technological Educational Institute of Athens, Agiou Spiridonos,
12243 Aigaleo, Greece; mstogia@teiath.gr (M.S.); nck.papaioannou@gmail.com (N.P.); ezois@teiath.gr (E.Z.)

2 School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou,
15780 Athens, Greece; hsarimv@central.ntua.gr

* Correspondence: alexx@teiath.gr; Tel.: +30-210-538-5392

Received: 7 November 2017; Accepted: 18 January 2018; Published: 22 January 2018

Abstract: This paper presents a novel methodology of generic nature for controlling nonlinear
systems, using inverse radial basis function neural network models, which may combine diverse
data originating from various sources. The algorithm starts by applying the particle swarm
optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an
approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy
combined with small network structures. Next, the applicability domain concept is suitably tailored
and embedded into the proposed control structure in order to ensure that extrapolation is avoided
in the controller predictions. Finally, an error correction term, estimating the error produced by
the unmodeled dynamics and/or unmeasured external disturbances, is included to the control
scheme to increase robustness. The resulting controller guarantees bounded input-bounded state
(BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed
methodology is evaluated on two different control problems, namely, the control of an experimental
armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated
inverted pendulum. For each one of these problems, appropriate case studies are tested, in which
a conventional neural controller employing inverse models and a PID controller are also applied.
The results reveal the ability of the proposed control scheme to handle and manipulate diverse data
through a data fusion approach and illustrate the superiority of the method in terms of faster and
less oscillatory responses.

Keywords: applicability domain; data fusion; intelligent control; neural networks; radial
basis function

1. Introduction

Artificial neural networks (NNs) possess several properties that make them particularly suitable
for modeling and control applications in nonlinear systems engineering. The most important among
these is their ability to learn complex and nonlinear relationships without explicit knowledge of
the first-principle equations describing the system, but based solely on input-output data from it.
This basic feature is complemented by other desirable properties such as universal approximator
capabilities, tolerance to faults and uncertainties, massive parallel processing of information, and the
ability to perform data fusion, i.e., to handle and merge data from multiple sources.

The potential of integrating NN technologies in control systems to deal effectively with challenging
nonlinear control problems was identified from the early 1990s. The seminal survey on the use of
neural networks for control systems [1] was followed by a number of scientific books, specializing
in the combination of NNs and control engineering [2,3]. More than two decades later, besides being

Sensors 2018, 18, 315; doi:10.3390/s18010315 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18010315
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 315 2 of 19

the objective of numerous theoretical studies, the utilization of NNs in control systems has started
to penetrate in the industrial market [4,5]. Yet, there are still many open issues that need to be
resolved, pertaining to optimizing the performance of NN-based control systems, as well as increasing
their reliability.

NNs have been thoroughly exploited in different variants of the backstepping control technique [6].
Backstepping assumes that a dynamic system model is available, and has been shown to work successfully
even in the presence of uncertainty in the model parameters. In this context, NNs are used to
estimate unknown nonlinear functions in the backstepping design, so that the linear-in-the-parameters
assumption can be avoided. On the other hand, there are two basic data-driven approaches for
formulating NN-based control strategies, which do not assume any previous knowledge of the system
dynamics: indirect design, where an NN is trained as a dynamic system model, predicting the states
and/or the output; and direct design, where the NN approximates the inverse system dynamics and
acts as a controller.

As far as indirect design is concerned, the NN model cannot by itself be used to control the
plant, as it is trained only to identify the unknown system and predict the result of candidate control
actions. For this reason, indirect design techniques couple the NN model with appropriately designed
control laws. A popular approach within this framework is the model predictive control (MPC)
method, where the NN model is inversed through an optimization procedure, in order to estimate
the optimal sequence of control actions, which brings the system to the desired conditions. In this
context, an MPC controller based on linearized NN models for reducing the computational burden is
developed in [7]. An NN approach to robust MPC for constrained nonlinear systems with unmodeled
dynamics is introduced in [8]. A nonlinear NN-based MPC controller, for use in processes with
an integrating response exhibiting long dead time, is designed and successfully applied to the
temperature control of a semi-batch reactor in [9]. The calcination process within the production
of high-octane engine fuels is shown to be successfully under control of a NN-based MPC integrated
system, and capable of significantly lowering plant costs in [10]. Further progress on neural-based
MPC is catalyzed by recent developments in: (a) NN training algorithms, which help to increase the
predictive model accuracy and consequently the controller performance [11]; and (b) nonlinear search
methods, which enable the incorporation of multi-objective, large-scale optimization problems in
MPC [12,13]. Theoretic developments on neural-based MPC were accompanied by several successful
real world applications [14,15].

Despite their advantages, indirect design methodologies based on the MPC concept share an
important drawback: the optimization problem, which is nonlinear in nature, is formulated for every
discrete time instant [16], and needs to be solved online before the next sample is collected from
the system. This limitation prevents the application of such methods to systems with inherently
fast dynamics. The aforementioned computational issues are efficiently tackled by the direct design
approach, in which the produced NN acts as the controller, i.e., at each discrete time step the NN
determines the values of the manipulated variables as functions of the current state, or based on
past information on input-output variables. Following this approach, the NN is trained to perform
as the inverse response of the plant [17], cancelling the system dynamics and making it track the
reference input. In [18], a direct adaptive neural speed tracking control technique is presented for
permanent magnet synchronous motor drive systems, using NNs to approximate the desired control
signals. The discrete direct neural control for flight path angle and velocity of a generic hypersonic
flight vehicle (HFV) is investigated in [19]. In [20], a scheme using an NN model for identification and
an inverse NN controller is designed for controlling nonlinear dynamic systems, while reducing the
network training time. A direct design framework using two learning modules is introduced in [21].

The efficiency of direct design methodologies stems from the fact that their implementation
is rather straightforward, as it only requires evaluating a nonlinear function at every time instant,
contrary to indirect MPC methods that mandate the solution of a nonlinear optimization problem.
On the other hand, direct design-based controllers are usually inferior in terms of optimality and

Sensors 2018, 18, 315 3 of 19

robustness, compared to their indirect design counterparts. In order to boost the performance of direct
design techniques, careful design is needed in such aspects as the selection of training data, the NN
type, and the training methodology used.

Radial basis function (RBF) networks [22,23] form a special type of NNs with important
advantages, including (a) better approximation capabilities when performing interpolation, i.e.,
providing predictions in-between the training data points; (b) simpler network structures comprising
a single hidden layer and a linear connection between the hidden and output layers; and (c) faster
learning algorithms, usually split into two stages. Not surprisingly, RBF networks have been used
extensively in both indirect and direct controller design approaches [4,11,12,24–27]. Their main
disadvantage is that RBF networks are particularly prone to poor extrapolation, i.e., they fail to provide
predictions in areas of the input state-space that lack sufficient training data coverage. Though the
universal approximator property guarantees [28] the theoretical existence of an RBF neural network
that could approximate any continuous function to an arbitrary accuracy, it does not take into account
the availability of training data, which in real world applications may be rather limited. It should
be noted that the negative effects of extrapolation are not restricted to RBF networks; other types of
NNs have also been shown to perform rather poorly when asked to extrapolate [29]. Unfortunately,
it is widely acknowledged that in the general case, the prediction of any NN model as a result of
extrapolation cannot be considered reliable. Obviously, the inability of NN models to extrapolate can
gravely affect any neural controller, regardless of the type of design being direct or indirect; a poor
prediction due to extrapolation could impair the controller performance or even lead to instability.
A second issue, more common to direct neural controllers, is the poor ability to take into account
model uncertainties introduced by the initial training dataset and unmeasured external disturbances,
which usually result in steady offsets [30]. In a recent publication [31], offset-free direct neural control
of a chemical reactor exhibiting multiple steady states was achieved by including a mechanism for
augmenting the state vector with an additional state that estimates the error due to unmodeled inverse
dynamics and/or unmeasured external disturbances.

In the present work, a new direct design method is presented for building neural controllers of
generic nature, based on RBF networks. The main contributions of this work are: (a) The proposed
methodology uses the particle swarm optimization-based, non-symmetric implementation of the fuzzy
means algorithm (PSO-NSFM), which offers increased accuracy and smaller network structures [32]
compared to other existing methods. The objective is to accurately capture the inverse system
dynamics using data that may originate from multiple sources and are collected during the normal
operation of the plant; (b) It is shown that an appropriate choice of basis function guarantees
bounded input-bounded state (BIBS) stability for the closed loop, when the open loop is BIBS stable;
(c) The resulting model is used in conjunction with a concept known as applicability domain (AD) [33],
to ensure that no extrapolation occurs while obtaining the predictions produced by the inverse neural
controller; (d) The method incorporates an error correction term, increasing the proposed control
scheme’s robustness. Application to two different control problems demonstrates the advantages and
the generic nature of the proposed approach.

The rest of the paper is formed as follows: The next section gives a brief presentation of RBF
NNs and the PSO-NSFM algorithm. Section 3 is dedicated to the presentation of the proposed
controller design method, including a discussion on RBF-based inverse controllers and BIBS stability,
the incorporation of AD criterion, and the robustifying error correction term. Section 4 presents the
application of the controller in two different control problems, including a comparison with different
approaches. Finally, conclusions are drawn in the last section.

2. RBF Networks

The input layer of a typical RBF network distributes the N input variables data to the L kernels
of the network’s hidden layer. Each kernel node is assigned to a center vector, which is of equal
dimensionality to the input space. Thus, a nonlinear transformation is performed by the hidden layer,

Sensors 2018, 18, 315 4 of 19

so as to map the input state-space onto a new space with higher dimensionality. The activity µl(u(k))
of the lth kernel is given by the Euclidean distance between the kth input vector and the kernel center:

µl(u(k)) = ‖u(k)− ûl‖ =

√√√√ N

∑
i=1

(ui(k)− ûi,l)
2, k = 1, ..., K (1)

in which K is the number of training data, uT(k) = [u1(k), u2(k), ..., uN(k)] is the input data vector, and
ûT

l = [û1,l , û2,l , ..., ûN,l] are the center coordinates of the lth kernel.
The activation function for each node is a function with radial symmetry. In this work, the

Gaussian function is employed:

g(µl) = exp
(
−µl

2

σl
2

)
(2)

in which σl are the widths of the Gaussians. The latter can be calculated using the p-nearest neighbor
technique, which selects the width of each basis function σl as the root-mean squared distance to its
p-nearest neighbors, using the following equation:

σl =

√√√√ 1
p

p

∑
k=1
‖ûk − ûl‖2, l = 1, ..., L (3)

in which ûk are the p-nearest centers to kernel center ûl .
Finally, a linear combination of the hidden layer kernel responses produces the RBF network

output ŷ(k):

ŷ(k) = z(k) ·w =
L

∑
l=1

wl g(µl(u(k))) (4)

in which z(k) are the hidden node responses and w is a vector containing the synaptic weights. Figure 1
depicts a typical RBF network with Gaussian basis functions.

Sensors 2018, 18, x 4 of 19

activity ()()l kμ u of the thl kernel is given by the Euclidean distance between the thk input

vector and the kernel center:

()() () ()()2
,

1

ˆ ˆ , 1, ...,
N

l l i i l
i

k k u k u k Kμ
=

= − = − =u u u (1)

in which K is the number of training data, () () () ()1 2, ,...,T
Nk u k u k u k= u is the input data

vector, and 1, 2, ,ˆ ˆ ˆ ˆ, ,...,T
l l l N lu u u = u are the center coordinates of the thl kernel.

The activation function for each node is a function with radial symmetry. In this work, the
Gaussian function is employed:

()
2

2exp l
l

l

g
μμ
σ

= −

(2)

in which lσ are the widths of the Gaussians. The latter can be calculated using the p-nearest
neighbor technique, which selects the width of each basis function lσ as the root-mean squared
distance to its p-nearest neighbors, using the following equation:

2

1

1 ˆ ˆ , 1,...,
p

l k l
k

l L
p

σ
=

= − = u u

(3)

in which ˆ ku are the p-nearest centers to kernel center ˆ lu .
Finally, a linear combination of the hidden layer kernel responses produces the RBF network

output ()ŷ k :

() () ()()()
1

ˆ
L

l l
l

y k k w g kμ
=

= ⋅ =z w u

(4)

in which ()kz are the hidden node responses and w is a vector containing the synaptic weights.
Figure 1 depicts a typical RBF network with Gaussian basis functions.

Figure 1. Typical structure of an RBF network with Gaussian basis functions.

Having obtained the RBF kernel centers, linear regression of the hidden layer node outputs to
the target values is typically used to calculate the synaptic weights. The regression problem can be
solved using linear regression in matrix form:

() 1T T T −
= ⋅ ⋅ ⋅w Y Z Z Z (5)

Figure 1. Typical structure of an RBF network with Gaussian basis functions.

Having obtained the RBF kernel centers, linear regression of the hidden layer node outputs to the
target values is typically used to calculate the synaptic weights. The regression problem can be solved
using linear regression in matrix form:

wT = YT · Z ·
(

ZT · Z
)−1

(5)

Sensors 2018, 18, 315 5 of 19

in which Z is a matrix of the hidden layer outputs for all data points, and Y is a vector containing all
the target values.

The PSO-NSFM Algorithm

As the synaptic weights can be trivially calculated using (5), the most cumbersome part of the
training procedure in RBF networks involves calculation of the number and locations of the hidden
kernel centers. Conventional training techniques like the k-means algorithm [34] postulate an arbitrary
number of RBF kernels and then calculate their locations, the final selection being made through a
trial-and-error procedure.

An alternative to this time-consuming approach was given by the fuzzy means algorithm (FM) [35],
which has the ability to calculate in one step the number and locations of the RBF kernel centers and
has found many successful applications in diverse fields like earthquake estimation [36], medical
diagnosis [37], categorical data modelling [38], etc. In a recent publication [32], a variant of the FM
algorithm, namely the PSO-NSFM algorithm, was proposed. The PSO-NSFM algorithm presents
several remarkable advantages, including higher prediction accuracies in shorter computational times,
accompanied by simpler network structures. What follows is an overview of the algorithm; the
interested reader can refer to the original publication.

Like the original FM algorithm, the PSO-NSFM variant is also based on a fuzzy partition of the
input space. However, in this case the partition is non-symmetric, which implies that a different
number of fuzzy sets Ai,j =

{
ai,j, δai

}
is used to partition each input variable, where ai,j is the kernel

center element and δai is half of the width of the respective fuzzy set. Combining N 1-D fuzzy sets, one
can generate a multi-dimensional fuzzy subspace. These fuzzy subspaces form a grid, in which each
node is a candidate to become an RBF kernel center. The main objective of the PSO-NSFM algorithm
is to assemble the RBF network hidden layer by selecting only a small subset of the fuzzy subspaces.
This selection is made based on a hyper-ellipse placed around each fuzzy subspace center, described
by the following equation:

N

∑
i=1

(

al
i,ji
− ui(k)

)2

N(δai)
2

 = 1 (6)

The hyper-ellipse is used to mark the boundary between input vectors that receive non-zero or
zero membership degrees to each particular fuzzy subspace. Having defined the membership function,
the algorithm proceeds with finding the subset of all the fuzzy subspaces that assign a non-zero
multi-dimensional degree to all input training vectors. Notice that within the FM algorithm context, the
number of selected RBF kernel centers is bounded by the number of training data, although, depending
on the distribution of input data, a smaller number of kernels is usually produced. The selection
is accomplished using a non-iterative algorithm that requires only one pass of the input data, thus
rendering the kernel center calculation procedure extremely fast, even in the presence of a large
database of input examples. Taking advantage of the short computational times, a particle swarm
optimization (PSO)-based engine is wrapped around the kernel center selection mechanism, designed
to optimize the fuzzy partition. The result is an integrated framework for fully determining all the
parameters of an RBF network.

3. Inverse Controller Design

A controller employing an inverse neural model is based on an approximation of the inverse
system dynamics, i.e., a dynamical model able to predict the manipulated variable value that drives
the system to the desired setpoint, taking account of its current state. Consider the following dynamic
system:

.
x(t) = f (x(t), v(t)) (7)

Sensors 2018, 18, 315 6 of 19

in which x is the state vector, and v is input to the system. Function f can be assumed to be nonlinear,
without any loss of generality.

3.1. RBF-Based Inverse Controllers and BIBS Stability

Assuming that (a) all the state variables can be measured, and (b) the available training examples
are sufficient, the PSO-NSFM algorithm can be applied to approximate a discrete inverse dynamic
function, thus generating the following closed loop control law:

v(k) = RBF(x(k), ω(k)) (8)

in which ω is the setpoint value and RBF stands for the nonlinear function corresponding to the RBF
network response, calculated through (4). The discrete signal generated by (8) can be easily converted
to continuous through a zero-order hold element (9), and consequently fed back to the system.

v(t) = v(kT), kT ≤ t < (k + 1)T (9)

in which T is the sampling time. For the sake of simplicity, T is set equal to 1 in the following theoretical
analysis. As can be observed, the trained RBF NN acts as a controller, by receiving as input the values
of the current state vector and the setpoint and by producing as output the current manipulated
variable value. Incorporation of the RBF inverse neural (IN) controller (8) in the closed loop is depicted
in Figure 2.

Sensors 2018, 18, x 6 of 19

in which x is the state vector, and v is input to the system. Function f can be assumed to be
nonlinear, without any loss of generality.

3.1. RBF-Based Inverse Controllers and BIBS Stability

Assuming that (a) all the state variables can be measured, and (b) the available training
examples are sufficient, the PSO-NSFM algorithm can be applied to approximate a discrete inverse
dynamic function, thus generating the following closed loop control law:

() () ()()RBF ,v k k kω= x (8)

in which ω is the setpoint value and RBF stands for the nonlinear function corresponding to the
RBF network response, calculated through (4). The discrete signal generated by (8) can be easily
converted to continuous through a zero-order hold element (9), and consequently fed back to the
system.

() () (), 1v t v kT kT t k T= ≤ < + (9)

in which T is the sampling time. For the sake of simplicity, T is set equal to 1 in the following
theoretical analysis. As can be observed, the trained RBF NN acts as a controller, by receiving as
input the values of the current state vector and the setpoint and by producing as output the current
manipulated variable value. Incorporation of the RBF inverse neural (IN) controller (8) in the closed
loop is depicted in Figure 2.

Figure 2. Closed loop with a simple RBF IN control scheme.

As is shown below, the particular choice of control law guarantees that the closed loop system
represented by (7)–(9) will be BIBS stable, if the open loop system (7) is BIBS stable.

Lemma 1. When the Gaussian basis function (2), and the PSO-NSFM algorithm are employed for producing
the RBF-based inverse controller, the magnitude of the control law response ()v k produced by (8) is always

upper bounded by
1

L

i
l

w
=
 .

Proof. As stated in the previous section, the application of the PSO-NSFM algorithm produces an RBF
network with a finite number of basis functions L, which cannot exceed the number of training data
K . Furthermore, the response of each Gaussian RBF is bounded from above and below, as follows:

()0 1, 1, ...,lg l Lμ≤ ≤ = (10)

The control law response ()v k to any input vector () () ()k k kω= u x is then given by:

() ()()()
1

L

l l
l

v k w g kμ
=

= u (11)

Lemma is proven by contradiction. Assume that the opposite is true, i.e., ()
1

L

i
l

v k w
=

> . Then:

System
x(t)

IN Controllerω(k) Zero order
hold

() ()
()

,
1

v t v k
k t k

=
≤ < +() () ()()RBF ,v k k kω= x () () ()(),t f t v t=x x

v(k) v(t)
Sampling

x(k)
() ()k t=x x

Control law

Figure 2. Closed loop with a simple RBF IN control scheme.

As is shown below, the particular choice of control law guarantees that the closed loop system
represented by (7)–(9) will be BIBS stable, if the open loop system (7) is BIBS stable.

Lemma 1. When the Gaussian basis function (2), and the PSO-NSFM algorithm are employed for producing
the RBF-based inverse controller, the magnitude of the control law response |v(k)| produced by (8) is always

upper bounded by
L
∑

l=1
|wi|.

Proof. As stated in the previous section, the application of the PSO-NSFM algorithm produces an RBF
network with a finite number of basis functions L, which cannot exceed the number of training data K.
Furthermore, the response of each Gaussian RBF is bounded from above and below, as follows:

0 ≤ g(µl) ≤ 1, l = 1, ..., L (10)

The control law response v(k) to any input vector u(k) =
[

x(k) ω(k)
]

is then given by:

v(k) =
L

∑
l=1

wl g(µl(u(k))) (11)

Sensors 2018, 18, 315 7 of 19

Lemma is proven by contradiction. Assume that the opposite is true, i.e., |v(k)| >
L
∑

l=1
|wi|. Then:

∣∣∣∣ L
∑

l=1
wl g(µl(u(k)))

∣∣∣∣ > L
∑

l=1
|wi| ⇒

L
∑

l=1
|wl g(µl(u(k)))| ≥

∣∣∣∣ L
∑

l=1
wl g(µl(u(k)))

∣∣∣∣ > L
∑

l=1
|wi| ⇒

L
∑

l=1
|wl ||g(µl(u(k)))| >

L
∑

l=1
|wi| ⇔

L
∑

l=1
|wl |g(µl(u(k))) >

L
∑

l=1
|wi| ⇔

L
∑

l=1
|wl |(g(µl(u(k)))− 1) > 0

(12)

The last inequality requires g(µl) > 1 for at least one of the basis function responses, which leads to a
contradiction with (10). �

Theorem 1. The closed loop system represented by Equations (7)–(9) is BIBS stable, if the open loop system (7)
is BIBS stable.

Proof. Subject to the requirements imposed by the previous lemma, the control law response v(k),
which is presented as input to (7) within the closed loop (7–9), is upper and lower bounded for every
value of ω(k). Therefore, the input to system (7) is always bounded, and consequently all states are
bounded, proving that the closed loop system (7) is BIBS stable. �

Notice that closed loop BIBS stability cannot be guaranteed for open loop BIBS stable systems
when using different basis functions that are unbounded, e.g., the thin-plate-spline function [31].

3.2. Incorporating the AD Concept

All black-box techniques rely on the concept that the behavior of an unknown system can
be modeled based solely on input-output data from it. After creating the black-box model by
implementing a suitable learning algorithm on a training dataset, the model is utilized so as to
provide predictions for new data points. However, as the only source of information relies on the
available training data, it is expected that the more different the new data are compared to the data
used in the training phase, the less reliable the model predictions will be. This phenomenon is called
extrapolation, and it is known to affect all black-box-based techniques, including NNs. Due to the
fact that RBF networks offer local approximation, they are particularly prone to poor performance
when extrapolating.

Obviously, the inverse controller based on RBF networks described by (8) is also affected by
extrapolation, a fact which can gravely degrade the controller performance. It must be noted that, even
if special care is taken to collect training data that sufficiently cover the input space in terms of the
state variables, this still leaves out the last element of the input vector, which is the current setpoint
value. Thus, moving the system from the current state x(k) to the setpoint ω(k) within one discrete
time step may not be feasible; such a situation could occur if the setpoint ω(k) is far from the current
state of the system, while at the same time a relatively small sampling time is applied. In this case,
extrapolation is inevitable, as the neural model is asked to produce a prediction without having been
presented with any similar examples during its training phase.

The concept of AD is used in order to give an indication of whether a model performs extrapolation
and to thus characterize the reliability of the model prediction [33]. An input vector u(k) is considered
to fulfill the criterion of the applicability domain when the following expression is true:

Sensors 2018, 18, 315 8 of 19

u(k) ·
(

UT ·U
)−1
· uT(k) ≤ 3

N + 1
K

(13)

in which N is the number of input variables, K is the number of data in the training dataset, and U is a
matrix which contains all of the input training data:

U =

u1(1) u2(1) . . . uN(1)
u1(2) u2(2) . . . uN(2)
...

...
...

...
u1(K) u2(K) . . . uN(K)

 (14)

To avoid the extrapolation phenomenon in the inverse RBF model predictions, the criterion
described by the applicability domain notion is integrated in the process of designing the controller;
as is explained later, this also provides a way for tuning the controller’s performance. The following
equation, derived by (13) after substituting the input data vector to the RBF controller, defines the
marginal condition for avoiding extrapolation:[

x(k) ω(k)
]
·
(

UT ·U
)−1
·
[

x(k) ω(k)
]T

= 3
N + 1

K
(15)

Equation (15) is second order, as far as the current setpoint value ω(k) is concerned. The two
solutions ωmin(k) and ωmax(k) define the maximum and minimum value of ω(k), which guarantee
that no extrapolation occurs.

In order to visualize the application of AD to the inverse controller design, a system with two state
variables x1 and x2 can be considered. Figure 3 depicts a 3-D graph of (15), in which the horizontal
axes are the two state variables, while the vertical axis is the setpoint value ω(k). For each pair of
state variables, (15) is solved and the resulting values ωmin(k) and ωmax(k) are plotted on the graph.
The result is a 3-D surface, which represents the bounds of the RBF controller’s AD. It can be observed
that for given values of x1 and x2, the two corresponding solutions ωmin(k) and ωmax(k) actually
specify a line segment with length equal to ωmax(k)− ωmin(k); when ω(k) receives values within
this line segment, the input vector presented to the controller u(k) is guaranteed to be within the
applicability domain; therefore, extrapolation is avoided.

Sensors 2018, 18, x 8 of 19

() () ()1 13T T N
k k

K

− +⋅ ⋅ ⋅ ≤u U U u (13)

in which N is the number of input variables, K is the number of data in the training dataset, and
U is a matrix which contains all of the input training data:

() () ()
() () ()

() () ()

1 2

1 2

1 2

1 1 1
2 2 2

N

N

N

u u u

u u u

u K u K u K

 …
 … =

…

U

 (14)

To avoid the extrapolation phenomenon in the inverse RBF model predictions, the criterion
described by the applicability domain notion is integrated in the process of designing the controller;
as is explained later, this also provides a way for tuning the controller’s performance. The following
equation, derived by (13) after substituting the input data vector to the RBF controller, defines the
marginal condition for avoiding extrapolation:

() () () () ()1 13
TT N

k k k k
K

ω ω
− +⋅ ⋅ ⋅ = x U U x (15)

Equation (15) is second order, as far as the current setpoint value ()kω is concerned. The two
solutions ()min kω and ()max kω define the maximum and minimum value of ()kω , which
guarantee that no extrapolation occurs.

In order to visualize the application of AD to the inverse controller design, a system with two
state variables 1x and 2x can be considered. Figure 3 depicts a 3-D graph of (15), in which the
horizontal axes are the two state variables, while the vertical axis is the setpoint value ()kω . For
each pair of state variables, (15) is solved and the resulting values ()min kω and ()max kω are plotted
on the graph. The result is a 3-D surface, which represents the bounds of the RBF controller’s AD. It
can be observed that for given values of 1x and 2x , the two corresponding solutions ()min kω and

()max kω actually specify a line segment with length equal to max min() ()k kω ω− ; when ()kω receives
values within this line segment, the input vector presented to the controller ()ku is guaranteed to
be within the applicability domain; therefore, extrapolation is avoided.

Figure 3. Calculating the bounds on the value of ω(k) that guarantee that extrapolation is avoided.
The 3-D surface represents the AD of the RBF controller.

The limits calculated by solving (15) express the marginal values for avoiding extrapolation.
However, in many cases it is desirable to tighten those limits, e.g., in order to take into account
inaccuracies that are present in the training data. To accomplish this, the length of the line segment

Figure 3. Calculating the bounds on the value of ω(k) that guarantee that extrapolation is avoided. The
3-D surface represents the AD of the RBF controller.

The limits calculated by solving (15) express the marginal values for avoiding extrapolation.
However, in many cases it is desirable to tighten those limits, e.g., in order to take into account
inaccuracies that are present in the training data. To accomplish this, the length of the line segment

Sensors 2018, 18, 315 9 of 19

defined by ωmin(k) and ωmax(k) can be divided by a narrowing parameter r, where r > 1. Thus,
stricter requirements are introduced to the AD, whose limits are given by:

ω′min(k) =
(r+1)ωmin(k)+(r−1)ωmax(k)

2r

ω′max(k) =
(r+1)ωmax(k)+(r−1)ωmin(k)

2r

(16)

In those cases in which the setpoint ω(k) falls outside of the narrowed limits calculated by (16), it
is replaced by the closest of these limits, according to the following equation, so as to keep the input
vector inside the narrowed AD:

ωRE(k) =

ω′min(k), i f ω(k) < ω′min(k)
ω′max(k), i f ω(k) > ω′max(k)

ω(k), i f ω(k) ∈ [ω′min(k), ω′max(k)]
(17)

in which ωRE(k) is the requested setpoint value, replacing the original one in the control law, which
now becomes:

v(k) = RBF(x(k), ωRE(k)) (18)

Utilization of the narrowing parameter r, as mentioned earlier, provides a means to tune the
neural controller. Increasing the value of r results in more conservative control actions, as the requested
setpoint value is closer to the current controlled variable value. On the other hand, smaller values of r
make the control actions more aggressive, so that the extra distance to reach the requested setpoint
is traversed.

3.3. Robustifying Term

The performance of neural controllers can be affected negatively by modeling errors due to
disturbances, inadequacy of training data, etc. In order to take into account existing model-plant
mismatches, a robustifying term is added to the model predictions with the purpose of error correction.
More specifically, the error e(k) is calculated as the difference of the error-corrected setpoint of the
preceding time step from the controlled variable value of the current time step:

e(k) = ωEC(k− 1)− y(k) (19)

in which y(k) is the current controlled variable value.
Assuming that the prior time step error remains constant throughout the next step, the requested

setpoint is modified to compensate for the error; to accomplish this, the error term must be added to
the requested setpoint ωRE(k) so as to calculate the error-corrected setpoint ωEC(k).

ωEC(k) = ωRE(k) + ωEC(k− 1)− y(k) (20)

It should be noted that the assumption of constant error for the next step is a typical approach
that has also been used extensively in robust MPC [39]. Finally, (20) is substituted in (18) to produce a
new control law:

v(k) = RBF(x(k), ωEC(k)) (21)

Notice that by narrowing the controller’s AD, which means that the tuning parameter r is
increased, the allowed setpoint changes between two consecutive time steps become accordingly
smaller. This ultimately results in smaller changes of the input vector component concerning the
requested setpoint ωRE(k), a fact that strengthens the assumption of constant prediction error between
two successive steps.

Sensors 2018, 18, 315 10 of 19

The necessary modifications to the closed loop induced by adding the applicability domain and
the robustifying terms are shown in Figure 4.

Sensors 2018, 18, x 10 of 19

requested setpoint RE ()kω , a fact that strengthens the assumption of constant prediction error
between two successive steps.

The necessary modifications to the closed loop induced by adding the applicability domain and
the robustifying terms are shown in Figure 4.

Figure 4. Closed loop with the RBF INNER control scheme, taking into account the applicability
domain and the robustifying term.

4. Case Studies

The resulting inverse neural non-extrapolating robustifying (INNER) controller is applied to
the control of two different systems, namely, an experimental DC motor and a simulated nonlinear
inverted pendulum. For comparison purposes, additional control schemes are tested, including a
simple IN controller, a discrete PID for the case of the DC motor, and an analogue PID for the case of
the inverted pendulum.

In both cases, each PID controller is tuned by linearizing each system using its respective state
equations and then applying the internal model control (IMC) procedure. More specifically, the
closed loop mean absolute error (MAE) criterion is minimized by using a 1st order filter. MAE is
calculated as follows:

() ()
1MAE

tK

k

t

k y k

K

ω
=

−
=

 (22)

in which tK is the number of simulation time steps. To be more specific, the IMC tuning parameter
λ is optimized by trial and error, so as to achieve the lowest possible value for MAE. More details
about the IMC procedure for PID tuning can be found in [40]. As far as the IN controller is
concerned, no special tuning procedure is required, as this control scheme employs the exact same
inverse neural model as the INNER control scheme. There are no parameters available for tuning
and, thus, the performance of this controller depends solely on the quality and accuracy of the
inverse model.

4.1. Control of an Experimental DC Motor

The objective of this case study is to control the rotational speed of an experimental DC motor.
The experimental setup used in this work is the MS150 modular system [41], which was developed
by Feedback Instruments Ltd. The system under control is a permanent magnet DC motor, which

System
x(t)

INNER Controller

ω(k)

Zero order
hold

() ()
()

,
1

v t v k
k t k

=
≤ < +

() () ()(),t f t v t=x x
v(k) v(t)

Sampling
x(k)

() ()k t=x x
() () ()()RBF , ECv k k kω= x

Control law

Applicability
Domain

ωRE(k)

Robustifying term
() () () ()EC RE EC 1k k k y kω ω ω= + − −

ωEC(k)
1z−

1x2x

()min kω

()max kω

()1x k ()2x k

ω

Current
state

State space

Figure 4. Closed loop with the RBF INNER control scheme, taking into account the applicability
domain and the robustifying term.

4. Case Studies

The resulting inverse neural non-extrapolating robustifying (INNER) controller is applied to
the control of two different systems, namely, an experimental DC motor and a simulated nonlinear
inverted pendulum. For comparison purposes, additional control schemes are tested, including a
simple IN controller, a discrete PID for the case of the DC motor, and an analogue PID for the case of
the inverted pendulum.

In both cases, each PID controller is tuned by linearizing each system using its respective state
equations and then applying the internal model control (IMC) procedure. More specifically, the closed
loop mean absolute error (MAE) criterion is minimized by using a 1st order filter. MAE is calculated
as follows:

MAE =

Kt
∑

k=1
|ω(k)− y(k)|

Kt
(22)

in which Kt is the number of simulation time steps. To be more specific, the IMC tuning parameter λ is
optimized by trial and error, so as to achieve the lowest possible value for MAE. More details about the
IMC procedure for PID tuning can be found in [40]. As far as the IN controller is concerned, no special
tuning procedure is required, as this control scheme employs the exact same inverse neural model as
the INNER control scheme. There are no parameters available for tuning and, thus, the performance of
this controller depends solely on the quality and accuracy of the inverse model.

4.1. Control of an Experimental DC Motor

The objective of this case study is to control the rotational speed of an experimental DC motor.
The experimental setup used in this work is the MS150 modular system [41], which was developed
by Feedback Instruments Ltd. The system under control is a permanent magnet DC motor, which
has a maximum rotational speed of about 4000 RPM in both directions when unloaded. The modular
platform also consists of a power supply unit, a servo amplifier, a tachogenerator, and a magnetic

Sensors 2018, 18, 315 11 of 19

brake, used to increase the system inertia. Control signal calculations are performed in real-time
with a sampling rate of 100 samples per second, on a PC with an Intel Core 2 Quad processor at
2.67 GHz and 4 GBs of memory. The interfacing between the MS150 system and the PC is provided by
the Feedback 33–301 analogue control interface, which includes a set of digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs), and the Advantech PCI1711 data acquisition card,
which communicates directly with the Matlab data acquisition toolbox. All the controllers used in
this study are implemented in the Matlab environment. The DC motor is armature-controlled and
is described by the following state equations, derived using fundamental electrical and mechanical
laws [42]:

dia
dt = Va−Raia−Keωr

La
d

.
θ

dt = Ktia−BLωr
J

(23)

The notation for the parameters appearing in (23) is given in Table 1, together with values for
each of the DC motor parameters; a schematic of the DC motor is shown in Figure 5.

Table 1. Notation and parameter values for the DC motor.

Parameter Symbol Description/Value

Rotor angular velocity
.
θ State variable (RPM)

Armature current ia State variable (A)
Armature voltage Va Manipulated variable (V)

Armature resistance Ra 3.2 Ω
Armature inductance La 8.6 × 10−3 H

Back-EMF constant of motor Ke 100 × 10−3 V/rad/s
Torque constant of motor Kt 3.3 × 10−3 N·m/A
Total moment of inertia J 32 × 10−6 kg·m2

Motor time constant Tm 250 × 10−3 s
Viscous friction coefficient of motor shaft BL 128 × 10−6 N·m·s

Sensors 2018, 18, x 11 of 19

has a maximum rotational speed of about 4000 RPM in both directions when unloaded. The modular
platform also consists of a power supply unit, a servo amplifier, a tachogenerator, and a magnetic
brake, used to increase the system inertia. Control signal calculations are performed in real-time
with a sampling rate of 100 samples per second, on a PC with an Intel Core 2 Quad processor at 2.67
GHz and 4 GBs of memory. The interfacing between the MS150 system and the PC is provided by
the Feedback 33–301 analogue control interface, which includes a set of digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs), and the Advantech PCI1711 data acquisition card,
which communicates directly with the Matlab data acquisition toolbox. All the controllers used in
this study are implemented in the Matlab environment. The DC motor is armature-controlled and is
described by the following state equations, derived using fundamental electrical and mechanical
laws [42]:

a a a a e r

a

t a L r

di V R i K

dt L

K i Bd

dt J

ω

ωθ

− −
=

−
=

 (23)

The notation for the parameters appearing in (23) is given in Table 1, together with values for
each of the DC motor parameters; a schematic of the DC motor is shown in Figure 5.

Table 1. Notation and parameter values for the DC motor.

Parameter Symbol Description/Value
Rotor angular velocity θ State variable (RPM)

Armature current ia State variable (A)
Armature voltage Va Manipulated variable (V)

Armature resistance Ra 3.2 Ω
Armature inductance La 8.6 × 10−3 H

Back-EMF constant of motor Ke 100 × 10−3 V/rad/s
Torque constant of motor Kt 3.3 × 10−3 N∙m/A
Total moment of inertia J 32 × 10−6 kg∙m2

Motor time constant Tm 250 × 10−3 s
Viscous friction coefficient of motor shaft BL 128 × 10−6 N∙m∙s

Figure 5. An armature-controlled DC motor.

The inverse model used by the two neural controllers contains both electrical and mechanical
variables and has the following form:

() () () ()()RBF , , 1a aV k i k k kθ θ= + (24)

In order to train the inverse RBF model, data are generated by drawing random changes from a
uniform distribution, within ±15 V bounds, and applying them to the armature voltage aV every 0.5 s.
The system sampling time is 0.01 s; thus, the armature voltage is kept steady for 50 samples, so that
enough time is given for the system to reach steady state with each armature voltage value. The

Figure 5. An armature-controlled DC motor.

The inverse model used by the two neural controllers contains both electrical and mechanical
variables and has the following form:

Va(k) = RBF
(

ia(k),
.
θ(k),

.
θ(k + 1)

)
(24)

In order to train the inverse RBF model, data are generated by drawing random changes from
a uniform distribution, within ±15 V bounds, and applying them to the armature voltage Va every
0.5 s. The system sampling time is 0.01 s; thus, the armature voltage is kept steady for 50 samples,
so that enough time is given for the system to reach steady state with each armature voltage value.
The described configuration is used to collect 30,000 data points from the operation of the DC motor,
which is divided into a 22,500-point training dataset and a 7500-point validation dataset. After data
collection, the PSO-NSFM algorithm is applied, testing for partitions ranging from 4 to 40 fuzzy sets.

Sensors 2018, 18, 315 12 of 19

Table 2 shows the results corresponding to the 5 top-performing networks found by PSO-NSFM,
including the numbers of fuzzy sets and RBF kernel centers, the RMSE and R2 indices on the validation
dataset, and the training time. Based on the values for RMSE and R2 achieved by the best network,
it can be seen that the PSO-NSFM algorithm manages to develop a satisfactory inverse model of
the system, especially taking into account that training is based on data from a real system, which
inevitably includes noise. It should be noted that some of the remaining top-performing networks
present a smaller number of RBF kernel centers, compared to the best network found. However, it
was found experimentally that incorporating these models to the resulting control scheme produced
inferior results in terms of MAE, and for this reason, the best performing network in terms of RMSE
and R2 was selected.

Table 2. Specifications and statistics between the top performing trained RBF networks.

System

Parameter Fuzzy
Partition

RBF Kernel
Centers

RMSE
Validation

R1

Validation
Training

Time 1 (s)

DC Motor

[18 23 32] 242 9.7 0.93

398
[16 23 30] 210 9.8 0.93
[21 23 25] 227 9.8 0.92
[21 27 28] 270 10.0 0.90
[15 24 18] 199 10.3 0.89

Inverted Pendulum

[35 32 40 40] 189 0.48 0.98

912
[32 30 40 35] 173 0.50 0.97
[30 32 38 36] 179 0.50 0.97
[36 32 37 36] 180 0.52 0.96
[31 27 32 35] 151 0.56 0.91

Bold numbers indicate the best model found for each system; 1 training was performed on a PC with an Intel i7
processor at 2.10 GHz and 8 GBs of memory.

In order to test the effectiveness of the proposed controller, a setpoint tracking problem, in which
the objective is to follow a series of setpoint changes, is improvised in order to cover sufficiently the
DC motor operating region.

The only tuning parameter to be selected for the INNER controller is the narrowing parameter
r. In order to optimize this parameter, different values of r are tested. A value of r = 2.5 is selected,
as it is found to produce the lowest MAE. Table 3 depicts the MAE values for the IN, INNER, and
discrete PID controllers. Figure 6a depicts the respective responses, along with the setpoint changes,
while the control actions can be seen in Figure 6b. The highly oscillatory response presented by the IN
controller is the result of model inaccuracies, a problem that is alleviated by the INNER, which takes
into account the AD; although this forces INNER to make smaller steps trying to reach the setpoint, it
also aids in minimizing the overshoot and settling time. The oscillatory behavior of IN can also explain
the significant difference in the MAE index between the two neural controllers, as INNER manages to
avoid excessive oscillations by successfully employing the AD concept. The discrete PID controller
also tracks all the setpoint changes, but is clearly inferior to INNER in terms of settling time, overshoot,
and MAE. The higher MAE exhibited by the PID is attributed to the controller’s slow response and its
inability to successfully counter any errors introduced by noise.

The successful application of the method on the DC motor indicates that it can handle issues
that are associated with real world implementation, including the presence of noise, system-model
mismatches, computational efficiency in real time applications, etc.

Sensors 2018, 18, 315 13 of 19

Table 3. Values for Mean Absolute Error (MAE) in the two case studies.

Controller

MAE

DC Motor Inverted Pendulum

Setpoint Tracking Stabilization
M = 1 kg

Stabilization
M = 1.4 kg

Stabilization
M = 2.0 kg

IN 0.595 0.315 0.676 0.8909
INNER 0.262 0.270 0.288 0.3201

PID 0.461 0.500 0.533 0.5581

Sensors 2018, 18, x 13 of 19

Table 3. Values for Mean Absolute Error (MAE) in the two case studies.

Controller

MAE
DC Motor Inverted Pendulum

Setpoint Tracking Stabilization
M = 1 kg

Stabilization
M = 1.4 kg

Stabilization
M = 2.0 kg

IN 0.595 0.315 0.676 0.8909
INNER 0.262 0.270 0.288 0.3201

PID 0.461 0.500 0.533 0.5581

(a)

(b)

Figure 6. Armature-controlled experimental DC motor: (a) controller responses; (b) controller actions.

4.2. Control of a Simulated Inverted Pendulum

The second case study involves the implementation of the proposed controller in a problem
closely related to the field of robotics, which has been identified as a standard benchmark for control,
namely the control of an inverted pendulum. The inverted pendulum, as depicted in Figure 7,
consists of a pole with a weight on one end, while the other end is attached on top of a small wagon.
The wagon is connected to the pole through a pin that allows full range of motion in one level. Force
F is applied on one side of the wagon in order to balance the pole on the vertical position, which

-15

-12

-9

-6

-3

0

3

6

9

12

15

0.0 0.5 1.0 1.5 2.0 2.5

A
rm

at
u

re
 v

o
lt

ag
e
V a

(V
)

Time (sec)

PID

IN

INNER (=2.5)r

Figure 6. Armature-controlled experimental DC motor: (a) controller responses; (b) controller actions.

4.2. Control of a Simulated Inverted Pendulum

The second case study involves the implementation of the proposed controller in a problem
closely related to the field of robotics, which has been identified as a standard benchmark for control,
namely the control of an inverted pendulum. The inverted pendulum, as depicted in Figure 7, consists
of a pole with a weight on one end, while the other end is attached on top of a small wagon. The wagon

Sensors 2018, 18, 315 14 of 19

is connected to the pole through a pin that allows full range of motion in one level. Force F is applied
on one side of the wagon in order to balance the pole on the vertical position, which constitutes an
unstable equilibrium point. The inverted pendulum is described by the subsequent state equations,
derived using fundamental physics laws:

dp
dt = v
dv
dt = −mg sin(θ) cos(θ)+mL

.
θ

2
sin(θ)+ fθm

.
θ+F

M+(1−cos2(θ))m
dθ
dt =

.
θ

d
.
θ

dt =
(M+m)

(
g sin(θ)− fθ

.
θ
)
−
(

Lm
.
θ

2
sin
(.

θ
)
+F
)

cos(θ)

L(M+(1−cos2(θ))m)

(25)

The notation and values for the parameters appearing in (25) are given in Table 4. The manipulated
variable in this case is the force F applied to the wagon, whereas the controlled variable is the angle θ.
The inverse model formula shared by both neural controllers is given below:

F(k) = RBF
(

v(k), θ(k),
.
θ(k), θ(k + 1)

)
(26)

The state Equations (25) are numerically solved in Matlab to produce a simulation of the inverted
pendulum. The controllers are also implemented in the Matlab environment, and all simulations are
run on a PC with an Intel i7 processor at 2.10 GHz and 8 GBs of memory.

Table 4. Notation and parameter values for the inverted pendulum.

Parameter Symbol Description/Value

Position of the wagon p State variable
Velocity of the wagon v State variable

Angle of the pendulum θ State variable
Angular velocity of the pendulum

.
θ State variable

Force applied on the cart F Manipulated variable
Mass of the wagon M 1 kg

Mass of the pendulum m 0.5 kg
Gravitational constant g 9.8 m/s

Length of the pendulum L 0.3 m
Friction coefficient of the link fθ 0.3 N/(m/s)

Sensors 2018, 18, x 14 of 19

constitutes an unstable equilibrium point. The inverted pendulum is described by the subsequent
state equations, derived using fundamental physics laws:

() () ()
()()

() ()() ()() ()
()()()

2

2

2

2

sin cos sin
1 cos

sin sin cos

1 cos

dp
v

dt

mg mL f m Fdv

dt M m

d

dt

M m g f Lm Fd

dt L M m

θ

θ

θ θ θ θ θ
θ

θ θ

θ θ θ θ θθ
θ

=

− + + +
=

+ −

=

+ − − +
=

+ −

 (25)

The notation and values for the parameters appearing in (25) are given in Table 4. The
manipulated variable in this case is the force F applied to the wagon, whereas the controlled
variable is the angle θ . The inverse model formula shared by both neural controllers is given below:

() () () () ()()RBF , , , 1F k v k k k kθ θ θ= + (26)

The state Equations (25) are numerically solved in Matlab to produce a simulation of the
inverted pendulum. The controllers are also implemented in the Matlab environment, and all
simulations are run on a PC with an Intel i7 processor at 2.10 GHz and 8 GBs of memory.

Table 4. Notation and parameter values for the inverted pendulum.

Parameter Symbol Description/Value
Position of the wagon p State variable
Velocity of the wagon v State variable

Angle of the pendulum θ State variable
Angular velocity of the pendulum θ State variable

Force applied on the cart F Manipulated variable
Mass of the wagon M 1 kg

Mass of the pendulum m 0.5 kg
Gravitational constant g 9.8 m/s

Length of the pendulum L 0.3 m
Friction coefficient of the link fθ 0.3 N/(m/s)

Figure 7. An inverted pendulum. Figure 7. An inverted pendulum.

Sensors 2018, 18, 315 15 of 19

Data generation and gathering to train the inverse RBF model is performed by randomly changing
the force applied to the cart every 0.1 s, where the values are drawn from a Gaussian distribution
∼N(0,6) . After collecting a set of 40,000 data points, training and validation subsets are created,
consisting of 30,000 and 10,000 data points, respectively. The next step is to apply PSO-NSFM for
partitions employing 4 to 40 fuzzy sets; Table 2 presents details for the 5 best networks found by
PSO-NSFM, ordered by the RMSE value. Once more, it can be seen that the produced models achieve
high accuracy, as it can be seen by their RMSE and R2 values. The best network in terms of RMSE and
R2 was found to produce better controller performance, as far as MAE is concerned, and thus it was
used in the control problems that follow.

For this particular case study, two different control problems are improvised to assess the
controllers’ performances. In the first one, the main objective is to stabilize the pendulum on the
vertical position, when starting from an initial angle of 20◦. A value of 1.2 is chosen for the r parameter,
as it is found to produce the lowest MAE. The actual responses and control actions of the controllers
are shown in Figure 8a,b, respectively, while the MAE values are summarized in Table 3. It can be
seen that, compared to its rivals, INNER exhibits superior control performance in terms of the MAE
values. The lower MAE values can be explained by the fact that INNER exhibits significantly faster
stabilization time and lower oscillations, especially compared to IN. This can be understood by looking
at the IN actions, which jump between the upper and lower saturation value until reaching an angle
close to the setpoint, in contrast to INNER which provides less aggressive control actions. As far as the
comparison with the analogue PID controller is concerned, the latter provides the most conservative
control actions; however, INNER is much faster, exhibiting a significantly lower settling time. It must
be mentioned that the PID starts with an advantage due to its analogue nature, in contrast with the
neural controllers, which are allowed to change their actions only every 0.01 s. Despite this handicap,
INNER manages to clearly outperform the analogue controller.

Sensors 2018, 18, x 15 of 19

Data generation and gathering to train the inverse RBF model is performed by randomly
changing the force applied to the cart every 0.1 s, where the values are drawn from a Gaussian
distribution ()~ 0, 6N . After collecting a set of 40,000 data points, training and validation subsets
are created, consisting of 30,000 and 10,000 data points, respectively. The next step is to apply
PSO-NSFM for partitions employing 4 to 40 fuzzy sets; Table 2 presents details for the 5 best
networks found by PSO-NSFM, ordered by the RMSE value. Once more, it can be seen that the
produced models achieve high accuracy, as it can be seen by their RMSE and R2 values. The best
network in terms of RMSE and R2 was found to produce better controller performance, as far as
MAE is concerned, and thus it was used in the control problems that follow.

For this particular case study, two different control problems are improvised to assess the
controllers’ performances. In the first one, the main objective is to stabilize the pendulum on the
vertical position, when starting from an initial angle of 20°. A value of 1.2 is chosen for the r
parameter, as it is found to produce the lowest MAE. The actual responses and control actions of the
controllers are shown in Figure 8a,b, respectively, while the MAE values are summarized in Table 3.
It can be seen that, compared to its rivals, INNER exhibits superior control performance in terms of
the MAE values. The lower MAE values can be explained by the fact that INNER exhibits
significantly faster stabilization time and lower oscillations, especially compared to IN. This can be
understood by looking at the IN actions, which jump between the upper and lower saturation value
until reaching an angle close to the setpoint, in contrast to INNER which provides less aggressive
control actions. As far as the comparison with the analogue PID controller is concerned, the latter
provides the most conservative control actions; however, INNER is much faster, exhibiting a
significantly lower settling time. It must be mentioned that the PID starts with an advantage due to its
analogue nature, in contrast with the neural controllers, which are allowed to change their actions only
every 0.01 s. Despite this handicap, INNER manages to clearly outperform the analogue controller.

(a)

-20

-10

0

10

20

0 1 2 3

A
n

g
le

 (
°)

Simulation time

Setpoint

PID

IN

INNER(=1.2)r

Figure 8. Cont.

Sensors 2018, 18, 315 16 of 19Sensors 2018, 18, x 16 of 19

(b)

Figure 8. Inverted pendulum, (a) M = 1 kg: controller responses; (b) M = 1 kg: controller actions.

In the second control problem, the objective is once more to reach the vertical position when
starting from an initial angle of 20°; however, in this case the mass of the wagon is altered to a value
that is different compared to the value used during the data collection stage. This change allows us
to assess the control schemes’ robustness. To enable a more detailed evaluation, two different values
were used for wagon mass, namely M = 1.4 kg and M = 2 kg. The actual responses of the controllers
for the two different values are depicted in Figure 9a,b, respectively, while the MAE values are given
in Table 3. As seen in Figure 9a, all control schemes manage to reach the vertical position
successfully for M = 1.4 kg; the proposed controller, though, proves to be superior compared to its
rivals, as it exhibits a lower settling time, overshoot, and MAE compared to PID and IN.

(a)

-25

-15

-5

5

15

25

0 1 2 3

F
o

rc
e

(N
)

Simulation time

PID

IN

INNER (=1.2)r

-20

-10

0

10

20

0 1 2 3

A
n

g
le

 (
°)

Simulation time

Setpoint

PID

IN

INNER (=1.2)r

Figure 8. Inverted pendulum, (a) M = 1 kg: controller responses; (b) M = 1 kg: controller actions.

In the second control problem, the objective is once more to reach the vertical position when
starting from an initial angle of 20◦; however, in this case the mass of the wagon is altered to a value
that is different compared to the value used during the data collection stage. This change allows us
to assess the control schemes’ robustness. To enable a more detailed evaluation, two different values
were used for wagon mass, namely M = 1.4 kg and M = 2 kg. The actual responses of the controllers for
the two different values are depicted in Figure 9a,b, respectively, while the MAE values are given in
Table 3. As seen in Figure 9a, all control schemes manage to reach the vertical position successfully for
M = 1.4 kg; the proposed controller, though, proves to be superior compared to its rivals, as it exhibits
a lower settling time, overshoot, and MAE compared to PID and IN.

Sensors 2018, 18, x 16 of 19

(b)

Figure 8. Inverted pendulum, (a) M = 1 kg: controller responses; (b) M = 1 kg: controller actions.

In the second control problem, the objective is once more to reach the vertical position when
starting from an initial angle of 20°; however, in this case the mass of the wagon is altered to a value
that is different compared to the value used during the data collection stage. This change allows us
to assess the control schemes’ robustness. To enable a more detailed evaluation, two different values
were used for wagon mass, namely M = 1.4 kg and M = 2 kg. The actual responses of the controllers
for the two different values are depicted in Figure 9a,b, respectively, while the MAE values are given
in Table 3. As seen in Figure 9a, all control schemes manage to reach the vertical position
successfully for M = 1.4 kg; the proposed controller, though, proves to be superior compared to its
rivals, as it exhibits a lower settling time, overshoot, and MAE compared to PID and IN.

(a)

-25

-15

-5

5

15

25

0 1 2 3

F
o

rc
e

(N
)

Simulation time

PID

IN

INNER (=1.2)r

-20

-10

0

10

20

0 1 2 3

A
n

g
le

 (
°)

Simulation time

Setpoint

PID

IN

INNER (=1.2)r

Figure 9. Cont.

Sensors 2018, 18, 315 17 of 19Sensors 2018, 18, x 17 of 19

(b)

Figure 9. Inverted pendulum, (a) M = 1.4 kg: controller responses; (b) M = 2.0 kg: controller
responses.

The robustness of the proposed controlled is further validated in the case of M = 2 kg, in which
it can be clearly seen that although the wagon’s mass has effectively doubled; the INNER is still able
to surpass the rivaling control schemes regarding the settling time, overshoot, and MAE values. In
order to achieve this, it was necessary to increase the value of the narrowing parameter r to 1.5. This
change enables the INNER controller to compensate for the significant change in the wagon mass,
albeit at the cost of a slightly slower response compared to lower values of M. The IN controller on
the other hand, which lacks the robustifying capabilities of INNER, presents an excessive oscillation.

5. Conclusions

In this work, a new direct design methodology for generic neural controllers, which is able to
control a nonlinear system given a sufficient volume of dynamic data collected during its operation,
is presented. The control scheme is based on RBF networks with Gaussian basis functions; this
choice makes certain that the control signal remains always bounded, and therefore BIBS stability for
the closed loop is guaranteed when the open loop is BIBS stable. The described method uses an
inverse dynamical RBF model of the system, which is able to combine inputs from different sources
through a data fusion approach. The model is trained with the novel PSO-NSFM algorithm, which is
found to improve both model accuracy and parsimony. Information drawn from the applicability
domain of the model is used to break down the transition from the current system state to the
requested setpoint to several smaller increments, with guaranteed feasibility. Moreover, a
robustifying term for error correction is included, estimating the error due to model-plant
mismatches, as well as unmeasured external disturbances and, thus, eliminating offset.

The resulting control scheme is tested through two control problems, namely, an experimental
setup of a DC motor, as well as a simulated, highly nonlinear inverted pendulum. The proposed
approach manages to successfully control both systems in all the cases that are tested, including
setpoint tracking and unmeasured disturbance rejection, while it proves to be robust to model
uncertainties. A comparison with two different controllers confirms the superiority of the proposed
scheme. Future research plans include the exploitation of the generic nature of the proposed
approach through application to the control of complex and uncertain nonlinear systems [43,44].

Acknowledgments: The work of Marios Stogiannos has been financially supported by the General Secretariat
for Research and Technology (GSRT) of Greece and the Hellenic Foundation for Research and Innovation
(HFRI).

-20

-10

0

10

20

0 1 2 3

A
n

g
le

 (
°)

Simulation time

Setpoint

PID

IN

INNER (=1.5)r

Figure 9. Inverted pendulum, (a) M = 1.4 kg: controller responses; (b) M = 2.0 kg: controller responses.

The robustness of the proposed controlled is further validated in the case of M = 2 kg, in which it
can be clearly seen that although the wagon’s mass has effectively doubled; the INNER is still able to
surpass the rivaling control schemes regarding the settling time, overshoot, and MAE values. In order
to achieve this, it was necessary to increase the value of the narrowing parameter r to 1.5. This change
enables the INNER controller to compensate for the significant change in the wagon mass, albeit at the
cost of a slightly slower response compared to lower values of M. The IN controller on the other hand,
which lacks the robustifying capabilities of INNER, presents an excessive oscillation.

5. Conclusions

In this work, a new direct design methodology for generic neural controllers, which is able to
control a nonlinear system given a sufficient volume of dynamic data collected during its operation, is
presented. The control scheme is based on RBF networks with Gaussian basis functions; this choice
makes certain that the control signal remains always bounded, and therefore BIBS stability for the
closed loop is guaranteed when the open loop is BIBS stable. The described method uses an inverse
dynamical RBF model of the system, which is able to combine inputs from different sources through a
data fusion approach. The model is trained with the novel PSO-NSFM algorithm, which is found to
improve both model accuracy and parsimony. Information drawn from the applicability domain of the
model is used to break down the transition from the current system state to the requested setpoint
to several smaller increments, with guaranteed feasibility. Moreover, a robustifying term for error
correction is included, estimating the error due to model-plant mismatches, as well as unmeasured
external disturbances and, thus, eliminating offset.

The resulting control scheme is tested through two control problems, namely, an experimental
setup of a DC motor, as well as a simulated, highly nonlinear inverted pendulum. The proposed
approach manages to successfully control both systems in all the cases that are tested, including
setpoint tracking and unmeasured disturbance rejection, while it proves to be robust to model
uncertainties. A comparison with two different controllers confirms the superiority of the proposed
scheme. Future research plans include the exploitation of the generic nature of the proposed approach
through application to the control of complex and uncertain nonlinear systems [43,44].

Acknowledgments: The work of Marios Stogiannos has been financially supported by the General Secretariat for
Research and Technology (GSRT) of Greece and the Hellenic Foundation for Research and Innovation (HFRI).

Author Contributions: Alex Alexandridis, Elias Zois, and Haralambos Sarimveis conceived and designed the
method and the experiments. Marios Stogiannos and Nikolaos Papaioannou performed the experiments and
analyzed the data. Alex Alexandridis wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2018, 18, 315 18 of 19

References

1. Hunt, K.J.; Sbarbaro, D.; Zbikowski, R.; Gawthrop, P.J. Neural networks for control systems—A survey.
Automatica 1992, 6, 1083–1112. [CrossRef]

2. Miller, W.T.; Werbos, P.J.; Sutton, R.S. Neural Networks for Control; MIT Press: Cambridge, MA, USA, 1995.
3. Suykens, J.A.K.; Vandewalle, J.P.L.; De Moor, B.L.R. Artificial Neural Networks for Modelling and Control of

Non-Linear Systems; Springer: New York, NY, USA, 1996.
4. Zhou, F.; Peng, H.; Qin, Y.; Zeng, X.; Xie, W.; Wu, J. RBF-ARX model-based MPC strategies with application

to a water tank system. J. Process Control 2015, 34, 97–116. [CrossRef]
5. Xie, W.; Bonis, I.; Theodoropoulos, C. Data-driven model reduction-based nonlinear MPC for large-scale

distributed parameter systems. J. Process Control 2015, 35, 50–58. [CrossRef]
6. Nizami, T.K.; Chakravarty, A.; Mahanta, C. Design and implementation of a neuro-adaptive backstepping

controller for buck converter fed PMDC-motor. Control Eng. Pract. 2017, 58, 78–87. [CrossRef]
7. Ławryńczuk, M. Accuracy and computational efficiency of suboptimal nonlinear predictive control based on

neural models. Appl. Soft Comput. 2011, 11, 2202–2215. [CrossRef]
8. Zheng, Y.; Jun, W. Robust model predictive control of nonlinear systems with unmodeled dynamics and

bounded uncertainties based on neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 457–469.
9. M’Sahli, F.; Matlaya, R. A neural network model based predictive control approach: Application to a

semi-batch reactor. Int. J. Adv. Manuf. Technol. 2005, 26, 161–168. [CrossRef]
10. Guzairov, M.B.; Gabitov, R.F.; Kayashev, A.I.; Muravyova, E.A. Autoregressive neural network for model

predictive control of multivariable cracking catalyst calcinator. Opt. Mem. Neural Netw. 2011, 20, 216.
[CrossRef]

11. Alexandridis, A.; Sarimveis, H.; Ninos, K. A radial basis function network training algorithm using a
non-symmetric partition of the input space—Application to a model predictive control configuration.
Adv. Eng. Softw. 2011, 42, 830–837. [CrossRef]

12. Aggelogiannaki, E.; Sarimveis, H. A simulated annealing algorithm for prioritized multiobjective
optimization—Implementation in an adaptive model predictive control configuration. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2007, 37, 902–915. [CrossRef]

13. Sarailoo, M.; Rahmani, Z.; Rezaie, B. A novel model predictive control scheme based on Bees algorithm in a
class of nonlinear systems: Application to a three tank system. Neurocomputing 2015, 152, 294–304. [CrossRef]

14. Polycarpou, M.M.; Conway, J.Y. Indirect adaptive nonlinear control of drug delivery systems. IEEE Trans.
Autom. Control 1998, 43, 849–856. [CrossRef]

15. Wong, P.K.; Wong, H.C.; Vong, C.M.; Xie, Z.; Huang, S. Model predictive engine air-ratio control using online
sequential extreme learning machine. Neural Comput. Appl. 2016, 27, 79–92. [CrossRef]

16. Lee, J.H. Model predictive control: Review of the three decades of development. Int. J. Control Autom. Syst.
2011, 9, 415–424. [CrossRef]

17. Souza, L.G.M.; Barreto, G.A. On building local models for inverse system identification with vector
quantization algorithms. Neurocomputing 2010, 73, 1993–2005. [CrossRef]

18. Yu, J.; Yu, H.; Chen, B.; Gao, J.; Qin, Y. Direct adaptive neural control of chaos in the permanent magnet
synchronous motor. Nonlinear Dyn. 2012, 70, 1879–1887. [CrossRef]

19. Xu, B.; Wang, D.; Sun, F.; Shi, Z. Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn.
2012, 70, 269–278. [CrossRef]

20. Ben Nasr, M.; Chtourou, M. Neural network control of nonlinear dynamic systems using hybrid algorithm.
Appl. Soft Comput. 2014, 24, 423–431. [CrossRef]

21. Waegeman, T.; Wyffels, F.; Schrauwen, B. Feedback control by online learning an inverse model. IEEE Trans.
Neural Netw. Learn. Syst. 2012, 23, 1637–1648. [CrossRef] [PubMed]

22. Moody, J.; Darken, C. Fast learning in networks of locally-tuned processing units. Neural Comput. 1989, 1,
281–294. [CrossRef]

23. Alexandridis, A.; Chondrodima, E.; Sarimveis, H. Cooperative learning for radial basis function networks
using particle swarm optimization. Appl. Soft Comput. 2016, 49, 485–497. [CrossRef]

24. Alexandridis, A.; Sarimveis, H. Nonlinear adaptive model predictive control based on self-correcting neural
network models. AIChE J. 2005, 51, 2495–2506. [CrossRef]

http://dx.doi.org/10.1016/0005-1098(92)90053-I
http://dx.doi.org/10.1016/j.jprocont.2015.07.010
http://dx.doi.org/10.1016/j.jprocont.2015.07.009
http://dx.doi.org/10.1016/j.conengprac.2016.10.002
http://dx.doi.org/10.1016/j.asoc.2010.07.021
http://dx.doi.org/10.1007/s00170-003-1972-8
http://dx.doi.org/10.3103/S1060992X11030027
http://dx.doi.org/10.1016/j.advengsoft.2011.05.026
http://dx.doi.org/10.1109/TSMCB.2007.896015
http://dx.doi.org/10.1016/j.neucom.2014.10.066
http://dx.doi.org/10.1109/9.679024
http://dx.doi.org/10.1007/s00521-014-1555-7
http://dx.doi.org/10.1007/s12555-011-0300-6
http://dx.doi.org/10.1016/j.neucom.2009.10.021
http://dx.doi.org/10.1007/s11071-012-0580-2
http://dx.doi.org/10.1007/s11071-012-0451-x
http://dx.doi.org/10.1016/j.asoc.2014.07.023
http://dx.doi.org/10.1109/TNNLS.2012.2208655
http://www.ncbi.nlm.nih.gov/pubmed/24808008
http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1016/j.asoc.2016.08.032
http://dx.doi.org/10.1002/aic.10505

Sensors 2018, 18, 315 19 of 19

25. Ninos, K.; Giannakakis, C.; Kompogiannis, I.; Stavrakas, I.; Alexandridis, A. Nonlinear control of a DC-motor
based on radial basis function neural networks. In Proceedings of the International Symposium on
Innovations in Intelligent Systems and Applications (INISTA), Istanbul, Turkey, 15–18 June 2011; pp. 611–615.

26. Kosic, D. Fast clustered radial basis function network as an adaptive predictive controller. Neural Netw. 2015,
63, 79–86. [CrossRef] [PubMed]

27. Mozaffari, A.; Vajedi, M.; Azad, N.L. A robust safety-oriented autonomous cruise control scheme for
electric vehicles based on model predictive control and online sequential extreme learning machine with a
hyper-level fault tolerance-based supervisor. Neurocomputing 2015, 151, 845–856. [CrossRef]

28. Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991,
3, 246–257. [CrossRef]

29. Haley, P.J.; Soloway, D. Extrapolation limitations of multilayer feedforward neural networks. In Proceedings
of the International Joint Conference on Neural Networks (IJCNN), Baltimore, MD, USA, 7–11 June 1992;
pp. 25–30.

30. Hossaini-asl, E.; Shahbazian, M. Nonlinear dynamic system control using wavelet neural network based on
sampling theory. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
(SMC), San Antonio, TX, USA, 11–14 October 2009; pp. 4502–4507.

31. Alexandridis, A.; Stogiannos, M.; Kyriou, A.; Sarimveis, H. An offset-free neural controller based on a
non-extrapolating scheme for approximating the inverse process dynamics. J. Process Control 2013, 23,
968–979. [CrossRef]

32. Alexandridis, A.; Chondrodima, E.; Sarimveis, H. Radial basis function network training using a
nonsymmetric partition of the input space and particle swarm optimization. IEEE Trans. Neural Netw.
Learn. Syst. 2013, 24, 219–230. [CrossRef] [PubMed]

33. Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different
approaches to define the applicability domain of qsar models. Molecules 2012, 17, 4791–4810. [CrossRef]
[PubMed]

34. Darken, C.; Moody, J. Fast adaptive k-means clustering: Some empirical results. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), San Diego, CA, USA, 17–21 June 1990;
pp. 233–238.

35. Alexandridis, A.; Sarimveis, H.; Bafas, G. A new algorithm for online structure and parameter adaptation of
RBF networks. Neural Netw. 2003, 16, 1003–1017. [CrossRef]

36. Alexandridis, A.; Chondrodima, E.; Efthimiou, E.; Papadakis, G.; Vallianatos, F.; Triantis, D. Large earthquake
occurrence estimation based on radial basis function neural networks. IEEE Trans. Geosci. Remote Sens. 2014,
52, 5443–5453. [CrossRef]

37. Alexandridis, A.; Chondrodima, E. A medical diagnostic tool based on radial basis function classifiers and
evolutionary simulated annealing. J. Biomed. Inform. 2014, 49, 61–72. [CrossRef] [PubMed]

38. Alexandridis, A.; Chondrodima, E.; Giannopoulos, N.; Sarimveis, H. A fast and efficient method for training
categorical radial basis function networks. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2831–2836.
[CrossRef] [PubMed]

39. Rawlings, J.B.; Mayne, D.Q. Model Predictive Control: Theory and Design; Nob Hill: Madison, WI, USA, 2009.
40. Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A. Process Dynamics and Control, 2nd ed.; John Wiley & Sons, Inc.:

Hoboken, NJ, USA, 2004.
41. Modular Servo System MS150 Book 3: DC, Synchro, & AC Advanced Experiments; Feedback Instruments Ltd.

Press: Crowborough, UK, 2000.
42. Krause, P.C. Analysis of Electric Machinery; McGraw-Hill: New York, NY, USA, 1986.
43. Zhang, B.-L.; Han, Q.-L.; Zhang, X.-M.; Yu, X. Sliding mode control with mixed current and delayed states

for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 2013, 22, 1769–1783. [CrossRef]
44. Zhang, B.-L.; Han, Q.-L.; Zhang, X.-M. Event-triggered h∞ reliable control for offshore structures in network

environments. J. Sound Vib. 2016, 368, 1–21. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2014.11.008
http://www.ncbi.nlm.nih.gov/pubmed/25506759
http://dx.doi.org/10.1016/j.neucom.2014.10.011
http://dx.doi.org/10.1162/neco.1991.3.2.246
http://dx.doi.org/10.1016/j.jprocont.2013.04.008
http://dx.doi.org/10.1109/TNNLS.2012.2227794
http://www.ncbi.nlm.nih.gov/pubmed/24808277
http://dx.doi.org/10.3390/molecules17054791
http://www.ncbi.nlm.nih.gov/pubmed/22534664
http://dx.doi.org/10.1016/S0893-6080(03)00052-2
http://dx.doi.org/10.1109/TGRS.2013.2288979
http://dx.doi.org/10.1016/j.jbi.2014.03.008
http://www.ncbi.nlm.nih.gov/pubmed/24662274
http://dx.doi.org/10.1109/TNNLS.2016.2598722
http://www.ncbi.nlm.nih.gov/pubmed/28113644
http://dx.doi.org/10.1109/TCST.2013.2293401
http://dx.doi.org/10.1016/j.jsv.2016.01.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	RBF Networks
	Inverse Controller Design
	RBF-Based Inverse Controllers and BIBS Stability
	Incorporating the AD Concept
	Robustifying Term

	Case Studies
	Control of an Experimental DC Motor
	Control of a Simulated Inverted Pendulum

	Conclusions
	References

