
sensors

Article

A Component-Based Approach for Securing Indoor
Home Care Applications

Aitor Agirre 1,* ID , Aintzane Armentia 2,* ID , Elisabet Estévez 3 and Marga Marcos 2 ID

1 ICT Department, IK4-Ikerlan, 20500 Arrasate-Mondragón, Spain
2 Automatic Control & Systems Engineering Department, ETSI Bilbao,

University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain; marga.marcos@ehu.eus
3 Electronic and Automation Engineering Department, University of Jaen (UJA), 23071 Jaén, Spain;

eestevez@ujaen.es
* Correspondence: aagirre@ikerlan.es (A.Ag.); aintzane.armentia@ehu.eus (A.Ar.);

Tel.: +34-946-017-216 (A.Ar.)

Received: 31 October 2017; Accepted: 18 December 2017; Published: 26 December 2017

Abstract: eHealth systems have adopted recent advances on sensing technologies together with
advances in information and communication technologies (ICT) in order to provide people-centered
services that improve the quality of life of an increasingly elderly population. As these eHealth
services are founded on the acquisition and processing of sensitive data (e.g., personal details,
diagnosis, treatments and medical history), any security threat would damage the public’s confidence
in them. This paper proposes a solution for the design and runtime management of indoor
eHealth applications with security requirements. The proposal allows applications definition
customized to patient particularities, including the early detection of health deterioration and suitable
reaction (events) as well as security needs. At runtime, security support is twofold. A secured
component-based platform supervises applications execution and provides events management,
whilst the security of the communications among application components is also guaranteed.
Additionally, the proposed event management scheme adopts the fog computing paradigm to
enable local event related data storage and processing, thus saving communication bandwidth when
communicating with the cloud. As a proof of concept, this proposal has been validated through the
monitoring of the health status in diabetic patients at a nursing home.

Keywords: eHealthcare; security; safety; reliability; service component architecture; data distribution
service; domain modeling

1. Introduction

Information and communication technologies are gaining increasing importance in modern public
health management. These technologies bring several benefits to patients, care teams, organization
infrastructure (e.g., hospitals, clinics, home, etc.) and to the overall health environment, composed by
regulators, insurers, health care purchasers, research funders, etc. [1–3]. On the one hand, the patients
can benefit from faster, convenient, and more efficient medical processes, which result in improved
health care. For example, real time and continuous monitoring of physiological parameters facilitate the
early detection of health diseases and medical urgencies. Furthermore, this improved health tracking is
achieved in a non-invasive and unattended manner, a fact that takes on special relevance when dealing
with elderly patients. On the other hand, from the perspective of public health system management,
a timely and targeted prevention supported by information and communication technologies results in
general health care cost containment [4]. Other opportunities offered by e-Healthcare systems include
early detection of pandemic [5,6]. The supporting technologies for these useful applications range
from social networking [7] to big data [8] or search engines like Google Flu Trends [9].

Sensors 2018, 18, 46; doi:10.3390/s18010046 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4377-8835
https://orcid.org/0000-0002-6612-241X
https://orcid.org/0000-0001-5570-1072
http://dx.doi.org/10.3390/s18010046
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 46 2 of 32

To achieve such benefits, current trends in health care policy emphasize the active participation
of patients in their own health care, in contrast to a more traditional view in which the patient was
seen as a passive stakeholder. This patient driven approach implies access to a common data bus
that is shared between the patient, the medical staff, the health care organization, and the political
institutions that manage the overall health system. Obviously, such health care management approach
implies several technical aspects that must be addressed. In concrete, two of them arise as particularly
challenging: safety and security. Safety must be considered as mandatory when dealing with aspects
such as computerized prescribing and medication [10] or remote monitoring of physiological data [11].
In this case, the integrity of the transmitted data must be protected against eventual data corruption.
On the other hand, privacy and security are key aspects to be considered when dealing with personal
health related sensitive data [12–14]. As far as the considered e-Health management system is
intrinsically distributed, safety and security aspects must be covered from both data distribution
and data persistence perspectives. This implies the design of reliable and secure communication
channels, alongside with dependable data persistence mechanisms.

Additional technical aspects that must be considered include, among others: (1) support for
applications that are composed by mobile and dynamic elements. In this sense, as the system scales,
more users (patients) can be registered in the system and these patients can be monitored by mobile
devices such as wearable sensors or mobile phones that can dynamically appear or disappear in the
healthcare management network. (2) Interoperability of systems and devices [15]. These devices are
geographically distributed and deployed over heterogeneous networks and protocols. Examples of such
systems and devices include wireless medical devices deployed in the home care network, wearable
sensors, home gateways, hospital databases and so on. (3) To enable personalized medicine, customization
of health care applications is a key issue that must be considered in order to fit specific user needs.

This paper proposes a component-based solution to cover several needs of eHealthcare
applications. It provides support for the whole lifecycle of such applications, including the design,
deployment and execution phases, and plays special attention on their security and safety needs,
which can be configured by the application integrator in the design phase. Specific mechanisms to
support both secure communications and secure data persistence are proposed. Also, the framework
provides a generic way to specify, in the design phase, the application specific process data that should
be persisted in order to perform further analysis such as e.g., early pandemic detection. To achieve
such features, the Distributed Applications Management Platform (DAMP) presented in [16] has been
extended with new functionalities. On the one hand, the platform now provides a generic mechanism
to track application data and ensure its persistence in a database. This way, the medical domain
specialist can define, in the application configuration phase, the specific application data that must
be persisted in order to perform further analysis. On the other hand, security is addressed from two
aspects. First, a secure channel to communicate application components is provided. Second, security
and availability of the persisted application data is ensured, through the appropriate data encryption
and replication mechanisms.

Another contribution of this work is a methodology for the design and development of
eHealthcare applications, which extends the domain modeling approach presented in [17] with support
for the specification of component security. This methodology decouples the medical domain specialist
tasks and the technology expert tasks. As a result, the former can focus on the functional specification
of the target applications whilst the latter specifies non-functional aspects such as the security level of
the component interconnections or the database redundancy. The proposal also provides a generic
way to specify, in the design phase, the application specific process data that should be persisted in
order to perform further analysis such as early pandemic detection. Once the application configuration
is finished, the methodology also provides guidelines and templates to implement application code.
These fill the gap between the application specification (platform independent) and the component
applications managed by DAMP platform, which does not depend on any application domain.

Sensors 2018, 18, 46 3 of 32

The remainder of the paper is as follows: Section 2 presents the requirements of the targeted
eHealthcare applications. Section 3 details the runtime support that is proposed to fulfill such
requirements whilst Section 4 covers the proposed design and development methodology, emphasizing
security and safety related features. Section 5 presents an assessment of the runtime platform
performance and security aspects, focusing on computing resource consumption. Section 6 provides a
review of related work, and finally, Section 7 presents the conclusions and points out some ideas for
future work.

2. eHealthcare Application Demands

eHealthcare applications are mainly focused on the continuous and remote monitoring of
physiological variables that implies collecting and processing patient data as well as generating
reliable data to share between the patient and health care experts aiming at identifying early health
deterioration. To achieve this goal it is necessary to integrate health devices and the software that allows
their remote control, capture and data processing through communications networks. For example,
using the terminology stated by the Continua Design Guidelines [18], let us consider a system
consisting on a personal health device (e.g., a pulse oximeter) that communicates its measurements via
Bluetooth to a personal health gateway (e.g., a health & fitness app on a smart phone or a home domotic
controller) which in turn preprocesses the data and forwards them to a health care information system
(e.g., the hospital server), using a protocol such as HL7 [19] to transfer the medical data payload.

Such a remote home care system requires the development of application modules that may
be diverse in terms of implementation languages and could interoperate over heterogeneous
physical networks (e.g., Bluetooth, Ethernet, 4G) and communication protocols (e.g., Simple Object
Access Protocol—Web Service (SOAP-WS), REpresentational State Transfer (REST)). Moreover, specific
non-functional requirements must be considered to provide a dependable system that copes with sensitive
personal data [20]. In this sense, aspects such as safety, security or availability must be considered.

There are also flexibility requirements that are particularly relevant in this kind of eHealth-centered
applications [17]. In this sense, concepts as adaptability to context changes or customization of
applications to specific user needs must be properly supported.

Remote monitoring is one of the key functionalities of the target applications (R1). This remote
monitoring should be tailored to the particular needs of the patient taking into account that detection of
health impairment and reaction to abnormal situations must also be customized to particular patients (R2).

From the overall eHealthcare system management point of view, support for remote control and
configuration of health devices and applications (R3) is needed. This is a key feature that must be
addressed to properly support an efficient system operation and maintenance, as it seems obvious, for
example, that the elderly people should not care about the configuration and control of their health
care devices, as these services should be delegated in physicians and system operators.

Usually, healthcare applications must interoperate with already existing systems through different
networks and protocols. Furthermore, the system may require application migration from one platform
to another. Thus, reusability, interoperability and heterogeneity issues must be properly handled (R4).

In this sense, global dissemination of medical data through a global network infrastructure is
getting a current challenge [21]. Certainly, there is a need of analytical tools on massive digital data that
would result in improving health care at individual, group and international level (R5). As an example,
this dissemination of medical data would enable following up the global evolution of chronic diseases
such as diabetes or even the early detection and supervision of epidemic and pandemic at a world level.

The adequate dependability levels must be established in terms of the availability degree desired
(R6), taking into account the affordable costs vs. the assumable service levels for a specific use case.
For example, in the previous use case composed of a Bluetooth pulse oximeter plus a home domotic
gateway that communicates with the cloud server of the hospital, it seems reasonable to replicate the
hospital server as far as an eventual server crash could affect to hundreds of patients. Nevertheless,
other system devices (e.g., some personal health devices) do not demand so high availability.

Sensors 2018, 18, 46 4 of 32

The sensitive nature of the managed patient data demands reliable data transmission (R7) as well
as secure data transmission (R8). The former ensures message integrity over non-safe channels [11] and
protects against non-intentional data corruption, whereas the latter ensures that medical data related
messages are properly identified, authenticated, and protected against deliberated data modifications.

Finally, critical data must be kept secure and safe, to protect against accidental or willful
modifications (R9). This issue is closely related to requirement R5, as far as it provides a trustable
source of data for subsequent medical data trend analysis.

Therefore, it can be concluded that the target applications exhibit a common set of characteristics
that demand the fulfillment of several requirements during their design, development and operation.
These requirements are summarized in Table 1.

Table 1. Requirements of the target applications.

Requirement ID Requirement Description

R1. Remote monitoring Remote monitoring of physiological data.

R2. Health-centered monitoring Health monitoring, alarm detection and reaction customized to the
particularities of every patient.

R3. Remote application management Remote deployment, upgrade and control of eHealth applications.

R4. Heterogeneity and interoperability

The typology of application can be diverse, in terms of
implementation language, hardware platforms and operating
systems. The interoperability with external systems
(e.g., legacy systems) must be supported.

R5. Global diffusion of medical data Support for the diffusion of digital medical data through a global
network infrastructure.

R6. Availability Availability of critical nodes must be ensured, to achieve adequate
dependability levels.

R7. Reliable data transmission Reliable communication mechanisms over inherently unsafe
channels (black channels), including message integrity.

R8. Secure data transmission Security of the communication channels, including sender
identification, authentication and message integrity.

R9. Reliable and secure data persistence Historical data persistence. The integrity and confidentiality of the
database must be guaranteed.

3. Distributed Applications Management Platform (DAMP)

To support the typology of applications specified in the previous section, a component-based
solution is proposed. This approach considers that applications are composed by several components
interconnected across a network. To illustrate the advantages of a component-based solution let us
consider a case study related to diabetic patients. Diabetes is a chronic disease that is expected to be
the seventh cause of death in 2030 [22]. It occurs when the pancreas does not produce enough insulin
or when the body is not able to use the insulin produced. As a result, the concentration of glucose
in the blood increases (hyperglycemia), which can lead to serious damage such as blindness, kidney
failure or lower-extremity amputation. Additionally, diabetic people may also be in risk of having
a low level of sugar in blood (hypoglycemia) as a result of, for example, a wrong dose of insulin or
too much physical exercise, and with the following symptoms: sweating, sickness, heart palpitations,
blurred vision, tremors, etc. In severe cases it can lead to loss of consciousness [23–25]. In fact, there
are works focused on relating hypoglycemia with the risk of suffering cardiovascular diseases [25–27].

In this context, the health monitoring application depicted in Figure 1 could be used to analyze
the correlation between these two diseases. The yellow components make up a health monitoring
application. The application periodically tracks the patient´s blood pressure and glucose level data.
Initially, this data is stored locally in the eHealth gateway database. Then, periodically, it is compressed
and uploaded to the hospital database. Once the monitored physiological parameters are stored in this

Sensors 2018, 18, 46 5 of 32

database, further medical analysis can be performed in order to correlate hypoglycemic episodes with
blood pressure data.

The periodic batch processing performed at the eHealth gateway optimizes the communication
channel bandwidth. The gateway also centralizes the security related tasks: on the one hand, it securely
stores local data. On the other hand, it performs the sign and encryption of the data that is remotely
sent to the hospital database.

Additionally, the gateway can be remotely parameterized to change the frequency of the batch
processing or to perform security related tasks, such as cryptographic key renewal or encryption
algorithm selection. This parameter tuning of the gateway is initiated by a remote operator through a
web based user interface component, which provides centralized access to the home care networks of
the different patients.

Sensors 2018, 18, 46 5 of 32

also be in risk of having a low level of sugar in blood (hypoglycemia) as a result of, for example, a
wrong dose of insulin or too much physical exercise, and with the following symptoms: sweating,
sickness, heart palpitations, blurred vision, tremors, etc. In severe cases it can lead to loss of
consciousness [23–25]. In fact, there are works focused on relating hypoglycemia with the risk of
suffering cardiovascular diseases [25–27].

In this context, the health monitoring application depicted in Figure 1 could be used to analyze
the correlation between these two diseases. The yellow components make up a health monitoring
application. The application periodically tracks the patient´s blood pressure and glucose level data.
Initially, this data is stored locally in the eHealth gateway database. Then, periodically, it is
compressed and uploaded to the hospital database. Once the monitored physiological parameters
are stored in this database, further medical analysis can be performed in order to correlate
hypoglycemic episodes with blood pressure data.

The periodic batch processing performed at the eHealth gateway optimizes the communication
channel bandwidth. The gateway also centralizes the security related tasks: on the one hand, it
securely stores local data. On the other hand, it performs the sign and encryption of the data that is
remotely sent to the hospital database.

Additionally, the gateway can be remotely parameterized to change the frequency of the batch
processing or to perform security related tasks, such as cryptographic key renewal or encryption
algorithm selection. This parameter tuning of the gateway is initiated by a remote operator through
a web based user interface component, which provides centralized access to the home care networks
of the different patients.

Figure 1. Health monitoring application.

The example application represented in Figure 1 also highlights some common non-functional
requirements discussed in the previous section. In particular, those related to heterogeneity and
interoperability. In this sense, the example scenario uses the SOAP-WS protocol for the
communication between the eHealth gateway and the Wide Area Network (WAN) components (i.e.,
hospital database manager and the web User Interface (UI)), whereas the selected communication
protocol for the home Local Area Network (LAN) side is Data Distribution Service (DDS).

To support the execution of such kind of distributed applications, a runtime management
platform called DAMP is proposed. DAMP manages application components based on Service
Component Architecture (SCA) [28], which have been extended with additional control ports that
enable its remote control. Section 3.1 explains briefly the SCA component model alongside with the

Health care WAN

Local home
care network

System
operator

Application component Publish-subscribe paradigm

Client-server paradigm

SOAP-WS
protocol binding

Web UI

Hospital DB
manager

eHealth
gateway

Glucose
meterECG meter

DDS protocol binding

Figure 1. Health monitoring application.

The example application represented in Figure 1 also highlights some common non-functional
requirements discussed in the previous section. In particular, those related to heterogeneity and
interoperability. In this sense, the example scenario uses the SOAP-WS protocol for the communication
between the eHealth gateway and the Wide Area Network (WAN) components (i.e., hospital database
manager and the web User Interface (UI)), whereas the selected communication protocol for the home
Local Area Network (LAN) side is Data Distribution Service (DDS).

To support the execution of such kind of distributed applications, a runtime management platform
called DAMP is proposed. DAMP manages application components based on Service Component
Architecture (SCA) [28], which have been extended with additional control ports that enable its remote
control. Section 3.1 explains briefly the SCA component model alongside with the DAMP platform
architecture and services. Section 3.2 presents the API of the provided services, and explains in detail
the stateful system recovery mechanisms that are key to support high availability in eHealthcare
distributed applications. As a result, some of the requirements indicated in previous section are
fulfilled. In particular, the R1, R3, R4 and R6 requirements described in Table 1.

To meet the rest of requirements, the DAMP platform has been leveraged in two ways. Section 3.3
describes the security mechanisms that guarantee the reliable and secure data transmission of sensitive
medical data (R7 and R8, in Table 1) between the application components. Section 3.4 details how the

Sensors 2018, 18, 46 6 of 32

platform enables the possibility of specifying (in the design phase) the application data that needs
to be stored for further Big Data Analysis (BDA) (R5), whilst guaranteeing its anonymity. Also, data
encryption and database replication mechanisms are proposed to fulfill the R9 requirement related
to reliable and secure data persistence. It is worth noting that the configuration of all these aspects
is performed in the integration phase, and therefore the functional aspects of the application are
decoupled from those related to security, persistence, and privacy.

3.1. DAMP Architecture

The SCA standard defines a programming architecture oriented to the development of applications
from building blocks (components) that encapsulate the business logic and offer it in the form of
services. Thus, SCA offers a solution based on the Service Oriented Architecture (SOA) paradigm.

A SCA component consists of a language agnostic functional implementation (business logic) and
a set of properties, services, and references. The SCA standard defines connections (bindings) for several
implementation languages (C, C++, BPEL, Java and Spring), although depending on the specific SCA
distribution, additional languages may be available [29].

In the SCA nomenclature, a service refers to a functionality provided by the component, whereas
a reference represents a functionality required by the component. As it is depicted in Figure 2a, services
and references are depicted on the left and right sides of the component diagram, respectively, and can
be specified by an extensible set of interface types: Java Interfaces, Web Service Description Language
(WSDL), UPnP (Universal Plug & Play), C headers, etc.

Sensors 2018, 18, 46 6 of 32

DAMP platform architecture and services. Section 3.2 presents the API of the provided services, and
explains in detail the stateful system recovery mechanisms that are key to support high availability
in eHealthcare distributed applications. As a result, some of the requirements indicated in previous
section are fulfilled. In particular, the R1, R3, R4 and R6 requirements described in Table 1.

To meet the rest of requirements, the DAMP platform has been leveraged in two ways. Section 3.3
describes the security mechanisms that guarantee the reliable and secure data transmission of
sensitive medical data (R7 and R8, in Table 1) between the application components. Section 3.4
details how the platform enables the possibility of specifying (in the design phase) the application
data that needs to be stored for further Big Data Analysis (BDA) (R5), whilst guaranteeing its
anonymity. Also, data encryption and database replication mechanisms are proposed to fulfill the
R9 requirement related to reliable and secure data persistence. It is worth noting that the
configuration of all these aspects is performed in the integration phase, and therefore the functional
aspects of the application are decoupled from those related to security, persistence, and privacy.

3.1. DAMP Architecture

The SCA standard defines a programming architecture oriented to the development of applications
from building blocks (components) that encapsulate the business logic and offer it in the form of services.
Thus, SCA offers a solution based on the Service Oriented Architecture (SOA) paradigm.

A SCA component consists of a language agnostic functional implementation (business logic)
and a set of properties, services, and references. The SCA standard defines connections (bindings) for
several implementation languages (C, C++, BPEL, Java and Spring), although depending on the
specific SCA distribution, additional languages may be available [29].

In the SCA nomenclature, a service refers to a functionality provided by the component, whereas
a reference represents a functionality required by the component. As it is depicted in Figure 2a, services
and references are depicted on the left and right sides of the component diagram, respectively, and
can be specified by an extensible set of interface types: Java Interfaces, Web Service Description
Language (WSDL), UPnP (Universal Plug & Play), C headers, etc.

Figure 2. SCA components.

SCA integrates different component aspects following the Aspect-Oriented Programming
(AOP) paradigm, and provides an eXtensible Markup Language (XML) file format [30] to enable its
specification (see Figure 2b). This XML file also represents the overall application architecture,
which is defined by the wiring between the references and services of the application components.

Indeed, in addition to the type of interface, the services and references have an associated
binding type, which indicates the distribution middleware that will be used to connect a service to a
reference. An SCA binding encapsulates the complexity of data distribution, and abstracts the
application developer from low level communication details. Thus, the developer only specifies the
functional interfaces that define the services and references of the application components, and
combines these components to design an application. In other words, the developer does not care at
all about the actual data distribution technology behind the scenes, which is declaratively defined in

SCA
component

Properties Reference
- Java interface
- WSDL PortType

Binding
- Web service
- JCA
- JMS …

Service
- Java interface
- WSDL PortType

Binding
- Web service
- JCA
- JMS …

<component name=“Sensor_T1”>
<implementation.java class=“DemoSca.impl.SensorT”/>
<property name=“units”>celsius</property>
<property name=“T”>500</property>
<service name=“srvConfig”>

<interface.java interface=“DemoSca.interfaces.IConfiguration"/>
<binding.ws name=“Configuration”

uri=“http://172.16.6.36:8081/Configuration”/>
</service>
<reference name=“IDatalogger_Ref”>

<interface.java interface=“DemoSca.interfaces.IDataLogger”/>
<binding.dds topicname=“TemperatureLog”/>

</reference>
</component>

a) Diagram b) Declarative configuration

Figure 2. SCA components.

SCA integrates different component aspects following the Aspect-Oriented Programming (AOP)
paradigm, and provides an eXtensible Markup Language (XML) file format [30] to enable its
specification (see Figure 2b). This XML file also represents the overall application architecture, which
is defined by the wiring between the references and services of the application components.

Indeed, in addition to the type of interface, the services and references have an associated binding
type, which indicates the distribution middleware that will be used to connect a service to a reference.
An SCA binding encapsulates the complexity of data distribution, and abstracts the application
developer from low level communication details. Thus, the developer only specifies the functional
interfaces that define the services and references of the application components, and combines these
components to design an application. In other words, the developer does not care at all about the
actual data distribution technology behind the scenes, which is declaratively defined in the XML file
through the binding keyword. For instance, on Figure 2b, the service srvConfig uses web services while
the reference IDatalogger_Ref uses Data Distribution Service (DDS).

Currently, the standard includes bindings for SOAP web services, Java Messaging Service (JMS)
and Java EE Connection Architecture (JCA), and provides the mechanisms necessary to extend the
support to other protocols. In this sense, distributions such as Tuscany [29] or FraSCAti [31] provide

Sensors 2018, 18, 46 7 of 32

bindings for Common Object Request Broker Architecture (CORBA), REST, Remote Method Invocation
(RMI) or ATOM. Therefore, an SCA binding is generic, in the sense that it is independent of the service
it binds to. It is not necessary to generate interface specific code to invoke a service, unlike in the case
of e.g., CORBA or SOAP-WS, where proxy and stub code is generated from an IDL file that defines the
service interface. DAMP itself includes a DDS binding which provides extensive QoS support [32] and
that has been extended with the security mechanisms introduced in Section 3.3.

The properties represent diverse aspects of the component that can be also declaratively configured.
They can be seen as component attributes externally accessible. Finally, the component model also
supports the specification of constraints and policies in their declarative configuration.

As commented above, the DAMP platform extends SCA to provide a set of services that fulfill
the requirements of the eHealth applications introduced in Section 2. These services are supported
upon the architecture described in Figure 3, which is built on three main elements: (1) the DAMP
application component (App_Component), (2) The node manager (MW_Daemon) and (3) The platform manager
(MW_Manager).

Sensors 2018, 18, 46 7 of 32

the XML file through the binding keyword. For instance, on Figure 2b, the service srvConfig uses web
services while the reference IDatalogger_Ref uses Data Distribution Service (DDS).

Currently, the standard includes bindings for SOAP web services, Java Messaging Service
(JMS) and Java EE Connection Architecture (JCA), and provides the mechanisms necessary to extend
the support to other protocols. In this sense, distributions such as Tuscany [29] or FraSCAti [31]
provide bindings for Common Object Request Broker Architecture (CORBA), REST, Remote Method
Invocation (RMI) or ATOM. Therefore, an SCA binding is generic, in the sense that it is independent
of the service it binds to. It is not necessary to generate interface specific code to invoke a service,
unlike in the case of e.g., CORBA or SOAP-WS, where proxy and stub code is generated from an IDL
file that defines the service interface. DAMP itself includes a DDS binding which provides extensive
QoS support [32] and that has been extended with the security mechanisms introduced in Section 3.3.

The properties represent diverse aspects of the component that can be also declaratively
configured. They can be seen as component attributes externally accessible. Finally, the component
model also supports the specification of constraints and policies in their declarative configuration.

As commented above, the DAMP platform extends SCA to provide a set of services that fulfill
the requirements of the eHealth applications introduced in Section 2. These services are supported
upon the architecture described in Figure 3, which is built on three main elements: (1) the DAMP
application component (App_Component), (2) The node manager (MW_Daemon) and (3) The platform
manager (MW_Manager).

Figure 3. Interconnections among DAMP components.

A DAMP application component is in charge of providing a piece of the application functionality.
The application component model extends the SCA component model with one service and two
references, which enable their monitoring and control. To achieve such functionality, the application
component model provides a base class which implements such service and references. Every
application component inherits from this base class, and thus provides the start, stop, and
initialization (stateful/stateless) public methods, as depicted in Figure 4. When a periodic component
is started, its run method is activated, thus initiating the periodic execution of the
computeFunctionalCode, writeOutputs, triggerEvents and writeState methods. These methods are
defined as abstract, as far as they are application specific and must be implemented in the derived
component class.

Figure 3. Interconnections among DAMP components.

A DAMP application component is in charge of providing a piece of the application functionality.
The application component model extends the SCA component model with one service and
two references, which enable their monitoring and control. To achieve such functionality, the
application component model provides a base class which implements such service and references.
Every application component inherits from this base class, and thus provides the start, stop, and
initialization (stateful/stateless) public methods, as depicted in Figure 4. When a periodic component is
started, its run method is activated, thus initiating the periodic execution of the computeFunctionalCode,
writeOutputs, triggerEvents and writeState methods. These methods are defined as abstract, as far as
they are application specific and must be implemented in the derived component class.

Sensors 2018, 18, 46 8 of 32
Sensors 2018, 18, 46 8 of 32

Figure 4. Base class for periodic application components.

The platform manager (MW_Manager) provides the high level functionalities such as distributed
application monitoring and control, fault tolerance, high availability, or QoS and resource
management. The node manager (MW_Daemon), deployed on every infrastructure node, is
responsible of controlling the life cycle of the application components that run on its node. It receives
the component instantiation orders from the platform manager, and also notifies the manager about
the state of the running components.

The system administrator user typically accesses the platform services through a Management
console or a Graphical User Interface (GUI). These external elements consume two of the services
offered by the MW_Manager: (1) the registration service allows application registration and also
remote deployment of the application components through the Deployment service provided by the
MW_Daemon. (2) The execution control service (ExecutionControl) enables the instantiation and
execution of the application components, using either the ComponentLaunch service provided by the
MW_Daemon or the Control service implemented by application components.

The rest of the platform services do not require any user action. The application components
transfer its internal state to the MW_Manager database through the Status service of their local
daemon, thus enabling the overall system monitoring.

Figure 5 depicts a specific deployment of the previous example application on the DAMP
platform, and reflects some particularities that could converge in a real scenario. In particular, the
infrastructure nodes can be shared among several independent applications, and can be diverse in
terms of hardware platform and operating system. In this deployment example, the application
components that are inside of the home care network are managed by DAMP, whilst the WAN
(cloud) components are considered as independent elements maintained by external stakeholders.
In this sense, the hospital database manager server represents a legacy component that is accessed
through a predefined protocol (SOAP-WS), whilst the web UI exemplifies a typical web interface
susceptible of being outsourced to a cloud service provider.

Figure 4. Base class for periodic application components.

The platform manager (MW_Manager) provides the high level functionalities such as distributed
application monitoring and control, fault tolerance, high availability, or QoS and resource management.
The node manager (MW_Daemon), deployed on every infrastructure node, is responsible of controlling
the life cycle of the application components that run on its node. It receives the component
instantiation orders from the platform manager, and also notifies the manager about the state of
the running components.

The system administrator user typically accesses the platform services through a Management
console or a Graphical User Interface (GUI). These external elements consume two of the services
offered by the MW_Manager: (1) the registration service allows application registration and also
remote deployment of the application components through the Deployment service provided by
the MW_Daemon. (2) The execution control service (ExecutionControl) enables the instantiation and
execution of the application components, using either the ComponentLaunch service provided by the
MW_Daemon or the Control service implemented by application components.

The rest of the platform services do not require any user action. The application components
transfer its internal state to the MW_Manager database through the Status service of their local daemon,
thus enabling the overall system monitoring.

Figure 5 depicts a specific deployment of the previous example application on the DAMP platform,
and reflects some particularities that could converge in a real scenario. In particular, the infrastructure
nodes can be shared among several independent applications, and can be diverse in terms of hardware
platform and operating system. In this deployment example, the application components that are
inside of the home care network are managed by DAMP, whilst the WAN (cloud) components are
considered as independent elements maintained by external stakeholders. In this sense, the hospital
database manager server represents a legacy component that is accessed through a predefined protocol

Sensors 2018, 18, 46 9 of 32

(SOAP-WS), whilst the web UI exemplifies a typical web interface susceptible of being outsourced to
a cloud service provider.Sensors 2018, 18, 46 9 of 32

Figure 5. Deployment of the health monitoring application on DAMP.

3.2. DAMP Services for Application Management

The combination of services provided by the aforementioned DAMP elements through a set of
defined interfaces enable the fulfillment of the requirements R1, R3, R4 and R6 (collected in Table 1).
Figure 6 represents a simplified UML view of the main elements that compose the DAMP platform.
The classes that represent the MW_Manager, the MW_Daemon, and the base class
ComponentControl are depicted in gray. Every application component (in blue) inherits from this
base class. The interfaces implemented by these elements are represented in purple and correspond
to the platform services introduced in the architecture.

Figure 6. Main elements of the DAMP platform.

The IRegistration interface represents the functionality offered by the Registration service of the
MW_Manager (depicted in Figure 3). It provides the functions to enable the registration of the

Front-end web
server node

Hospital server node

Home domotic node

Platform
manager

BP & Glucose
controller node

Node manager Node manager

INTERNET
Different HW
platforms and

operating systems

Figure 5. Deployment of the health monitoring application on DAMP.

3.2. DAMP Services for Application Management

The combination of services provided by the aforementioned DAMP elements through a set of
defined interfaces enable the fulfillment of the requirements R1, R3, R4 and R6 (collected in Table 1).
Figure 6 represents a simplified UML view of the main elements that compose the DAMP platform.
The classes that represent the MW_Manager, the MW_Daemon, and the base class ComponentControl
are depicted in gray. Every application component (in blue) inherits from this base class. The interfaces
implemented by these elements are represented in purple and correspond to the platform services
introduced in the architecture.

Sensors 2018, 18, 46 9 of 32

Figure 5. Deployment of the health monitoring application on DAMP.

3.2. DAMP Services for Application Management

The combination of services provided by the aforementioned DAMP elements through a set of
defined interfaces enable the fulfillment of the requirements R1, R3, R4 and R6 (collected in Table 1).
Figure 6 represents a simplified UML view of the main elements that compose the DAMP platform.
The classes that represent the MW_Manager, the MW_Daemon, and the base class
ComponentControl are depicted in gray. Every application component (in blue) inherits from this
base class. The interfaces implemented by these elements are represented in purple and correspond
to the platform services introduced in the architecture.

Figure 6. Main elements of the DAMP platform.

The IRegistration interface represents the functionality offered by the Registration service of the
MW_Manager (depicted in Figure 3). It provides the functions to enable the registration of the

Front-end web
server node

Hospital server node

Home domotic node

Platform
manager

BP & Glucose
controller node

Node manager Node manager

INTERNET
Different HW
platforms and

operating systems

Figure 6. Main elements of the DAMP platform.

Sensors 2018, 18, 46 10 of 32

The IRegistration interface represents the functionality offered by the Registration service of
the MW_Manager (depicted in Figure 3). It provides the functions to enable the registration of the
applications as a set of interconnected components deployed over the distributed nodes that compose
the hardware infrastructure of the system (R1 requirement).

The applications installed through the previous interface can be further controlled through the
IExecutionControl interface, which is depicted in Figure 7. Using this interface, the system administrator
can instantiate, initialize, start and stop a registered application. This interface is also accessible to the
application components, enabling a functional reconfiguration of applications structure to adapt to
context changes, as it will be explained in Section 4. Likewise, the MW_Manager uses the IDaemon
interface offered by the MW_Daemon to instantiate the application components, as well as to force its
termination (R3 and R4 requirements).

Sensors 2018, 18, 46 10 of 32

applications as a set of interconnected components deployed over the distributed nodes that
compose the hardware infrastructure of the system (R1 requirement).

The applications installed through the previous interface can be further controlled through the
IExecutionControl interface, which is depicted in Figure 7. Using this interface, the system
administrator can instantiate, initialize, start and stop a registered application. This interface is also
accessible to the application components, enabling a functional reconfiguration of applications
structure to adapt to context changes, as it will be explained in Section 4. Likewise, the
MW_Manager uses the IDaemon interface offered by the MW_Daemon to instantiate the application
components, as well as to force its termination (R3 and R4 requirements).

Figure 7. Interfaces for monitoring and control.

Additionally, the MW_Manager can be notified about the internal execution state of the
application components through the IMW_ManagerMonitor interface, which is invoked by the node
managers (MW_Daemon) that actually perform the application components monitoring. Indeed, the
fault tolerance capabilities of DAMP enable stateful application recovery in case of node failure (R6
requirement). This contemplates a non-functional reconfiguration of the system, triggered by a
failure event in one of the infrastructure nodes or in an isolated functional component. DAMP
achieves the stateful fault tolerance through the following concepts: (1) redundancy of critical
application components, (2) continuous monitoring and storage of the components state and (3)
autonomous system reconfiguration.

Figure 8 depicts a sequence diagram that describes the stateful recovery of the HG_Checking
component in its HG_Checking’ replica, when the node that allocates HG_Checking (Node_A) fails.
For simplicity it is assumed that there is only one component on Node_A. Initially, it can be seen
how the functional application component communicates its internal state to its local MW_Daemon,
after execution. The MW_Daemon packs the states of all the components running in its node and
forwards it to the MW_Manager, which finally stores them in the database. The frequency of local

Figure 7. Interfaces for monitoring and control.

Additionally, the MW_Manager can be notified about the internal execution state of the application
components through the IMW_ManagerMonitor interface, which is invoked by the node managers
(MW_Daemon) that actually perform the application components monitoring. Indeed, the fault tolerance
capabilities of DAMP enable stateful application recovery in case of node failure (R6 requirement).
This contemplates a non-functional reconfiguration of the system, triggered by a failure event in one of the
infrastructure nodes or in an isolated functional component. DAMP achieves the stateful fault tolerance
through the following concepts: (1) redundancy of critical application components, (2) continuous
monitoring and storage of the components state and (3) autonomous system reconfiguration.

Figure 8 depicts a sequence diagram that describes the stateful recovery of the HG_Checking
component in its HG_Checking’ replica, when the node that allocates HG_Checking (Node_A) fails.
For simplicity it is assumed that there is only one component on Node_A. Initially, it can be seen how
the functional application component communicates its internal state to its local MW_Daemon, after
execution. The MW_Daemon packs the states of all the components running in its node and forwards it

Sensors 2018, 18, 46 11 of 32

to the MW_Manager, which finally stores them in the database. The frequency of local state update rate
of each component can be different, and it is decoupled from the frequency at which the MW_Daemon
notifies the set of states to the MW_Manager. This way the communication between the MW_Daemon
and the MW_Manager can be optimized to balance latency vs. throughput, depending on the specific
use case. In any case, the MW_Manager uses this periodic reporting as a “keep alive” signal of all the
application components running on the node, and thus can detect when a component fails, as far as it
stops refreshing its state. In such case of node failure, the MW_Manager checks, for every component,
if the component is replicated, and if so, the MW_Manager executes an application composition
algorithm to search for a system reconfiguration that includes every replica. This reconfiguration
considers the available resources as well as the required QoS levels of the applications that are running
in the system [16].

Sensors 2018, 18, 46 11 of 32

state update rate of each component can be different, and it is decoupled from the frequency at
which the MW_Daemon notifies the set of states to the MW_Manager. This way the communication
between the MW_Daemon and the MW_Manager can be optimized to balance latency vs.
throughput, depending on the specific use case. In any case, the MW_Manager uses this periodic
reporting as a “keep alive” signal of all the application components running on the node, and thus
can detect when a component fails, as far as it stops refreshing its state. In such case of node failure,
the MW_Manager checks, for every component, if the component is replicated, and if so, the
MW_Manager executes an application composition algorithm to search for a system reconfiguration
that includes every replica. This reconfiguration considers the available resources as well as the
required QoS levels of the applications that are running in the system [16].

Figure 8. Stateful component recovery use case.

If a new feasible system configuration is found, the MW_Manager uses the IComponentControl
interface provided by the application components to reconfigure the wiring of the application
components that are antecessors of HG_Checking. This is needed as far as the HG_Checking’ replica
is instantiated in another node and thus its service description attributes (e.g., IP or port) differ from
the original. Once the bindings (antecessors and also HG_Checking’) are reconfigured, the
HG_Checking’ replica is instantiated and initialized with the last state stored in the database, and
finally started. It should be noted that the bindings reconfiguration is only needed in case of
client-server binding protocols such as e.g., SOAP-WS or REST, where the physical location of the
server must be known in order to access it.

3.3. Security Considerations

To support reliable (R7) and secure (R8) data transmission between application components, an
extension of the DDS binding is proposed. This way, these requirements are both fulfilled by this
binding, which can be declaratively configured with safety and/or security needs. Figure 9 shows an
example where the binding has been configured as secure, through the require keyword. More

Figure 8. Stateful component recovery use case.

If a new feasible system configuration is found, the MW_Manager uses the IComponentControl
interface provided by the application components to reconfigure the wiring of the application
components that are antecessors of HG_Checking. This is needed as far as the HG_Checking’ replica is
instantiated in another node and thus its service description attributes (e.g., IP or port) differ from the
original. Once the bindings (antecessors and also HG_Checking’) are reconfigured, the HG_Checking’
replica is instantiated and initialized with the last state stored in the database, and finally started.
It should be noted that the bindings reconfiguration is only needed in case of client-server binding
protocols such as e.g., SOAP-WS or REST, where the physical location of the server must be known in
order to access it.

3.3. Security Considerations

To support reliable (R7) and secure (R8) data transmission between application components,
an extension of the DDS binding is proposed. This way, these requirements are both fulfilled by

Sensors 2018, 18, 46 12 of 32

this binding, which can be declaratively configured with safety and/or security needs. Figure 9
shows an example where the binding has been configured as secure, through the require keyword.
More specifically, the binding has been configured to use a public Pre-Shared Key (PSK) symmetric
encryption algorithm.

The implementation of both safety and security aspects relies on the concept of interceptor
introduced by SCA, which is somehow an AOP approach to solve the transversal requirements
that a communication channel can expose. An interceptor is a software module that performs a
specific processing (e.g., encryption) over a data stream. Figure 9 represents the processing chain
that SCA executes when the GlucoseMeter component invokes a service offered by the Gateway
component. This processing chain is represented by the interceptors that in fact compose the binding
implementation, and can be seen as a pipeline that sequentially performs several tasks when a service
is invoked. In the example there are two output interceptors that perform two tasks in the sender
(reference) side: (1) marshal the invocation of the remote procedure call to a serializable format and (2)
encrypt this marshaled invocation. In the receiver side (service), two input interceptors perform just
the opposite processing, i.e., the decryption and posterior unmarshalling of the invocation message. If
both safety and security tags are included in the binding configuration, an additional interceptor must
be introduced to integrate the safety mechanisms (CRC, etc.) introduced in [16].

Sensors 2018, 18, 46 12 of 32

specifically, the binding has been configured to use a public Pre-Shared Key (PSK) symmetric
encryption algorithm.

The implementation of both safety and security aspects relies on the concept of interceptor
introduced by SCA, which is somehow an AOP approach to solve the transversal requirements that a
communication channel can expose. An interceptor is a software module that performs a specific
processing (e.g., encryption) over a data stream. Figure 9 represents the processing chain that SCA
executes when the GlucoseMeter component invokes a service offered by the Gateway component.
This processing chain is represented by the interceptors that in fact compose the binding
implementation, and can be seen as a pipeline that sequentially performs several tasks when a service
is invoked. In the example there are two output interceptors that perform two tasks in the sender
(reference) side: (1) marshal the invocation of the remote procedure call to a serializable format and (2)
encrypt this marshaled invocation. In the receiver side (service), two input interceptors perform just
the opposite processing, i.e., the decryption and posterior unmarshalling of the invocation message. If
both safety and security tags are included in the binding configuration, an additional interceptor
must be introduced to integrate the safety mechanisms (CRC, etc.) introduced in [16].

Figure 9. SCA binding processing chain.

Depending on the selected binding, the serialization format varies. For example, if a SOAP-WS
binding (binding.ws) is configured for the components interconnection, then the invocation is SOAP
formatted (marshaled), whilst in the case of the DDS binding a specific format has been defined to
transport the remote procedure call (RPC) invocation. Obviously, this RPC includes the operation
name and arguments value and data type. As stated in Section 3.1, the marshalling of an operation
invocation is generic, and thus, there is no need of ad-hoc proxy and stub code generation. To support
this, SCA provides mechanisms to enable runtime introspection of the functional services [29].

The security binding can be configured either with PSK symmetric encryption or with public
key infrastructure (PKI) asymmetric encryption. In this latter case an Elliptic Curve Cryptography
(ECC) algorithm is used. The asymmetric cryptography provides stronger protection than the
symmetric one, but also requires more processing resources. Therefore, asymmetric encryption is
usually used to exchange a symmetric key at the handshake stage of communication establishment,
which is later used for the subsequent data transmission. Anyway, this is not always the case. For
example, in the home LAN side a symmetric encryption could be sufficient to achieve the desired
security level, whereas in the public internet this would not be affordable. Depending on the data
throughput and link duration, either symmetric or asymmetric encryption could be selected as the
best choice.

GlucoseMeter

Operation
marshalling

(serialization)

<component name=“GlucoseMeter">
<implementation.java class=“GlucoseMeter"/>
<reference name=“IGlucose_Ref”>

<interface.java interface=“IGlucose”/>
<binding.dds requires=“security” topicname=“Glucose”

encryptionAlgorithm="psk"/>
</reference>

</component>

Message
encryption

Message
decryption

Operation
unmarshalling

(deserialization)

Gateway

public interface IGlucose {
void SetPressure(int Value);

}

<component name=“Gateway">
<implementation.java class=“Gateway"/>
<service name="srvGlucose">
<interface.java interface=“IGlusose”/>
<binding.dds requires=“security" topicName=“Glucose"

encryptionAlgorithm="psk"/>
</service>

</component>

Generic binding processing

Interceptors

Figure 9. SCA binding processing chain.

Depending on the selected binding, the serialization format varies. For example, if a SOAP-WS
binding (binding.ws) is configured for the components interconnection, then the invocation is SOAP
formatted (marshaled), whilst in the case of the DDS binding a specific format has been defined to
transport the remote procedure call (RPC) invocation. Obviously, this RPC includes the operation
name and arguments value and data type. As stated in Section 3.1, the marshalling of an operation
invocation is generic, and thus, there is no need of ad-hoc proxy and stub code generation. To support
this, SCA provides mechanisms to enable runtime introspection of the functional services [29].

The security binding can be configured either with PSK symmetric encryption or with public key
infrastructure (PKI) asymmetric encryption. In this latter case an Elliptic Curve Cryptography (ECC)
algorithm is used. The asymmetric cryptography provides stronger protection than the symmetric
one, but also requires more processing resources. Therefore, asymmetric encryption is usually used to
exchange a symmetric key at the handshake stage of communication establishment, which is later used
for the subsequent data transmission. Anyway, this is not always the case. For example, in the home

Sensors 2018, 18, 46 13 of 32

LAN side a symmetric encryption could be sufficient to achieve the desired security level, whereas in
the public internet this would not be affordable. Depending on the data throughput and link duration,
either symmetric or asymmetric encryption could be selected as the best choice.

The proposed security concept relies in the assumption that all the nodes that compose the system
infrastructure have a Trusted Platform Module (TPM) installed. A TPM is a dedicated secure crypto
processor that integrates the cryptographic keys that are needed for encryption and authentication.
Back to the example in Figure 1, let us consider the data transmission process between the eHealth
gateway and the hospital database manager components. Figure 10 explains how this process would
take place over the proposed DDS security binding, considering the PKI asymmetric encryption option.

Sensors 2018, 18, 46 13 of 32

The proposed security concept relies in the assumption that all the nodes that compose the
system infrastructure have a Trusted Platform Module (TPM) installed. A TPM is a dedicated secure
crypto processor that integrates the cryptographic keys that are needed for encryption and
authentication. Back to the example in Figure 1, let us consider the data transmission process
between the eHealth gateway and the hospital database manager components. Figure 10 explains
how this process would take place over the proposed DDS security binding, considering the PKI
asymmetric encryption option.

Figure 10. Data encryption and device authentication process.

When the eHealth gateway component wants to transmit the data corresponding to an hour of
compressed physiological data, it transparently uses the secured DDS binding that in turn performs
the following steps: first, the private key stored in the node TPM is obtained, and the message is signed
with that key. Once signed, the message is encrypted with the public key of the receiver and sent over
the network using the DDS middleware. Then, the message is received by the binding interceptor of
the hospital DB manager’s service, which first decrypts the message with the hospital private key and
then checks the sender public key to authenticate it. If the public key associated with the received
message matches any of the public keys stored in the database of trusted devices, the authentication
success and the process ends with the delivery of the message to the DB manager component.

Obviously, every node that allocates application components that are susceptible of receiving
input data must have a database with the public keys of the eventual sender components. And vice
versa, the senders must be allocated in a node that has registered the public keys of their receivers.
This way, the secure communication between them is guaranteed and the requirement R8 fulfilled.

3.4. Privacy and Availability of Historical Application Data

To support the R5 requirement, relative to global dissemination of medical data for anonymous
big data analysis, the DAMP platform provides a generic mechanism to specify the persistence
requirements of input/output data. More specifically, Figure 11 shows how the persistence keyword
can be associated to a specific interface to declare its persistence needs. When marked as required,
the data associated to that interface is automatically persisted by DAMP.

Figure 10. Data encryption and device authentication process.

When the eHealth gateway component wants to transmit the data corresponding to an hour of
compressed physiological data, it transparently uses the secured DDS binding that in turn performs
the following steps: first, the private key stored in the node TPM is obtained, and the message is signed
with that key. Once signed, the message is encrypted with the public key of the receiver and sent over
the network using the DDS middleware. Then, the message is received by the binding interceptor of
the hospital DB manager’s service, which first decrypts the message with the hospital private key and
then checks the sender public key to authenticate it. If the public key associated with the received
message matches any of the public keys stored in the database of trusted devices, the authentication
success and the process ends with the delivery of the message to the DB manager component.

Obviously, every node that allocates application components that are susceptible of receiving
input data must have a database with the public keys of the eventual sender components. And vice
versa, the senders must be allocated in a node that has registered the public keys of their receivers.
This way, the secure communication between them is guaranteed and the requirement R8 fulfilled.

3.4. Privacy and Availability of Historical Application Data

To support the R5 requirement, relative to global dissemination of medical data for anonymous
big data analysis, the DAMP platform provides a generic mechanism to specify the persistence
requirements of input/output data. More specifically, Figure 11 shows how the persistence keyword
can be associated to a specific interface to declare its persistence needs. When marked as required, the
data associated to that interface is automatically persisted by DAMP.

Sensors 2018, 18, 46 14 of 32
Sensors 2018, 18, 46 14 of 32

Figure 11. Configurable data persistence.

When a service that requires persistence is invoked, DAMP executes a process that is similar to
the stateful fault tolerance mechanism presented in [16]. Every application component features an
output port (reference) that is commonly used to transfer its internal state to the platform manager in
order to persist it for stateful fault tolerance purposes. In this work, this output port has been extended
to support the transfer of internal data in the form of vectors that contain the data name, value, type
and timestamp. This form of data representation allows the generic data manipulation and storage
mechanisms needed to fulfill the R5 requirement, as far as the time stamped data can be transferred to
an external database to perform BDA analysis (the hospital database in the previous example).

The R9 requirement is related to the integrity, availability and privacy of this process data. First,
the security of the data stored in the platform database is achieved through the application of the
same mechanisms that have been discussed in Section 3.2, i.e., data encryption. The platform
manager receives the process data from the different application components through the DDS
security binding, and remains encrypted in the database. This way, if the database gets
compromised, it would be useless without the private key needed to decrypt the data.

With respect to making data anonymous for BDA, the proposed mechanism is based on the
elimination of any relation between the patient and its medical data. This means that any use case
which requires maintaining the link between the patient and its personal data (e.g., analysis of
personal physiological data) would require additional privacy-protection techniques such as secure
multiparty computation or homomorphic encryption, which are out of the scope of this work. Back to
the example, when the data is transmitted from the gateway to the hospital, it has no user
identification. Indeed, the public key database store of the hospital should not have any relation
between the public keys and the patients. This way, the messages that come from a remote device can
be authenticated but cannot be certified as belonging to a specific user, thus ensuring data privacy.

Finally, availability of process data is guaranteed through database replication. As stated in [16],
DAMP supports component replication for fault tolerance purposes. These replicas are supported
not only for application components, but also for platform specific components, such as the platform
manager. Thus, replicating this component, alongside with its database, it is possible to achieve the
desired data availability levels.

4. ehealth-Centered Design and Development

eHealth gateway

Fg: int

bp: int

dt: dataset
set_g

set_bp

Glucose
meter

BP
meter

public interface ISrv_glucose {
void set_g(int value);

}

public interface Isrv_bp {
void set_bp(int value);

}

<component name=“Gateway”>
<implementation.java class=“eHealth.impl.Gateway” >
<service name="srvGlucose">
<interface.java interface=“eHealth.interfaces.ISrv_glucose”

requires=“persistence”/>
<binding.dds requires=“security” topicname=“glucose”/>

</service>
<service name="srvBp">
<interface.java interface=“eHealth.interfaces.ISrv_bp”

requires=“persistence”/>
<binding.dds requires=“security” topicname=“bp”/>

</service>
…
</component>

Figure 11. Configurable data persistence.

When a service that requires persistence is invoked, DAMP executes a process that is similar to
the stateful fault tolerance mechanism presented in [16]. Every application component features an
output port (reference) that is commonly used to transfer its internal state to the platform manager in
order to persist it for stateful fault tolerance purposes. In this work, this output port has been extended
to support the transfer of internal data in the form of vectors that contain the data name, value, type
and timestamp. This form of data representation allows the generic data manipulation and storage
mechanisms needed to fulfill the R5 requirement, as far as the time stamped data can be transferred to
an external database to perform BDA analysis (the hospital database in the previous example).

The R9 requirement is related to the integrity, availability and privacy of this process data. First,
the security of the data stored in the platform database is achieved through the application of the
same mechanisms that have been discussed in Section 3.2, i.e., data encryption. The platform manager
receives the process data from the different application components through the DDS security binding,
and remains encrypted in the database. This way, if the database gets compromised, it would be
useless without the private key needed to decrypt the data.

With respect to making data anonymous for BDA, the proposed mechanism is based on the
elimination of any relation between the patient and its medical data. This means that any use case
which requires maintaining the link between the patient and its personal data (e.g., analysis of personal
physiological data) would require additional privacy-protection techniques such as secure multiparty
computation or homomorphic encryption, which are out of the scope of this work. Back to the example,
when the data is transmitted from the gateway to the hospital, it has no user identification. Indeed, the
public key database store of the hospital should not have any relation between the public keys and the
patients. This way, the messages that come from a remote device can be authenticated but cannot be
certified as belonging to a specific user, thus ensuring data privacy.

Finally, availability of process data is guaranteed through database replication. As stated in [16],
DAMP supports component replication for fault tolerance purposes. These replicas are supported
not only for application components, but also for platform specific components, such as the platform
manager. Thus, replicating this component, alongside with its database, it is possible to achieve the
desired data availability levels.

Sensors 2018, 18, 46 15 of 32

4. ehealth-Centered Design and Development

This section introduces an approach for the design and development of eHealthcare applications,
a process where care teams and technology experts must collaborate. On the one hand, physicians
know what and when to measure as well as how to interpret these measurements. On the other hand,
technology experts include very different profiles, from software developers to network managers or
security experts. This separation of concerns is tackled by a domain modeling approach for application
specification, which, based on a previous work of authors [17], copes with the main focus of this paper:
safety and security requirements of eHealthcare applications. Additionally, this section also proposes
a development methodology that fills the gap between the application specification and the running
component applications managed by DAMP platform, which is generic in the sense that it does not
depend on any application domain. Indeed, as it has been presented, it is suitable for the targeted
medical field.

4.1. Application Specification

For an application specification it has to be taken into account that, in the end, eHealthcare
applications will be composed by a set of software components running under the supervision of a
management platform, but it must start with the specification of the health-centered monitoring (R2) that
defines the customized supervision of a patient, including the detection of the hazardous situations and
the corresponding reaction. That is, application specification is leaded by the medical staff although
completed by technology experts. With this purpose, the modeling approach consists of a set of
interrelated concepts, many of which are initially defined by a physician, and afterwards shared
among different technology experts for a detailed characterization. It has to be also considered that
each patient suffers from particular diseases such as diabetes, hypertension or cardiopathies, with very
different necessities. Even two patients with the same health problem cannot be similarly treated. For
example, heart rate thresholds are different for each individual, or the amount of exercise the patient
does influenced on the glucose level.

In order to better understand the proposed modeling approach, let us consider a use case related
to the hypoglycemia described in the previous section. If the previous example focused on correlation
analysis, the current one completes it as it is aimed at the early prevention of hypoglycemia events in
diabetics. In this context, a physician specifies to measure the sweating and heart rate of the patient.
In case of abnormal measures during a period of time, apart from warning medical staff, the patient
will be asked to measure its glucose level. Finally, if the patient does not respond or the measured
level is unsuitable, the physician determines to activate fall detection, which is a right signal of loss
of consciousness.

In the modeling approach every patient is represented by the Scenario concept, grouping all the
monitoring activities demanded by its health status (Application concept). Therefore, in the previous
example the scenario for the diabetic patient consists of three applications (see Figure 12): one for
identifying a possible hypoglycemia event, another one for checking the current glucose level and the
last one for detecting a possible severe case.

Each supervision activity, i.e., application, can be decomposed in several tasks represented by
the Component concept. For example, the specification of the Hypoglycemia application consists of
six components (see Figure 12): periodically, the galvanic skin response of the patient (GSR_Acq
component), as well as its heart rate (HR_Acq component) are measured. Both values are stored as part
of the patient’s medical history (GSR_Storage and HR_Storage components, respectively). Additionally,
the measures are analyzed together with other previous ones in order to determine if the patient
evolution may correspond with a possible hypoglycemic episode (HG_Checking component). In that
case, apart from warning the medical staff (NursingMsg component) the possibleHG event is triggered.
This involves starting the GlocoseLevel application in charge of confirming the alarming situation
through the current glucose level of the patient.

Sensors 2018, 18, 46 16 of 32Sensors 2018, 18, 46 16 of 32

Figure 12. Hypoglycemia prevention scenario.

It is important to remark that all these components must be customized for the particular
patient, as it is presented in Table 2 (properties in blue color).

Table 2. Characterization of the HG_Checking component.

Hypoglycemia Checking (HG_Checking)

Description
Analyzes if the galvanic skin response of the patient together with its heart rate

are related to a possible hypoglycemic episode.

Activation After data reception

Availability Level 1 Is Stateful Yes

Required Parameters

Name hr Description Measured heart rate.

Name gsr Description Measure of the galvanic skin response.

Provided Parameters

Name isAlarming Description
Heart rate and galvanic skin response are too
high for the patient. Risk of a hypoglycemic

episode.

Name hr Description Measured heart rate.

Name gsr Description Measure of the galvanic skin response.

Configuration Parameters

Name patientID Value 31085621

Description Unique identifier of the patient in the eHealth system

Application Action (C: Create; D: Destroy; M: Modify QoS)

Component

Input / output ports

Event Connector

Glucose
Level

Fall
DetectionHypoglycemia

possibleHG C

noAnswer

C

unsuitable
C

GSR_Acq

GSR_Storage

HG_Checking

NursingMsg

possibleHG
Data Logic

HG_Checking

isAlarming

NursingMsg

Event Logic

HG_Checking

isAlarming

possibleHG

HR_Acq

HR_Storage true

true

Figure 12. Hypoglycemia prevention scenario.

It is important to remark that all these components must be customized for the particular patient,
as it is presented in Table 2 (properties in blue color).

Table 2. Characterization of the HG_Checking component.

Hypoglycemia Checking (HG_Checking)

Description Analyzes if the galvanic skin response of the patient together with its heart rate are
related to a possible hypoglycemic episode.

Activation After data reception

Availability Level 1 Is Stateful Yes

Required Parameters

Name hr Description Measured heart rate.

Name gsr Description Measure of the galvanic skin response.

Provided Parameters

Name isAlarming Description Heart rate and galvanic skin response are too high for
the patient. Risk of a hypoglycemic episode.

Name hr Description Measured heart rate.

Name gsr Description Measure of the galvanic skin response.

Configuration Parameters

Name patientID Value 31085621

Description Unique identifier of the patient in the eHealth system

Thus, the physician must also determine when the components activate (periodically or after data
reception) as well as all the information about the patient needed by the component (e.g., particular

Sensors 2018, 18, 46 17 of 32

thresholds for analyzing the captured data or the patient identifier needed to obtain these data from
a local database, which is the case of the example in Table 2).

As components are in charge of different parts of the application functionality, they need to
collaborate by exchanging data among them. With this purpose, components are provided with an
Input Port and/or an Output Port for data reception and transmission, respectively. Exchanged data
are collected in the Connector concept that links the output port of a sending component with the
input port of the receiving component. Doctors have to detail both the information required and
provided by every component (Parameter concept, see Table 2) and how they are connected. In the
case of the GSR_Acq component, the captured measurement must be sent to the HG_Checking (see blue
properties in Table 3) and GSR_Storage (blue properties Table 4) components. The latter also needs
its acquisition time. Note that all the provided parameters are not always sent to all the successor
components. Furthermore, data might be sent under certain circumstances that the physician must
establish. This Data Logic is defined as an activity diagram attached to the output port, based on the
parameters provided by the component as a result of its execution. For instance, as it is depicted
in the activity diagram of the HG_Checking (see Figure 12) component, it communicates with the
NursingMsg component only when the galvanic skin response and heart rate are too high for the
patient. Furthermore, this output parameter (isAlarming parameter) is just used for logical decisions as
it is not sent to any component.

Table 3. Characterization of the GSR2C connector.

GSR2C

Source GSR_Acq Target HG_Checking

Safety Yes Security No

Persisted No

Connections

Output Parameter galvanicSkinResponse Input Parameter gsr

Table 4. Characterization of the GSR2S connector.

GSR2S

Source GSR_Acq Target GSR_Storage

Safety Yes Security PSK Symmetric

Persisted Yes

Connections

Output Parameter galvanicSkinResponse Input Parameter gsrValue

Output Parameter instant Input Parameter timeStamp

As previously stated, health-centered monitoring also includes the reaction to abnormal situations,
such as a high heart rate and too much sweating, a very low glucose level, or fall detection.
The physician makes use of the Event concept to identify these relevant situations that demand
a reaction and has to define the Event Logic that describes the conditions under which the event occurs.
Again, the event logic is described by an activity diagram attached to the component in charge of
detecting the event, based on its output parameters. As far as reaction is concerned, the modeling
approach allows its definition as a set of Actions that involve applications. For instance, when the
patient status gets worse, i.e., heart rate accelerates and he sweats more, the possibleHG event is
triggered, which implies starting the GlucoseLevel application (see Figure 12, create action). Similarly,
when the patient does not respond or the measured level is unsuitable the noAnswer and the unsuitable
events are triggered, respectively, both initiating the FallDetection application.

Sensors 2018, 18, 46 18 of 32

Live data persistence, demanded by the R5 and R9 requirements, must also be declaratively
defined in the design phase. With this aim, the modeling approach has been extended with properties
that allow the care teams to identify which data must be persisted. In particular, the information to
be persisted corresponds with the parameters provided by the components, as they constitute their
processing results (see Tables 3 and 4). Additionally, as events represent relevant situations during the
supervision of patients, they are also persisted by default. For example, in the first scenario a further
analysis of both, the occurrences of the noAnswer and unsuitable events and the glucose level measured,
might allow to study the evolution of the disease in a concrete patient or even infer conclusions at a
more global level. Similarly, a deep study of the possibleHG events together with normal glucose levels
might help in defining a theory for detecting false positives.

Once medical experts have finished applications specification, technology experts complete it by
integrating information related to their expertise (green properties in Tables 2–4). This is the case of the
dependability level of components that must be replicated in order to assure application availability
(R6). Additionally, it is necessary to indicate if there are stateful components that need to maintain
their execution state after a recovery.

Finally, as components collaborate by exchanging data, usually related to sensitive information
about patients, technology experts must identify, through properties, if the connectors specified by the
medical staff demand safety (R7) and/or security (R8) support.

4.2. Application Development

The proposed modeling approach allows care teams to play an important role in application
specification abstracting them from the particularities of the management platform. Certainly, it is a
management platform independent approach. Therefore, it is necessary a methodology for software
developers to implement the applications specified by medical experts and that will be managed
by the DAMP platform. It is worth noting that the Component concept is the unique modeling
concept that becomes source code, therefore it will be the focus of this section. Indeed, the Scenario
concept is used by medical experts for structuring applications specification, very useful in large
institutions. Therefore, on the basis of the information captured in the application specification,
component implementation involves:

• Extending the base class provided by the DAMP platform (see Figure 4) with functional code of
the component (see Figure 13).

• Defining the declarative configuration of the component in XML format (as in Figure 11).
• Developing the Java Interfaces needed for data reception (as in Figure 11).

The proposed methodology consists of the following steps, closely related to the modeling
concepts described in the previous subsection:

(1) Configuration Parameters

Components must be configured before its first activation. Therefore, the software developer
extends the initWithState method of the base class to include them (see Figure 4). This method is also
used for including all actions needed to initialize the component, e.g., establishing the connection to
a database.

(2) Input Port

Data reception is performed through a Java Interface composed by as many methods as
Connectors arrive to the port. The arguments of these methods are determined by the connections
established during Connector specification. Additionally, in the declarative configuration an input
port implies adding an SCA service, taking into account the possibility of persistence demand (see
Figure 11).

Sensors 2018, 18, 46 19 of 32

(3) Functionality

The software developer has to write the code corresponding to the functionality described by the
medical experts. It has to be taken into account the required and/or provided parameters previously
defined, assigning to them the proper data-type.

(4) Output Port

Data delivery is also performed through Java Interfaces. In this case, the software developer has
to add as many references to Java Interfaces as connectors leave the port. Therefore, an output port
implies overwriting the writeOutputs method of the base class, including the data delivery to all the
successor components as well as coding the data logic, if necessary. It is also necessary to add an SCA
reference in the declarative configuration.

On the other hand, if the connector has been tagged as persisted, it is necessary to persist all its
related output parameters through the reference that is commonly used to transfer its internal state
(IStatus in Figure 6).

(5) Triggered Events

If the component is in charge of event triggering, the software developer has to overwrite the
triggerEvents method of the base class. This includes writing the code of the associated logic and
invoking the services offered by the DAMP platform for launching, stopping or modifying the QoS
parameters of applications. Additionally, as previously stated, triggered events must be persisted by
also using the IState_Ref reference. In this case, the input parameters that have leaded to the event
triggering must be persisted, indicating the associated event.

(6) Internal State Transfer

If it is a stateful component, it is necessary to overwrite the writeState method of the base class
that manages the component status for availability purposes.

(7) Connectors

Finally, the Connectors of the modeling approach are related to SCA bindings, which are
declaratively configured. It is the XML file where the software developer has to indicate if the
connector demands safety and/or security (see Figure 11).

As an example, Figure 13 shows the source code of the HG_Checking component implementation
which has been developed following the previous guidelines, based on the definition of the component
and the related connectors (Figure 12, Tables 2–4, respectively). As it is depicted in the “Input Port”
part of the code, the gsr input parameter is received through the GSR2C connector, whereas the hr
input parameter through the HR2C connector. Additionally, in the “Triggered Events” part, as a result
of the possibleHG event detection, the application component invokes the LaunchApp method provided
by the platform manager (see Figure 7) as a web service. This is the way application components
implement the reaction to context changes defined by medical experts. It is important to remark that
the HG_Checking is a stateful component as it analyzes several sweat and heart rate measures in order
to determine a possible hypoglycemia. In this context, a node or component failure may lead to lose
data relevant to event triggering, being mandatory to assure its internal state in case of failure recovery.
Therefore, before finishing every execution (“Internal State Transfer” in Figure 13) its internal state
is transferred to the corresponding node manager, as explained in Section 3.2. Therefore, in case of
failure, the recovery process is the one described in Figure 8.

Sensors 2018, 18, 46 20 of 32

Sensors 2018, 18, 46 20 of 32

Figure 13. HG_Checking component implementation.

5. Assessment

This section presents an assessment of the performance of the DAMP platform, which adds an
overhead over the Tuscany SCA reference implementation. This overhead is due to the extra
features provided by DAMP, and this section is focused in two of them. On the one hand, DAMP

Figure 13. HG_Checking component implementation.

5. Assessment

This section presents an assessment of the performance of the DAMP platform, which adds an
overhead over the Tuscany SCA reference implementation. This overhead is due to the extra features
provided by DAMP, and this section is focused in two of them. On the one hand, DAMP covers the
high availability needs of eHealthcare applications (requirement R6) through specific fault tolerant

Sensors 2018, 18, 46 21 of 32

mechanisms that enable the stateful system recovery. In this sense, Section 5.1 presents some figures
related to application component load times for several bindings and different state sizes. On the
other hand, the requirement R8 related to secure data transmission has been covered by the security
binding introduced in Section 3.3. The evaluation of this security binding for different configurations
(symmetric vs. asymmetric encryption) is presented in Section 5.2.

5.1. Stateful System Recovery

The services to support fault tolerance with stateful system recovery that have been presented in
Section 3.2 rely on two mechanisms that have been evaluated from a time consumption perspective.
These mechanisms refer to the backup (replica) components load time and their stateful initialization.
More specifically, the following aspects have been measured: (1) component load (instantiation) time
for different bindings, (2) the influence of a component state size in its initialization time and (3) DAMP
overhead vs. pure SCA runtime (Tuscany). It is worth noting that DAMP is currently implemented
in Java and thus the comparative analysis has been performed against the Java version of Apache
Tuscany SCA. Depending on the machine, the figures may vary, so here the analysis is focused on the
comparative analysis between different bindings and state size.

Figure 14 shows the load time of a component for different types of bindings. The measured
times include the load of the Tuscany runtime on which DAMP is based. As it can be seen, the
runtime initialization (depicted as infrastructure load in the left hand side figure) consumes most of the
instantiation time.

Sensors 2018, 18, 46 21 of 32

covers the high availability needs of eHealthcare applications (requirement R6) through specific
fault tolerant mechanisms that enable the stateful system recovery. In this sense, Section 5.1 presents
some figures related to application component load times for several bindings and different state
sizes. On the other hand, the requirement R8 related to secure data transmission has been covered
by the security binding introduced in Section 3.3. The evaluation of this security binding for
different configurations (symmetric vs. asymmetric encryption) is presented in Section 5.2.

5.1. Stateful System Recovery

The services to support fault tolerance with stateful system recovery that have been presented
in Section 3.2 rely on two mechanisms that have been evaluated from a time consumption
perspective. These mechanisms refer to the backup (replica) components load time and their stateful
initialization. More specifically, the following aspects have been measured: (1) component load
(instantiation) time for different bindings, (2) the influence of a component state size in its
initialization time and (3) DAMP overhead vs. pure SCA runtime (Tuscany). It is worth noting that
DAMP is currently implemented in Java and thus the comparative analysis has been performed
against the Java version of Apache Tuscany SCA. Depending on the machine, the figures may vary,
so here the analysis is focused on the comparative analysis between different bindings and state size.

Figure 14 shows the load time of a component for different types of bindings. The measured
times include the load of the Tuscany runtime on which DAMP is based. As it can be seen, the
runtime initialization (depicted as infrastructure load in the left hand side figure) consumes most of
the instantiation time.

Figure 14. Component instantiation and initialization time.

It can be also observed that the DDS binding implementation, which is based on RTI´s (Real
Time Innovations®) distribution, is more efficient than the Tuscany´s native SOAP-WS binding, in
terms of component instantiation time.

Figure 15 represents the computing resources overhead that DAMP involves. It has been
measured on an application component whose functional services and references have been
configured with different binding types. The DAMP application component adds the platform
required support ports (Control, QoSConfig and Status ports in Figure 3) to the functional ports.

Specifically, the graph shows the instantiation time of an SCA component on a Tuscany runtime
versus a component with DAMP support. The difference is due to the time involved in the
instantiation of the control ports (services and references) that every DAMP application component
must provide.

Figure 14. Component instantiation and initialization time.

It can be also observed that the DDS binding implementation, which is based on RTI´s (Real Time
Innovations®) distribution, is more efficient than the Tuscany´s native SOAP-WS binding, in terms of
component instantiation time.

Figure 15 represents the computing resources overhead that DAMP involves. It has been measured
on an application component whose functional services and references have been configured with
different binding types. The DAMP application component adds the platform required support ports
(Control, QoSConfig and Status ports in Figure 3) to the functional ports.

Specifically, the graph shows the instantiation time of an SCA component on a Tuscany runtime
versus a component with DAMP support. The difference is due to the time involved in the instantiation
of the control ports (services and references) that every DAMP application component must provide.

Sensors 2018, 18, 46 22 of 32
Sensors 2018, 18, 46 22 of 32

Figure 15. DAMP vs. SCA (Tuscany) overhead.

Finally, stateful system recovery implies not only the instantiation of the components that have
failed, but also their stateful initialization. The state is restored from the system backup database and
injected in the backup components after their initialization. In this sense, Figure 16 reflects the influence
of this state size in the component initialization time. It is measured in the MW_Manager, which actually
performs the synchronous remote initialization of the application components. The measurements have
been performed over a DDS binding and for different state sizes. It can be concluded that the
relationship between the size of the state and the initialization time is practically linear.

Figure 16. State size influence in component initialization time.

5.2. Security Binding Assesment

To measure the security binding overhead, a demonstrator based on the example application
introduced in Figure 1 has been deployed. This demonstrator is shown in Figure 17 and includes two
of the nodes depicted in Figure 5: the “Raspberry Pi A” (RPi A) board represents the blood pressure

Figure 15. DAMP vs. SCA (Tuscany) overhead.

Finally, stateful system recovery implies not only the instantiation of the components that have failed,
but also their stateful initialization. The state is restored from the system backup database and injected in
the backup components after their initialization. In this sense, Figure 16 reflects the influence of this state
size in the component initialization time. It is measured in the MW_Manager, which actually performs
the synchronous remote initialization of the application components. The measurements have been
performed over a DDS binding and for different state sizes. It can be concluded that the relationship
between the size of the state and the initialization time is practically linear.

Sensors 2018, 18, 46 22 of 32

Figure 15. DAMP vs. SCA (Tuscany) overhead.

Finally, stateful system recovery implies not only the instantiation of the components that have
failed, but also their stateful initialization. The state is restored from the system backup database and
injected in the backup components after their initialization. In this sense, Figure 16 reflects the influence
of this state size in the component initialization time. It is measured in the MW_Manager, which actually
performs the synchronous remote initialization of the application components. The measurements have
been performed over a DDS binding and for different state sizes. It can be concluded that the
relationship between the size of the state and the initialization time is practically linear.

Figure 16. State size influence in component initialization time.

5.2. Security Binding Assesment

To measure the security binding overhead, a demonstrator based on the example application
introduced in Figure 1 has been deployed. This demonstrator is shown in Figure 17 and includes two
of the nodes depicted in Figure 5: the “Raspberry Pi A” (RPi A) board represents the blood pressure

Figure 16. State size influence in component initialization time.

5.2. Security Binding Assesment

To measure the security binding overhead, a demonstrator based on the example application
introduced in Figure 1 has been deployed. This demonstrator is shown in Figure 17 and includes two

Sensors 2018, 18, 46 23 of 32

of the nodes depicted in Figure 5: the “Raspberry Pi A” (RPi A) board represents the blood pressure
and glucose controller node, whilst the “Raspberry Pi B” (RPi B) board acts as the home domotic node.
These nodes allocate the glucose meter and the eHealth gateway components of Figure 1, which have been
used for the performance metrics. The glucose meter component monitors the blood glucose meter
connected over Bluetooth to the “Raspberry Pi A”, and uses the secured DDS binding to communicate
with the eHealth gateway component over a WiFi network. Finally, the demonstrator includes an
oscilloscope to perform the time measurements.

As commented above, the assessment will be focused on characterizing the performance of the
DDS binding proposed in Section 3.2, under different security configurations: unsecured, secured
with symmetric encryption, and secured with asymmetric encryption. Also, experiments consider
both stateless and stateful connections. In a stateless connection neither the sender nor the receiver
retains any information related to the connection itself. The message is not acknowledged by the
receiver, which receives the packet without any prior connection setup or establishment. Conversely,
in a stateful connection, both the sender and the receiver retain information related to the connection
state, which can be later used while the connection stays opened [33]. Therefore, in the stateless case,
the handshake (i.e., the connection establishment and key interchange) is performed in every message
transmission, whilst in the stateful case the handshake is performed once at the beginning of a message
sequence transmission, and afterwards several messages can be sent over the same connection.

Sensors 2018, 18, 46 23 of 32

and glucose controller node, whilst the “Raspberry Pi B” (RPi B) board acts as the home domotic
node. These nodes allocate the glucose meter and the eHealth gateway components of Figure 1, which
have been used for the performance metrics. The glucose meter component monitors the blood
glucose meter connected over Bluetooth to the “Raspberry Pi A”, and uses the secured DDS binding
to communicate with the eHealth gateway component over a WiFi network. Finally, the
demonstrator includes an oscilloscope to perform the time measurements.

As commented above, the assessment will be focused on characterizing the performance of the DDS
binding proposed in Section 3.2, under different security configurations: unsecured, secured with
symmetric encryption, and secured with asymmetric encryption. Also, experiments consider both
stateless and stateful connections. In a stateless connection neither the sender nor the receiver retains any
information related to the connection itself. The message is not acknowledged by the receiver, which
receives the packet without any prior connection setup or establishment. Conversely, in a stateful
connection, both the sender and the receiver retain information related to the connection state, which can
be later used while the connection stays opened [33]. Therefore, in the stateless case, the handshake (i.e.,
the connection establishment and key interchange) is performed in every message transmission, whilst
in the stateful case the handshake is performed once at the beginning of a message sequence
transmission, and afterwards several messages can be sent over the same connection.

Figure 17. Security performance demonstrator.

The performed tests evaluate the response time (latency) of the security binding, measuring the
transmission time span of a secured message between two nodes in a WiFi network. One of the
Raspberry Pi boards (A) encrypts a message that is transmitted over the WiFi network to the other
Raspberry Pi board (B), which in turn decrypts it. The overhead of the considered security
mechanisms is then deduced by comparison between the secured vs. non secured measured
transmission times.

When the Bluetooth glucose meter sends a measure to the BP&Glucose controller node, the
glucose meter component running in this node activates one of the Raspberry Pi GPIO pins and
forwards the message to the eHealth gateway component running in the home domotic node
(Raspberry Pi B), which in turn activates a GPIO pin in Raspberry Pi B, wired to the red led.

The oscilloscope measures the time span between the activation of the GPIO pin in RPi A and the
activation of the led attached to the GPIO pin of the receiver board (RPi B). When the RPi A pin is
activated, the message containing the measurement is encrypted and sent over the network. When the
message is received, it is decrypted and the LED light activated, thus finalizing the measurement.

Figure 17. Security performance demonstrator.

The performed tests evaluate the response time (latency) of the security binding, measuring
the transmission time span of a secured message between two nodes in a WiFi network. One of the
Raspberry Pi boards (A) encrypts a message that is transmitted over the WiFi network to the other
Raspberry Pi board (B), which in turn decrypts it. The overhead of the considered security mechanisms
is then deduced by comparison between the secured vs. non secured measured transmission times.

When the Bluetooth glucose meter sends a measure to the BP&Glucose controller node, the glucose
meter component running in this node activates one of the Raspberry Pi GPIO pins and forwards
the message to the eHealth gateway component running in the home domotic node (Raspberry Pi B),
which in turn activates a GPIO pin in Raspberry Pi B, wired to the red led.

The oscilloscope measures the time span between the activation of the GPIO pin in RPi A and
the activation of the led attached to the GPIO pin of the receiver board (RPi B). When the RPi A pin is
activated, the message containing the measurement is encrypted and sent over the network. When the
message is received, it is decrypted and the LED light activated, thus finalizing the measurement.

Sensors 2018, 18, 46 24 of 32

Figure 18 represents a set of fifty measurements that have been performed over the previous
system without any security encryption. The average of these sample values is 3.31 ms, being the
median 2.28 ms and the minimum and maximum values 2.4 and 9.6 ms, respectively.

Sensors 2018, 18, 46 24 of 32

Figure 18 represents a set of fifty measurements that have been performed over the previous
system without any security encryption. The average of these sample values is 3.31 ms, being the
median 2.28 ms and the minimum and maximum values 2.4 and 9.6 ms, respectively.

Figure 18. Performance measurements with unsecured data transmission.

Taking these measures into account, the following figures serve as an overhead estimation for
the security binding. In this sense, the measures have been performed with different combinations of
encryption algorithms and connection types, over the same message size. More specifically, the
considered symmetric PSK algorithm has been TLS_PSK_WITH_AES_128_CCM_8, whilst for the
asymmetric encryption the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 elliptic curve
cryptography algorithm has been selected, both registered at the Internet Assigned Numbers
Authority [34]. In addition, as previously discussed, both stateless and stateful connection types
have been considered.

It is worth noting that the binding relies on User Datagram Protocol (UDP), which is a
lightweight protocol suitable for resource constrained devices, but nevertheless, it is not connection
oriented. This is the reason for using Datagram Transport Layer Security (DTLS) to secure the
communications. DTLS provides equivalent security guarantees to the SSL/TLS protocol over TCP,
enabling both symmetric and asymmetric encryption.

Figure 19 displays the measurements corresponding to fifty samples using a symmetric
encryption pre-shared key. The sessionful case assumes that the handshake has been performed
once at the beginning of the experiment, and thus the handshake related overhead is not included in
the figures. This aspect is quite relevant: the average latency in the sessionful experiment is 94.67 ms,
whilst the sessionless average latency increases to 150.72 ms, due to the repeating handshake in the
fifty message transmissions.

Figure 19. Performance measurements with symmetric data encryption.

Comparing to the figures related to unsecured data transmission, it can be seen that the
transmission latency average values multiplies between thirty and fifty times depending on the

0

5

10

15

0 10 20 30 40 50

Unsecured data transmission

Not secured

Sample

ms

0

100

200

300

400

500

0 10 20 30 40 50

PSK encryption algorithm

psk, sessionful

psk, sessionless

Sample

ms

Figure 18. Performance measurements with unsecured data transmission.

Taking these measures into account, the following figures serve as an overhead estimation for the
security binding. In this sense, the measures have been performed with different combinations
of encryption algorithms and connection types, over the same message size. More specifically,
the considered symmetric PSK algorithm has been TLS_PSK_WITH_AES_128_CCM_8, whilst
for the asymmetric encryption the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 elliptic curve
cryptography algorithm has been selected, both registered at the Internet Assigned Numbers
Authority [34]. In addition, as previously discussed, both stateless and stateful connection types
have been considered.

It is worth noting that the binding relies on User Datagram Protocol (UDP), which is a lightweight
protocol suitable for resource constrained devices, but nevertheless, it is not connection oriented. This
is the reason for using Datagram Transport Layer Security (DTLS) to secure the communications. DTLS
provides equivalent security guarantees to the SSL/TLS protocol over TCP, enabling both symmetric
and asymmetric encryption.

Figure 19 displays the measurements corresponding to fifty samples using a symmetric encryption
pre-shared key. The sessionful case assumes that the handshake has been performed once at the
beginning of the experiment, and thus the handshake related overhead is not included in the figures.
This aspect is quite relevant: the average latency in the sessionful experiment is 94.67 ms, whilst
the sessionless average latency increases to 150.72 ms, due to the repeating handshake in the fifty
message transmissions.

Sensors 2018, 18, 46 24 of 32

Figure 18 represents a set of fifty measurements that have been performed over the previous
system without any security encryption. The average of these sample values is 3.31 ms, being the
median 2.28 ms and the minimum and maximum values 2.4 and 9.6 ms, respectively.

Figure 18. Performance measurements with unsecured data transmission.

Taking these measures into account, the following figures serve as an overhead estimation for
the security binding. In this sense, the measures have been performed with different combinations of
encryption algorithms and connection types, over the same message size. More specifically, the
considered symmetric PSK algorithm has been TLS_PSK_WITH_AES_128_CCM_8, whilst for the
asymmetric encryption the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 elliptic curve
cryptography algorithm has been selected, both registered at the Internet Assigned Numbers
Authority [34]. In addition, as previously discussed, both stateless and stateful connection types
have been considered.

It is worth noting that the binding relies on User Datagram Protocol (UDP), which is a
lightweight protocol suitable for resource constrained devices, but nevertheless, it is not connection
oriented. This is the reason for using Datagram Transport Layer Security (DTLS) to secure the
communications. DTLS provides equivalent security guarantees to the SSL/TLS protocol over TCP,
enabling both symmetric and asymmetric encryption.

Figure 19 displays the measurements corresponding to fifty samples using a symmetric
encryption pre-shared key. The sessionful case assumes that the handshake has been performed
once at the beginning of the experiment, and thus the handshake related overhead is not included in
the figures. This aspect is quite relevant: the average latency in the sessionful experiment is 94.67 ms,
whilst the sessionless average latency increases to 150.72 ms, due to the repeating handshake in the
fifty message transmissions.

Figure 19. Performance measurements with symmetric data encryption.

Comparing to the figures related to unsecured data transmission, it can be seen that the
transmission latency average values multiplies between thirty and fifty times depending on the

0

5

10

15

0 10 20 30 40 50

Unsecured data transmission

Not secured

Sample

ms

0

100

200

300

400

500

0 10 20 30 40 50

PSK encryption algorithm

psk, sessionful

psk, sessionless

Sample

ms

Figure 19. Performance measurements with symmetric data encryption.

Comparing to the figures related to unsecured data transmission, it can be seen that the
transmission latency average values multiplies between thirty and fifty times depending on the

Sensors 2018, 18, 46 25 of 32

session type. This is mainly related to the increment in the computing time that is needed to perform
both the encryption and decryption.

Figure 20 shows the asymmetric data encryption related measures. In this case the latencies grow
up considerably, as far as asymmetric encryption consumes much more resources to provide additional
features such as authentication and integrity.

Sensors 2018, 18, 46 25 of 32

session type. This is mainly related to the increment in the computing time that is needed to perform
both the encryption and decryption.

Figure 20 shows the asymmetric data encryption related measures. In this case the latencies
grow up considerably, as far as asymmetric encryption consumes much more resources to provide
additional features such as authentication and integrity.

Figure 20. Performance measurements with asymmetric data encryption.

In this case, the differences are greater between the sessionful and sessionless experiments. This
is due to the fact that in the sessionful experiment the asymmetric encryption algorithm is only used
for initial symmetric private key interchange, which is actually used in the rest of the session.
Conversely, in the sessionless experiment every message is encrypted with PKI, which is a highly
time consuming task that decreases the performance.

The sessionful test features an average latency of 187 ms, which is not so far from the equivalent
symmetric encryption test. Nevertheless, the sessionless asymmetric encryption boost the measured
average time in two orders of magnitude with respect to the equivalent symmetric test. As a
conclusion, there must be a compromise between security strength and consumed resources. For
example, implementing strategies like periodic symmetric key renewal through asymmetric key
encryption seems a suitable proposal. It provides an affordable security level whilst saving
computation resources and thus improving energy savings in resource constrained devices, which
are quite common in eHealthcare applications. In this sense, the proposed approach allows
specifying (in the design phase) which components must be secured and which must not, thus
limiting the computation resources needed to make the overall application secure.

6. Related Work

This section covers some research work related to the requirements demanded by e-Health
applications, mainly focused on their security needs, but also on their life cycle support. From the
software engineering point of view, several software architectures have been proposed which consider
applications as a set of interacting modules that can be executed on different infrastructure
nodes [35–40]. In this sense, a component framework defines a component model and a set of tools and
methods to ease the management of the applications life cycle, from the initial specification and
design, through the implementation, deployment, execution, and final un-installation.

At runtime, these component frameworks provide runtime engines to support the execution of
the application components. These platforms provide mechanisms for, at least, controlling the life
cycle of applications, performing their deployment and allowing the communication among
application modules (R1, R3 and R4 requirements). Additionally, several platforms have been

0
200
400
600
800

1000
1200
1400
1600

0 10 20 30 40 50

ECC encryption algorithm

Sessionful

Sessionless

Sample

ms

Figure 20. Performance measurements with asymmetric data encryption.

In this case, the differences are greater between the sessionful and sessionless experiments. This is
due to the fact that in the sessionful experiment the asymmetric encryption algorithm is only used for
initial symmetric private key interchange, which is actually used in the rest of the session. Conversely,
in the sessionless experiment every message is encrypted with PKI, which is a highly time consuming
task that decreases the performance.

The sessionful test features an average latency of 187 ms, which is not so far from the equivalent
symmetric encryption test. Nevertheless, the sessionless asymmetric encryption boost the measured
average time in two orders of magnitude with respect to the equivalent symmetric test. As a conclusion,
there must be a compromise between security strength and consumed resources. For example,
implementing strategies like periodic symmetric key renewal through asymmetric key encryption
seems a suitable proposal. It provides an affordable security level whilst saving computation resources
and thus improving energy savings in resource constrained devices, which are quite common in
eHealthcare applications. In this sense, the proposed approach allows specifying (in the design phase)
which components must be secured and which must not, thus limiting the computation resources
needed to make the overall application secure.

6. Related Work

This section covers some research work related to the requirements demanded by e-Health
applications, mainly focused on their security needs, but also on their life cycle support. From the
software engineering point of view, several software architectures have been proposed which
consider applications as a set of interacting modules that can be executed on different infrastructure
nodes [35–40]. In this sense, a component framework defines a component model and a set of tools
and methods to ease the management of the applications life cycle, from the initial specification and
design, through the implementation, deployment, execution, and final un-installation.

At runtime, these component frameworks provide runtime engines to support the execution of
the application components. These platforms provide mechanisms for, at least, controlling the life cycle
of applications, performing their deployment and allowing the communication among application

Sensors 2018, 18, 46 26 of 32

modules (R1, R3 and R4 requirements). Additionally, several platforms have been developed that
include the management of some non-functional requirements as those demanded by the target
applications [29,41,42], some of which are related to the eHealthcare domain, as in [43–45].

In this sense, SCA provides extensive support from the interoperability perspective, as far as it
includes native support for several communication protocols. Also, it is language agnostic, and thus
suitable for the adaptation of legacy code. These characteristics address the requirements related to
flexibility, interoperability and heterogeneity. Nevertheless, SCA does not provide in the standard
native support for runtime reconfiguration, which is needed to fulfill several requirements such as
stateful fault tolerance. FraSCAti, an SCA implementation based on Fractal [46], support dynamic
system reconfiguration through scripting, but does not support resource management nor automatic
application re-composition in case of non-functional unexpected events such as node failure. This is
also the case of other frameworks such as OSGi [47] or SOFA [48].

As previously stated health-centered monitoring comprises alarm detection and reaction. In this
context, many works do not support adaptation to context changes as they focus on alarm triggering
with the aim of warning the patient or asking for medical assistance [49–53]. In this context, as far as
authors know, management platforms do not support applications to start the adaptation process as
a result of their functional processing. Instead, the reconfiguration process is started by the platform
itself [54,55] or upon user demand [56–58]. Moreover, they do not allow acting on whole applications,
being the changes applied over components On the contrary, the solution proposed in this work goes
a step beyond by allowing not only the definition but also the runtime management of relevant events
and their corresponding reaction as actions to be executed over applications.

Applications availability is a critical issue in eHealthcare applications as a service failure might
result in loss of medical data or application crash. The most used mechanism to avoid service disruption
is the redundancy management [59]. Some works provide programming-based solutions [60–62], so
application definition is subject to application availability. On the contrary, others propose recovery
approaches transparent to application definition [43,54,63,64]. In the case of stateful components,
many works have focused on determining the best instant to perform the state transfer [65–67], which
might involve blocking the application execution. In this context, some propose a direct transfer
in which the management platform is the responsible of extracting and updating the internal state
of the components [67]. Other works propose indirect approaches based on providing components
with mechanisms to perform the extraction and updating of their internal state [57,61]. However, the
analyzed works do not support state recovery in case of node failure. In this sense, it is necessary an
external entity, a management platform, that controls the execution state transfer among components
with a global view of the whole system status, as the solution provided in this paper.

On the other hand, the AOP proposed in SCA is an efficient approach for specifying and
implementing non-functional properties of application components and their connections, as it
separates them from functional goals [68]. The current work takes advantage of this feature in
order to assure reliable and secure data transmission and storage.

As far as safety is concerned, reliable communications over a general purpose network such as
Ethernet have been considered. In this sense, the IEC 61784-3-3 standard describes mechanisms and
measures for a reliable communication over an unsafe transmission media, i.e., a black channel [69].
However, the mechanisms proposed by this standard rely in the application business components,
resulting in ad-hoc solutions with low level of abstraction and reusability. In contrast, DAMP platform
proposes a generic layer that provides the software developer with safety mechanisms in a transparent
way, abstracting it form the communications related issues.

Security is a key research topic when talking about eHealth applications. In this sense, aspects
such as confidentiality, integrity or availability must be taken into account [70–74] as they have
to be tackled by management platforms at operation time. Several threats have been identified in
each of the previous security aspects. For example, confidentiality can be compromised through
hacking techniques such as eavesdropping or location and activity tracking. All of them compromise

Sensors 2018, 18, 46 27 of 32

patient´s privacy, providing non authorized access to private medical information [75]. Integrity is
another aspect that must be carefully considered, to prevent both non intentional or intentional data
modification, which could affect to e.g., medical diagnosis.

To ensure confidentiality, i.e., information hiding to non-authorized users, apart from authentication
mechanisms [53,76], several cryptographic techniques have been applied. Depending on the
use case, the lighter symmetric cryptography or the heavier asymmetric cryptography can be
used [77]. Symmetric cryptography assumes the same secret key for both encrypting and decrypting.
Furthermore, the secret key must be shared between the stakeholders by any trustable way. This is
why it is known as PSK (pre-shared key). Examples of symmetric encryption algorithms are RC4,
DES or AES. Additionally to confidentiality, asymmetric encryption also provides authentication, data
integrity and non-revocation. In fact, ensuring that collected data cannot be corrupted is necessary to
ensure quality health care [71]. The authentication of the data provider is supported on the concept
of data signing. Moreover, the signing process also provides data integrity: if the signed data gets
intentionally modified or accidentally corrupted, the sign verification fails. Asymmetric encryption
solves the problem of key sharing, as far as each participant owns its own key pair (public/private).
Nevertheless, it consumes more computation resources [78]. Examples of asymmetric encryption
algorithms are RSA and ECC.

On the other hand, the project presented in [44] focuses on securing communications by
concentrating communications to/from the outside through a unique entity that relies on Virtual
Private Network (VPN) solutions. Finally, other works like [13] provide a wider overview of the issues
that must be taken into account when considering eHealth security. For instance, it points out secure
storage of the data and the encryption keys. But it does not provide any specific implementation for
the proposed framework, which remains in the conceptual level.

In general, assuring security is a resource consuming task which may be of special interest in the
case of working with embedded devices as in the target applications [74,77]. At this point, the current
work provides the flexibility necessary to identify and manage those bindings that require security,
reducing the system overhead, providing that non-secure networks are protected by other mechanisms
such as firewalls [44].

7. Conclusions

The Big Data Value Association, a European industry-led organization representing European
large and SME industry and research organizations, identifies several technical priorities in its Strategic
Research and Innovation Agenda [79]. In particular, it establishes data analytics as a key concept to
turn Big Data into value. In this context, it considers data protection and anonymity as a major issue
to be addressed. In the draft version 4.0 of the Strategic Research and Innovation Agenda (SRIA),
Big Data is considered a key technology to improve the productivity of the healthcare sector and drives
its transformation. More specifically, it points out the exploitation of the huge amount of generated
medical data as the most effective way to achieve cost savings and at the same time increase the quality
of care provided.

In this sense, several technical challenges arise. This research work focuses on two of them:
(1) data management, which covers those mechanisms that are necessary to collect and store medical
data, as well as make this data available to the medical staff, patients and eHealthcare applications.
This medical data will the basis for further eHealthcare improvements based on data exploitation
through e.g., data analytics. (2) Data protection covers the privacy, anonymity and authentication
needs that sensitive medical data demand. These security related aspects are critical when it comes to
enabling medical data mining and at the same time preserving patients privacy, or when end to end
security of participating medical devices must be guaranteed.

This research work has identified the requirements of eHealthcare applications, proposing an
approach mainly focus on the following ones: health centered monitoring, global diffusion of medical
data, and secure data transmission and storage.

Sensors 2018, 18, 46 28 of 32

Regarding global diffusion of medical data, it has been proved that the application component
model enables the specification, in the design phase, of the application data that must be stored for
further data analysis and exploitation. At runtime, this data is sent from the application components
to the platform manager, which actually stores it in the system database. The confidentiality of this
data has been guaranteed through encryption, and its availability needs have been covered by the
component redundancy support provided by DAMP. Finally, to preserve the anonymity of the stored
medical data when it comes to exploit it in a BDA context, the platform proceeds with the removal of
every links between the medical data and the specific patient.

The required security levels in data transmission have been tackled through a DDS binding that
incorporates several security features. In particular, the bindings that interconnect the application
components services and references can be configured with either symmetric encryption or asymmetric
encryption. In the latter case, besides confidentiality, the binding provides authentication and data
integrity, as far as the messages are both encrypted and signed.

On the other hand, a modeling approach for application specification has been also presented
as a suitable solution for defining health-centered applications. Indeed, the proposed modeling
concepts decouple the tasks related to the different stakeholders: medical experts and technology
experts. As a result, medical experts focus on specifying remote monitoring applications customized
to the particularities of the supervised patients, including also the detection of abnormal situations
and the reaction to them. This initial specification is completed by the technology experts who
provide information related to availability, safety and security. It is worth noting that security and
persistence demands are stated at design time by the corresponding expert, apart from functional
considerations. Finally, it has been also proposed a methodology for software developers to implement
application components whose execution will be managed by the DAMP platform. This methodology
fills the gap between the platform independent application specification and the domain independent
management platform.

The binding performance has been evaluated through a demonstrator that implements an
eHealth monitoring example application. As expected, the integration of security techniques into
the communication involves more resource consumption, which can be considerably high in case of
using asymmetric encryption algorithms. To address this problem, the proposed approach allows
specifying (in the design phase) which components must be secured and which must not, thus limiting
the computation resources needed to make the overall application secure.

Future work will be focused on providing a framework that supports the whole life-cycle of target
applications. With this purpose the DAMP platform must be integrated with a model-based tool that
allows the graphical specification of the applications, automating the code generation process.

Acknowledgments: This work was financed under project DPI2015-68602-R (MINECO/FEDER, UE), UPV/EHU
under project PPG17/56 and GV/EJ under recognized research group IT914-16.

Author Contributions: Aitor Aguirre was in charge of the design and implementation of the DAMP runtime
platform. Additionally, he has performed the experiments, analyzing their results. Aintzane Armentia was in
charge of the domain modeling approach, as well as the design and implementation of the case study. This paper
presents some of the results of the PhDs corresponding to these two authors. Elisabet Estévez and Marga Marcos
are the co-supervisors of both PhDs.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leyens, L.; Hackenitz, E.; Horgan, D.; Richer, E.; Brand, A.; Bußhoff, U.; Ballensiefen, W. Csa permed:
Europe’s commitment to personalised medicine. Eurohealth (Lond.) 2014, 20, 41–44.

2. Building a Better Delivery System: A New Engineering/Health Care Partnership; Reid, P.P.; Compton, W.D.;
Grossman, J.H.; Fanjiang, G. (Eds.) The National Academies Press: Washington, DC, USA, 2005.

3. Gobierno Vasco País Vasco: Transformando el Sistema de Salud; Osakidetza: Bilbao, Spain, 2012; p. 80.

Sensors 2018, 18, 46 29 of 32

4. Martín-Lesende, I.; Orruño, E.; Mateos, M.; Recalde, E.; Asua, J.; Reviriego, E.; Bayón, J.C. Telemonitoring
in-home complex chronic patients from primary care in routine clinical practice: Impact on healthcare
resources use. Eur. J. Gen. Pract. 2017, 23, 135–142. [CrossRef] [PubMed]

5. Rani, P.; Raychoudhury, V.; Sandha, S.S.; Patel, D. Mobile health application for early disease outbreak-period
detection. In Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking,
Applications and Services (Healthcom), Natal, Brazil, 15–18 October 2014.

6. Li, J.; Ray, P. Applications of E-Health for pandemic management. In Proceedings of the The 12th IEEE
International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010.

7. Culotta, A. Towards detecting influenza epidemics by analyzing Twitter messages. In Proceedings of the
First Workshop on Social Media Analytics—SOMA ’10, Washington, DC, USA, 25–28 July 2010.

8. Barrett, M.A.; Humblet, O.; Hiatt, R.A.; Adler, N.E. Big Data and Disease Prevention: From Quantified Self
to Quantified Communities. Big Data 2013, 1, 168–175. [CrossRef] [PubMed]

9. Dugas, A.F.; Hsieh, Y.-H.; Levin, S.R.; Pines, J.M.; Mareiniss, D.P.; Mohareb, A.; Gaydos, C.A.; Perl, T.M.;
Rothman, R.E. Google Flu Trends: Correlation With Emergency Department Influenza Rates and Crowding
Metrics. Clin. Infect. Dis. 2012, 54, 463–469. [CrossRef] [PubMed]

10. Institute of Medicine; Committee on Patient Safety and Health Information Technology. Health IT and Patient
Safety: Building Safer Systems for Better Care; The National Academies Press: Washington, DC, USA, 2012;
ISBN 978-0-309-22112-2.

11. Agirre, A.; Parra, J.; Armentia, A.; Ghoneim, A.; Estévez, E.; Marcos, M. QoS management for dependable
sensory environments. Multimed. Tools Appl. 2016, 75, 13397–13419. [CrossRef]

12. Kargl, F.; Lawrence, E.; Fischer, M.; Lim, Y.Y. Security, Privacy and Legal Issues in Pervasive eHealth
Monitoring Systems. In Proceedings of the 2008 7th International Conference on Mobile Business, Barcelona,
Spain, 7–8 July 2008.

13. Lake, D.; Milito, R.; Morrow, M.; Vargheese, R. Internet of Things: Architectural Framework for eHealth
Security. J. ICT Stand. 2014, 1, 301–328. [CrossRef]

14. Adibi, S.; Agnew, G.B. On the diversity of eHealth security systems and mechanisms. In Proceedings of
the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Vancouver, BC, Canada, 20–25 August 2008.

15. Rodríguez, M.; Zalama, E.; González, I. Improving the interoperability in the Digital Home through the
automatic generation of software adapters. RIAI Rev. Iberoam. Autom. Inform. Ind. 2016, 13, 363–369. [CrossRef]

16. Agirre, A.; Parra, J.; Armentia, A.; Estévez, E.; Marcos, M. QoS Aware Middleware Support for Dynamically
Reconfigurable Component Based IoT Applications. Int. J. Distrib. Sens. Netw. 2016, 2016. [CrossRef]

17. Armentia, A.; Gangoiti, U.; Priego, R.; Estévez, E.; Marcos, M. Flexibility Support for Homecare Applications
Based on Models and Multi-Agent Technology. Sensors 2015, 15, 31939–31964. [CrossRef] [PubMed]

18. PCHAlliance Continua Design Guidelines. Available online: http://www.pchalliance.org/continua-design-
guidelines (accessed on 25 December 2017).

19. HL7 Messaging Standard, Version 2.6. 2007. Available online: http://www.hl7.org/implement/standards/
product_brief.cfm?product_id=145 (accessed on 25 December 2017).

20. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C.E. Basic concepts and taxonomy of dependable and
secure computing. IEEE Trans. Dependable Sec. Comput. 2004, 1, 11–33. [CrossRef]

21. World Health Organization. Global Diffusion of eHealth: Making Universal Health Coverage Achievable;
World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241511780.

22. World Health Organization (WHO). Global Report on Diabetes; World Health Organization: Geneva,
Switzerland, 2016; Volume 978.

23. Alfaro Martínez, J.J.; Mora Escudero, I.; Huguet Moreno, I.; Gonzalvo Díaz, C. Hipoglucemia. Med. Programa
Form. Médica Contin. Acreditado 2012, 11, 1089–1095. [CrossRef]

24. Graveling, A.J.; Frier, B.M. The risks of nocturnal hypoglycaemia in insulin-treated diabetes. Diabetes Res.
Clin. Pract. 2017, 133, 30–39. [CrossRef] [PubMed]

25. Mezquita-Raya, P.; Reyes-García, R.; Moreno-Pérez, Ó.; Muñoz-Torres, M.; Merino-Torres, J.F.; Gorgojo-Martínez, J.J.;
Jódar-Gimeno, E.; Escalada San Martín, J.; Gargallo-Fernández, M.; Soto-Gonzalez, A.; et al. Position statement:
Hypoglycemia management in patients with diabetes mellitus. Diabetes Mellitus Working Group of the
Spanish Society of Endocrinology and Nutrition. Endocrinol. Nutr. (Engl. Ed.) 2013, 60, 517.e1–517.e18.
[CrossRef]

http://dx.doi.org/10.1080/13814788.2017.1306516
http://www.ncbi.nlm.nih.gov/pubmed/28446045
http://dx.doi.org/10.1089/big.2013.0027
http://www.ncbi.nlm.nih.gov/pubmed/27442198
http://dx.doi.org/10.1093/cid/cir883
http://www.ncbi.nlm.nih.gov/pubmed/22230244
http://dx.doi.org/10.1007/s11042-015-2781-4
http://dx.doi.org/10.13052/jicts2245-800X.133
http://dx.doi.org/10.1016/j.riai.2016.03.007
http://dx.doi.org/10.1155/2016/2702789
http://dx.doi.org/10.3390/s151229899
http://www.ncbi.nlm.nih.gov/pubmed/26694416
http://www.pchalliance.org/continua-design-guidelines
http://www.pchalliance.org/continua-design-guidelines
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=145
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=145
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1016/S0304-5412(12)70432-8
http://dx.doi.org/10.1016/j.diabres.2017.08.012
http://www.ncbi.nlm.nih.gov/pubmed/28888993
http://dx.doi.org/10.1016/j.endoen.2013.11.009

Sensors 2018, 18, 46 30 of 32

26. Novodvorsky, P.; Bernjak, A.; Chow, E.; Iqbal, A.; Sellors, L.; Williams, S.; Fawdry, R.A.; Parekh, B.;
Jacques, R.M.; Marques, J.L.B.; et al. Diurnal Differences in Risk of Cardiac Arrhythmias During Spontaneous
Hypoglycemia in Young People With Type 1 Diabetes. Diabetes Care 2017, 40, 655–662. [CrossRef] [PubMed]

27. Hervás, R.; Fontecha, J.; Ausín, D.; Castanedo, F.; Bravo, J.; López-de-Ipiña, D. Mobile monitoring and
reasoning methods to prevent cardiovascular diseases. Sensors 2013, 13, 6524–6541. [CrossRef] [PubMed]

28. Agirre, A.; Marcos, M.; Estevez, E. Distributed applications management platform based on Service
Component Architecture. In Proceedings of the 17th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012.

29. Laws, S.; Combellack, M.; Feng, R.; Mahbod, H.; Nash, S. Tuscany SCA in Action; Manning: Shelter Island,
NY, USA, 2011.

30. OASIS SCA Policy Framework Version 1.1; OASIS: Manchester, UK, 2011.
31. Seinturier, L.; Merle, P.; Rouvoy, R.; Romero, D.; Schiavoni, V.; Stefani, J.-B. A component-based middleware

platform for reconfigurable service-oriented architectures. Softw. Pract. Exp. 2011, 42, 559–583. [CrossRef]
32. Agirre, A.; Perez, J.; Priego, R.; Marcos, M.; Estévez, E. SCA extensions to support safety critical distributed

embedded systems. In Proceedings of the IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA, Cagliari, Italy, 10–13 September 2013.

33. Sheldon, T. Encyclopedia of Networking & Telecommunications; McGraw-Hill, Ed.; McGraw-Hill: New York, NY,
USA, 2001; ISBN 0072120053.

34. IANA Transport Layer Security (TLS) Parameters. Available online: https://www.iana.org/assignments/
tls-parameters/tls-parameters.xhtml (accessed on 25 December 2017).

35. Szyperski, C. Component Software: Beyond Object-Oriented Programming, 2nd ed.; Addison-Wesley, Ed.; ACM
Press: New York, NY, USA, 1998.

36. Heineman, G.T.; Councill, W.T. Component-Based Software Engineering: Putting the Pieces Together, 1st ed.;
Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001; ISBN 0-201-70485-4.

37. Papazoglou, M.P.; Traverso, P.; Dustdar, S.; Leymann, F. Service-Oriented Computing: State of the Art and
Research Challenges. Computer 2007, 40, 38–45. [CrossRef]

38. Erl, T. Service-Oriented Architecture (SOA): Concepts, Technology, and Design; Prentice Hall PTR: Upper Saddle River,
NJ, USA, 2005; ISBN 0131858580.

39. Wooldridge, M.; Jennings, N.R. Intelligent agents: Theory and practice. Knowl. Eng. Rev. 2009, 10, 115–152.
[CrossRef]

40. Weiss, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence; Weiss, G., Ed.; The MIT Press:
Cambridge, MA, USA, 1999; ISBN 9780262731317.

41. Cardellini, V.; Casalicchio, E.; Grassi, V.; Iannucci, S.; Presti, F.L.; Mirandola, R. MOSES: A framework for
qos driven runtime adaptation of service-oriented systems. IEEE Trans. Softw. Eng. 2012, 38, 1138–1159.
[CrossRef]

42. Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G. JADE: A software framework for developing multi-agent
applications. Lessons learned. Inf. Softw. Technol. 2008, 50, 10–21. [CrossRef]

43. Bajo, J.; Fraile, J.A.; Pérez-Lancho, B.; Corchado, J.M. The THOMAS architecture in Home Care scenarios:
A case study. Expert Syst. Appl. 2010, 37, 3986–3999. [CrossRef]

44. Büsching, F.; Bottazzi, M.; Wolf, L. The GAL monitoring concept for distributed AAL platforms.
In Proceedings of the IEEE 14th International Conference on e-Health Networking, Applications and
Services, Beijing, China, 10–13 October 2012.

45. Lamprinakos, G.C.; Asanin, S.; Broden, T.; Prestileo, A.; Fursse, J.; Papadopoulos, K.A.; Kaklamani, D.I.;
Venieris, I.S. An integrated remote monitoring platform towards Telehealth and Telecare services
interoperability. Inf. Sci. (N. Y.) 2015, 308, 23–37. [CrossRef]

46. Hnetynka, P.; Murphy, L.; Murphy, J. Comparing the service component architecture and fractal component
model. Comput. J. 2011, 54, 1026–1037. [CrossRef]

47. The OSGi Alliance, Version 4.3. Available online: https://www.osgi.org/release-4-version-4-3/ (accessed
on 25 December 2017).

48. Malohlava, M.; Hnetynka, P.; Bures, T. SOFA 2 Component Framework and Its Ecosystem. Electron. Notes
Theor. Comput. Sci. 2013, 295, 101–106. [CrossRef]

49. Farella, E.; Falavigna, M.; Ricc, B. Aware and smart environments: The Casattenta project. Microelectron. J.
2010, 41, 697–702. [CrossRef]

http://dx.doi.org/10.2337/dc16-2177
http://www.ncbi.nlm.nih.gov/pubmed/28213374
http://dx.doi.org/10.3390/s130506524
http://www.ncbi.nlm.nih.gov/pubmed/23681093
http://dx.doi.org/10.1002/spe.1077
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1017/S0269888900008122
http://dx.doi.org/10.1109/TSE.2011.68
http://dx.doi.org/10.1016/j.infsof.2007.10.008
http://dx.doi.org/10.1016/j.eswa.2009.11.017
http://dx.doi.org/10.1016/j.ins.2015.02.032
http://dx.doi.org/10.1093/comjnl/bxq046
https://www.osgi.org/release-4-version-4-3/
http://dx.doi.org/10.1016/j.entcs.2013.04.009
http://dx.doi.org/10.1016/j.mejo.2010.01.008

Sensors 2018, 18, 46 31 of 32

50. Søberg, J.; Goebel, V.; Plagemann, T. CommonSens: Personalisation of complex event processing in
automated homecare. In Proceedings of the 6th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, Brisbane, Australia, 7–10 December 2010.

51. Rocha, A.; Martins, A.; Freire, J.C.; Kamel Boulos, M.N.; Vicente, M.E.; Feld, R.; van de Ven, P.; Nelson, J.;
Bourke, A.; ÓLaighin, G.; et al. Innovations in health care services: The CAALYX system. Int. J. Med. Inform.
2013, 82, e307–e320. [CrossRef] [PubMed]

52. Perry, M.; Dowdall, A.; Lines, L.; Hone, K. Multimodal and ubiquitous computing systems: Supporting
independent-living older users. IEEE Trans. Inf. Technol. Biomed. 2004, 8, 258–270. [CrossRef] [PubMed]

53. Stav, E.; Walderhaug, S.; Mikalsen, M.; Hanke, S.; Benc, I. Development and evaluation of SOA-based AAL
services in real-life environments: A case study and lessons learned. Int. J. Med. Inform. 2013, 82, e269–e293.
[CrossRef] [PubMed]

54. García-Valls, M.; Rodríguez-López, I.; Fernández-Villar, L. iLAND: An Enhanced Middleware for Real-Time
Reconfiguration of Service Oriented Distributed Real-Time Systems. IEEE Trans. Ind. Inform. 2013, 9, 228–236.
[CrossRef]

55. Gui, N.; De Florio, V.; Sun, H.; Blondia, C. Toward architecture-based context-aware deployment and
adaptation. J. Syst. Softw. 2011, 84, 185–197. [CrossRef]

56. Wegdam, M.; Almeida, J.P.A.; van Sinderen, M.J.; Nieuwenhuis, L.J.M. Dynamic Reconfiguration for
Middleware-Based Applications; University of Twente, Centre for Telematics and Information Technology (CTIT):
Enschede, The Netherlands, 2003.

57. Hofmeister, C.R. Dynamic Reconfiguration of Distributed Applications. Doctoral Dissertation, University of
Maryland, College Park, MD, USA, 1998.

58. Léger, M.; Ledoux, T.; Coupaye, T. Reliable Dynamic Reconfigurations in a Reflective Component Model.
In Proceedings of the 13th International Conference on Component-Based Software Engineering, Prague,
Czech Republic, 23–25 June 2010.

59. Hassine, J. Describing and assessing availability requirements in the early stages of system development.
Softw. Syst. Model. 2015, 14, 1455–1479. [CrossRef]

60. Gharzouli, M.; Boufaida, M. A generic P2P collaborative strategy for discovering and composing semantic
web services. In Proceedings of the 4th International Conference on Internet and Web Applications and
Services, Venice/Mestre, Italy, 24–28 May 2009; pp. 449–454.

61. Hallsteinsen, S.; Geihs, K.; Paspallis, N.; Eliassen, F.; Horn, G.; Lorenzo, J.; Mamelli, A.; Papadopoulos, G.A.
A development framework and methodology for self-adapting applications in ubiquitous computing
environments. J. Syst. Softw. 2012, 85, 2840–2859. [CrossRef]

62. García-Magariño, I.; Palacios-Navarro, G. A model-driven approach for constructing ambient assisted-living
multi-agent systems customized for Parkinson patients. J. Syst. Softw. 2016, 111, 34–48. [CrossRef]

63. Cervantes, H.; Hall, R.S. A Framework for Constructing Adaptive Component-Based Applications:
Concepts and Experiences. In Proceedings of the 7th International Symposium Component-Based Software
Engineering (CBSE), Edinburgh, UK, 24–25 May 2004; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 130–137.

64. Noguero, A.; Calvo, I.; Pérez, F.; Almeida, L. FTT-MA: A flexible time-triggered middleware architecture for
time sensitive, resource-aware AmI systems. Sensors 2013, 13, 6229–6253. [CrossRef] [PubMed]

65. Li, W. QoS assurance for dynamic reconfiguration of component-based software systems. IEEE Trans.
Softw. Eng. 2012, 38, 658–676. [CrossRef]

66. Kramer, J.; Magee, J. The evolving philosophers problem: Dynamic change management. IEEE Trans.
Softw. Eng. 1990, 16, 1293–1306. [CrossRef]

67. Vandewoude, Y. Dynamically Updating Component-Oriented Systems; Faculty of Engineering, K.U. Leuven:
Leuven, Belgium, 2007.

68. OASIS Service Component Architecture (SCA). Available online: http://www.oasis-opencsa.org/sca
(accessed on 25 December 2017).

69. IEC IEC 61784-3-3: Indutrial Communication Networks—Profiles—Part 3–3: Functional Safety
Fieldbuses—Additional Specifications for CFP 3. Available online: https://webstore.iec.ch/publication/
25404 (accessed on 25 December 2017).

70. Bai, Y.; Dai, L.; Li, J. Issues and Challenges in Securing eHealth Systems. Int. J. E-Health Med. Commun. 2014,
5, 1–19. [CrossRef]

http://dx.doi.org/10.1016/j.ijmedinf.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21481633
http://dx.doi.org/10.1109/TITB.2004.835533
http://www.ncbi.nlm.nih.gov/pubmed/15484431
http://dx.doi.org/10.1016/j.ijmedinf.2011.03.007
http://www.ncbi.nlm.nih.gov/pubmed/21481634
http://dx.doi.org/10.1109/TII.2012.2198662
http://dx.doi.org/10.1016/j.jss.2010.09.017
http://dx.doi.org/10.1007/s10270-013-0382-0
http://dx.doi.org/10.1016/j.jss.2012.07.052
http://dx.doi.org/10.1016/j.jss.2015.09.014
http://dx.doi.org/10.3390/s130506229
http://www.ncbi.nlm.nih.gov/pubmed/23669711
http://dx.doi.org/10.1109/TSE.2011.37
http://dx.doi.org/10.1109/32.60317
http://www.oasis-opencsa.org/sca
https://webstore.iec.ch/publication/25404
https://webstore.iec.ch/publication/25404
http://dx.doi.org/10.4018/ijehmc.2014010101

Sensors 2018, 18, 46 32 of 32

71. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed.
Health Inform. 2013, 17, 579–590. [CrossRef]

72. Kumar, P.; Lee, S.-G.; Lee, H.-J. E-SAP: Efficient-strong authentication protocol for healthcare applications
using wireless medical sensor networks. Sensors 2012, 12, 1625–1647. [CrossRef] [PubMed]

73. Becker, M. Software Architecture Trends and Promising Technology for Ambient Assisted Living Systems.
In Dagstuhl Seminar Proceedings-Assisted Living Systems-Models, Architectures and Engineering Approaches;
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany: Dagstuhl, Germany, 2008; Volume 7462.

74. Yilmaz, T.; Foster, R.; Hao, Y. Detecting vital signs with wearable wireless sensors. Sensors 2010, 10,
10837–10862. [CrossRef] [PubMed]

75. Theoharidou, M.; Tsalis, N.; Gritzalis, D. Smart Home Solutions: Privacy Issues. In Handbook of Smart
Homes, Health Care and Well-Being; Springer International Publishing: Cham, Switzerland, 2014; pp. 1–14,
ISBN 9783319015835.

76. Lee, M.; Gatton, T.M. Wireless health data exchange for home healthcare monitoring systems. Sensors 2010,
10, 3243–3260. [CrossRef] [PubMed]

77. Abdmeziem, M.R.; Tandjaoui, D. An end-to-end secure key management protocol for e-health applications.
Comput. Electr. Eng. 2015, 44, 184–197. [CrossRef]

78. Lim, S.; Oh, T.H.; Choi, Y.B.; Lakshman, T. Security Issues on Wireless Body Area Network for Remote
Healthcare Monitoring. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC), Hyatt Newport Beach, CA, USA, 7–9 June 2010; IEEE: Piscataway, NJ,
USA, 2010; pp. 327–332.

79. Strategic Research and Innovation Agenda (SRIA v3.0); BDVA Correspondence & Registered Office: Bruxelles,
Belgium, 2017.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JBHI.2012.2234129
http://dx.doi.org/10.3390/s120201625
http://www.ncbi.nlm.nih.gov/pubmed/22438729
http://dx.doi.org/10.3390/s101210837
http://www.ncbi.nlm.nih.gov/pubmed/22163501
http://dx.doi.org/10.3390/s100403243
http://www.ncbi.nlm.nih.gov/pubmed/22319296
http://dx.doi.org/10.1016/j.compeleceng.2015.03.030
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	eHealthcare Application Demands
	Distributed Applications Management Platform (DAMP)
	DAMP Architecture
	DAMP Services for Application Management
	Security Considerations
	Privacy and Availability of Historical Application Data

	ehealth-Centered Design and Development
	Application Specification
	Application Development

	Assessment
	Stateful System Recovery
	Security Binding Assesment

	Related Work
	Conclusions
	References

