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Abstract: As the sound signal of ships obtained by sensors contains other many significant
characteristics of ships and called ship-radiated noise (SN), research into a denoising algorithm
and its application has obtained great significance. Using the advantage of variational mode
decomposition (VMD) combined with the correlation coefficient for denoising, a hybrid secondary
denoising algorithm is proposed using secondary VMD combined with a correlation coefficient
(CC). First, different kinds of simulation signals are decomposed into several bandwidth-limited
intrinsic mode functions (IMFs) using VMD, where the decomposition number by VMD is equal
to the number by empirical mode decomposition (EMD); then, the CCs between the IMFs and the
simulation signal are calculated respectively. The noise IMFs are identified by the CC threshold
and the rest of the IMFs are reconstructed in order to realize the first denoising process. Finally,
secondary denoising of the simulation signal can be accomplished by repeating the above steps of
decomposition, screening and reconstruction. The final denoising result is determined according to
the CC threshold. The denoising effect is compared under the different signal-to-noise ratio and the
time of decomposition by VMD. Experimental results show the validity of the proposed denoising
algorithm using secondary VMD (2VMD) combined with CC compared to EMD denoising, ensemble
EMD (EEMD) denoising, VMD denoising and cubic VMD (3VMD) denoising, as well as two denoising
algorithms presented recently. The proposed denoising algorithm is applied to feature extraction
and classification for SN signals, which can effectively improve the recognition rate of different kinds
of ships.

Keywords: variational mode decomposition (VMD); secondary variational mode decomposition
(2VMD); correlation coefficient (CC); ship-radiated noise (SN); denoising

1. Introduction

In the practical measuring process, measured signals are often mixed with noise and useless signal
components which come from the surrounding complex environment and the measurement equipment
itself. The time domain waveforms of the polluted signals are often different from those of original
signals, and it is not easy to identify the original signal from the polluted signal. In the frequency
domain, the bandwidth of the clear signal and the noisy signal also partially or even completely
overlap. In this case, traditional spectrum analysis techniques and linear filtering algorithms cannot
effectively eliminate noise. Therefore, the question of how to eliminate noise from the polluted signal
must be solved in the signal processing field [1,2].

There is a kind of common denoising algorithm, the basic ideas of which is to extract components
of signal obtained by one signal decomposition algorithm, identify and remove noise components
by screening criteria, then reconstruct the useful components. For this kind of denoising algorithm,

Sensors 2018, 18, 48; doi:10.3390/s18010048 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6501-5922
https://orcid.org/0000-0002-3285-6490
http://dx.doi.org/10.3390/s18010048
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 48 2 of 17

the focus is on selecting signal decomposition algorithm and noise-screening criteria. For instance,
the wavelet denoising algorithm [3,4] has been widely used in various fields, and a good effect is
gained. However, using different types of wavelet functions and different numbers of decomposition
have a great influence on denoising [5].

A kind of self-adaptive signal processing algorithm is empirical mode decomposition
(EMD) [6,7], originally proposed by Huang et al. This is an absolutely data-driven and adaptive
algorithm that depends on local characteristics of data in the time domain. EMD can decompose
complex signal into intrinsic mode functions (IMFs), with each IMF indicating one oscillation mode
of the complex signal. However, EMD faces problems of mode-mixing and end effects and also
lacks mathematical demonstration. Ensemble EMD (EEMD) [8], as an algorithm that improves on
EMD, can reduce the phenomena of modes overlap to some extent. A growing number of researchers
are focusing on developing EMD and improved EMD algorithms, and these algorithms are widely
employed in various fields, especially in mechanical fault diagnosis [9–11], medical science [12],
meteorology [13], oceanography [14–18] and so on. Many denoising algorithms using EMD and
improved EMD algorithms have been proposed. For example, high-frequency IMFs are regarded as
noise IMFs; the rest of the IMFs are reconstructed for denoising [19]. Nevertheless, this denoising
algorithm cannot completely eliminate noise components, and the reconstructed signal lacks some
detailed information. Many denoising algorithms have been proposed to solve the problems of this
denoising algorithm by the threshold for IMFs [20,21].

As a kind of non-recursive and self-adaptive signal-processing algorithm, variational mode
decomposition (VMD) [22–24], originally put forward by Dragomiretskiy et al., can effectively
decompose a multi-component signal into several bandwidth-limited IMFs. Every IMF has a
corresponding central frequency updated in real-time. Compared with EMD and the improved EMD
algorithms, VMD has not only a solid theoretical foundation, but also good robustness to noise. In the
field of fault diagnosis, a new diagnosis algorithm based on VMD denoising is proposed in [25],
which uses the IMFs obtained by VMD to reconstruct the IMFs according to the correlation coefficients
(CCs) between IMFs and the original signal in order to realize denoising, and then extracts the bearing
fault characteristics by means of a morphological difference filter to demodulate the signals after
denoising, with simulated signal and experimental results showing the validity of the algorithm.
In research [26], a new denoising algorithm based on the non-convex framework has been proposed.
By comparing with wavelet denoising and 1-order total variation denoising algorithms, the validity is
verified by analyzing the simulation signals and the vibration signals. In research [27], an adaptive
denoising algorithm for a chaotic signal has been proposed by using independent component analysis
(ICA) and EMD. In research [28], an adaptive denoising algorithm using a probability density function
and VMD has been proposed, and a small mean-error square and a high signal-to-noise ratio prove the
effectiveness of the denoising algorithm. These denoising algorithms also demonstrate the feasibility
of EMD and VMD in signal denoising.

In this article, we proposed a new denoising algorithm for ship-radiated noise (SN) signals.
We used VMD and CC to decompose the original signals into IMFs and identify noise IMFs, respectively;
the decomposition number by VMD is equal to the number by EMD. According to the threshold of
the CC, noise IMFs and useful IMFs can be distinguished effectively. Then, the first denoising can be
realized by reconstructing useful IMFs. Secondary denoising can be accomplished by repeating the
above steps of decomposition, mode-identification and reconstruction. The final result of denoising is
determined according to the CC between IMFs and the original signal. Simulation results indicate that
the proposed denoising algorithm based on the secondary VMD (2VMD) and CC is better than existing
denoising ones. The proposed 2VMD denoising algorithm is used to feature extraction and classification
for SN signals, which can effectively improve the recognition rate of different kinds of ships.

The outline of the article is as follows. Section 2 provides the background to VMD, CC and the
evaluation criterion; a review of the proposed 2VMD denoising algorithm is presented in Section 3;
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in Sections 4 and 5, the proposed 2VMD denoising algorithm is used to simulation data and SN signals
respectively; finally, the last section is the conclusions.

2. Background

2.1. Variational Mode Decomposition (VMD)

In the VMD algorithm, IMFs are defined as amplitude-modulated–frequency-modulated
(AM–FM) signals, which are given by:

uk(t) = Ak(t) cos(φk(t)), (1)

where t and Ak(t) represent time and the envelope of IMF; and φk(t) and uk(t) denote the phase and
the IMFs. IMFs have center frequencies and limited bandwidths. The decomposition process is the
constrained variational problem, which is given by:

min
{uk},{wk}

{
K

∑
k=1
‖∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jwkt‖
2

2

}
subject to

K

∑
k=1

uk =s, (2)

where s is the original signal; K represents the number of IMFs; and uk and wk are the IMF and the
center frequency for each IMF. The constrained variational problems in Equation (2) can be addressed
by the penalty factor α and the lagrangian multiplier λ. The augmented lagrangian is expressed as:

L({uk}, {wk}, λ) = α
K
∑

k=1
‖∂t[(δ(t) + j

πt ) ∗ uk(t)]e−jwkt‖
2
2

+‖ f (t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉
.

(3)

The alternating direction multiplier method (ADMM) is used to obtain the saddle points, then the
uk, wk and λ are updated in the frequency domain, which is given by:

ûn+1
k (w) =

f̂ (w)− ∑
i<k

ûin(w)− ∑
i>k

ûin(w) + λ̂n(w)
2

1 + 2α(w− wn
k )

2 , (4)

wn+1
k =

∫ ∞
0 w

∣∣∣ûn+1
k

∣∣∣2dw∫ ∞
0

∣∣∣ûn+1
k

∣∣∣2dw
, (5)

λ̂n+1(w) = λ̂n(w) + τ

(
f̂ (w)−∑

k
ûn+1

n (w)

)
. (6)

The stop condition is as follows:

∑
k
‖ûn+1

k − ûn
k ‖

2

2

/‖ûn
k ‖

2
2 < e, (7)

where e represents convergence accuracy. The specific process of VMD is summarized as follows:

• Initialize
{

û1
k
}

,
{

w1
k
}

, λ̂1 and n = 0.

• Update the value of
{

ûn+1
k

}
,
{

wn+1
k

}
and λ̂n+1 according to Equations (4)–(6).

• Judge whether or not uk meets the convergence condition (7).

Repeat the steps of updating parameters until the stopped condition is satisfied.
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The uniformly spaced distribution for initialization of center frequency is expressed as:

w0
k =

k− 1
2k

, k = 1, · · · , K, (8)

and the zero initial can be expressed as:

w0
k = 0 , k = 1, · · · , K. (9)

In addition, K is equal to the decomposition level by EMD. The zero initial is used in this paper.

2.2. Correlation Coefficient (CC)

The correlation coefficient (CC), as a parameter of statistical relationships, can measure the degree
of dependence and correlation. In this paper, the formula of CC is shown as the following:

r =
E(ui. f )− E(ui)E( f )√

D(ui)
√

D( f )
, (10)

where f and ui represent the original signal and IMF obtained by mode decomposition; D and E
correspond to mathematical expectation and variance; and r represents the CC between the IMF
and original signal. High values (close to 1) indicate a strong degree of dependence and correlation.
Instead, the closer that this value is to −1, the more inverse the relationship value is. The relationship
between CC and correlation is shown in Table 1. If CCs between the original signal and IMFs by VMD
are within the range of moderate correlation or strong correlation, IMFs contain useful components.
Therefore, the CC threshold is within the range of weak correlation.

Table 1. The relationship between correlation coefficient (CC) and correlation.

No Correlation Weak Correlation Moderate Correlation Strong Correlation

CC 0~0.1 0.1~0.3 0.3~0.5 0.5~1

A simulation example should make this easier to understand, with the simulation signals as follows:
f1(t) = cos(10πt)
f2(t) = cos(100πt)
f3(t) = cos(200πt)
f (t) = f1(t) + f2(t) + f3(t)

, (11)

where f1(t), f2(t) and f3(t) represent the three components of f (t). Three decomposition algorithms
are used to decompose f (t). The original signals are presented in Figure 1. The decomposition result
of VMD is shown in Figure 2.

As can be seen in Figures 1 and 2, the decomposition result using VMD is similar to the component
of the simulation signal. CCs between the simulation signal and corresponding IMFs are shown in
Table 2. By comparison with EMD and EEMD algorithms, the CCs between simulation signal and
corresponding IMFs by VMD are closer to the true values in Table 2. This shows that the VMD
algorithm can better reflect the correlation.
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Figure 2. Decomposition result by variational mode decomposition (VMD).

Table 2. The CCs between simulation signal and corresponding intrinsic mode functions (IMFs).

Simulation Signals EMD Algorithm EEMD Algorithm VMD Algorithm

f3(t) 0.5775 IMF1 0.6040 IMF5 0.5854 IMF1 0.5772
f2(t) 0.5775 IMF2 0.5756 IMF6 0.6164 IMF2 0.5775
f1(t) 0.5775 IMF3 0.5774 IMF8 0.5773 IMF3 0.5775

2.3. Evaluation Criteria for Denoising Algorithm

The denoising effects of different decomposition algorithms are compared. Therefore, two evaluation
criteria for denoising algorithms are given as follows:

SNR = 10 log 10

(
‖ f ‖
‖ f̂ − f ‖

)
, (12)
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RMSE =

√
‖ f̂ − f ‖

N
, (13)

where f is original signal; f̂ is the denoising result; and N represents signal length. Signal-to-noise
ratio (SNR) and root mean square error (RMSE) are the evaluation criteria for denoising, respectively.

3. Denoising Algorithm Using Secondary VMD (2VMD) and CC

A 2VMD denoising algorithm using VMD and CC is designed in Figure 3. The experimental
procedures are as follows:

Step 1: The target signal is decomposed by EMD, and the decomposition number by VMD is equal to
the number by EMD;

Step 2: Calculate the CCs between the original signal and IMFs by VMD, screen out the noise IMFs
according to CC threshold. Through abundant simulation experiments, the CC threshold is
fixed at 0.2 in this paper;

Step 3: Reconstruct the useful IMFs by removing noise IMFs. After the reconstruction, the first
denoising is completed;

Step 4: Judge the times decomposition satisfies the 2VMD or not;
Step 5: If 2VMD is not satisfied, the first reconstructed result is regarded as the input signal, then repeat

Steps 1–3 to complete the whole denoising process; if it is satisfied, the reconstructed signal is
regarded as the final denoising result.
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4. Test with Numerical Simulation Signal

The line spectrum is the important information of the SN signals, and it provides a basis for
ship detection and tracking. The periodic signal can be used as a line spectrum model. Therefore,
three simulation experiments have been carried out in Sections 4.1–4.3; the different input SNRs and
the times of decomposition by VMD for the three simulation signals are also discussed in Section 4.4.
To further prove the effectiveness of the proposed denoising algorithm, in Section 4.5 we compare it
with two denoising algorithms presented recently using the same simulation signals.

4.1. Simulation 1

The simulation signal s is composed of three different frequency and amplitude cosine signals,
and 0.5 times standard Gaussian white noise n is added to get the noisy signal y. The simulation
signals are as follows:

s = 0.8 cos(2π f1t) + 0.6 cos(2π f2t) + 0.3 cos(2π f3t)
n = 0.5randn(t)
y = s + n

, (14)

where f1 = 10, f2 = 50 and f3 = 100 represent the three frequencies of clear signal s; and y is the noisy
signal containing both s and n. The time-domain waveform for clear signal and noisy signal is shown
in Figure 4. The decomposition result of the EMD, EEMD, VMD and 2VMD for a noisy signal are
presented in Figure 5.

As seen in Figure 5, the number of IMFs by EMD is 9 (containing residue), and the number of
VMD should be equal to the number of EMD, so we can set K = 9 for VMD and set K = 7 for 2VMD.
The CCs between the noisy signal and IMFs by VMD and 2VMD are shown in Table 3.
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Figure 5. The decomposition result of empirical mode decomposition (EMD), ensemble EMD (EEMD),
VMD and 2VMD for the noisy signal. (a) EMD; (b) EEMD; (c) VMD; (d) 2VMD.

Table 3. The CCs between the noisy signal and IMFs by VMD and 2VMD.

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9

VMD 0.1438 0.1336 0.1592 0.1465 0.1583 0.1479 0.2417 0.4378 0.6721
2VMD 0.2205 0.0922 0.0927 0.0913 0.4204 0.3935 0.6673 − −

As seen in Table 3, the number of useful IMFs by VMD is three according to the CC threshold; the
2VMD can further remove noise IMFs (IMF2, IMF3 and IMF4) by the CC threshold. The denoising
results of EMD, EEMD, VMD and 2VMD for the noisy signal are shown in Figure 6. The SNR and
RMSE for EMD, EEMD, VMD and 2VMD denoising are shown in Table 4.
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Figure 6. The denoising results of EMD, EEMD, VMD and 2VMD for the noisy signal. (a) EMD;
(b) EEMD; (c) VMD; (d) 2VMD.
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Table 4. The signal-to-noise ratio (SNR) and root mean square error (RMSE) for EMD, EEMD, VMD and
2VMD denoising.

Noisy Signal EMD EEMD VMD 2VMD

SNR/db 2.959 8.133 9.33 15.01 17.34
RMSE 0.9797 0.8353 0.8246 0.1508 0.03072

As seen in Figure 6, the denoising results of EMD and EEMD are obviously different from the
clear signal; the denoising results of VMD and 2VMD are close to the clear signal. To compare the
performance of different denoising algorithms, the SNR and RMSE are listed in Table 4. As can be seen
in Table 4, EEMD denoising is superior to EMD denoising, and VMD denoising is better than EEMD
denoising; 2VMD denoising is the best denoising algorithm which has high SNR and low RMSE.

4.2. Simulation 2

The simulation signal s is composed of frequency-modulated signal and sine signal, and 0.5
times standard Gaussian white noise n is added to get the noisy signal y. The simulation signals are
as follows: 

s = 0.6 cos(2π f1t + 0.8 sin(2π f2t)) + 0.4 sin(2π f3t)
n = 0.5randn(t)
y = s + n

, (15)

where f1 = 50, f2 = 40 and f3 = 150 represent the three frequencies of clear signal s; and y is the noisy
signal containing both s and n. The time-domain waveform for the clear signal and noisy signal is
shown in Figure 7, with the clear signal submerged in Gaussian white noise. The denoising results
of EMD, EEMD, VMD and 2VMD are shown in Figure 8, and the SNR and RMSE for EMD, EEMD,
VMD and 2VMD denoising are shown in Table 5. As seen in Figure 8 and Table 5, the 2VMD denoising
algorithm with high SNR and low RMSE is also the most effective denoising algorithm.
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Figure 7. The time-domain waveform for the clear signal and noisy signal. (a) The clear signal; (b) the
noisy signal.

Table 5. The SNR and RMSE for EMD, EEMD, VMD and 2VMD denoising.

Noisy Signal EMD EEMD VMD 2VMD

SNR/db 0.0827 2.5348 3.6687 10.3561 11.4758
RMSE 0.9335 0.7496 0.3384 0.2402 0.0626
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Figure 8. The denoising results of EMD, EEMD, VMD and 2VMD for the noisy signal. (a) EMD;
(b) EEMD; (c) VMD; (d) 2VMD.

4.3. Simulation 3

The simulation signal s is composed of an amplitude-modulated signal and sine signal,
and standard Gaussian white noise n is added to get the noisy signal y. The simulation signals
are as follows: 

s = 2 sin(2π f1t) sin(2πt/ f2) + sin(2π f3)

n = randn(t)
y = s + n

, (16)

where f1 = 10, f2 = 10 and f3 = 15 represent the three frequencies of clear signal s; and y is the noisy
signal containing both s and n. The time-domain waveform for the clear signal and noisy signal is
shown in Figure 9; the clear signal cannot be distinguished from the noisy signal. The denoising results
of EMD, EEMD, VMD and 2VMD for the noisy signal are shown in Figure 10, and the SNR and RMSE
for EMD, EEMD, VMD and 2VMD denoising are shown in Table 6. As seen in Figure 10 and Table 6,
the 2VMD denoising algorithm with high SNR and low RMSE, which is smooth and close to the clear
signal, is the most effective denoising algorithm.

Table 6. The SNR and RMSE for EMD, EEMD, VMD and 2VMD denoising.

Noisy Signal EMD EEMD VMD 2VMD

SNR/db −1.467 4.898 6.335 8.306 9.412
RMSE 1.258 0.8652 0.8473 0.3065 0.1601
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Figure 9. (a) The clear signal; (b) the noisy signal.

Sensors 2018, 18, 48  11 of 17 

 

 
(a) (b) 

Figure 9. (a) The clear signal; (b) the noisy signal. 

 
(a) (b) 

 
(c) (d) 

Figure 10. The denoising results of EMD, EEMD, VMD and 2VMD for the noisy signal. (a) EMD; (b) 
EEMD; (c) VMD; (d) 2VMD. 

Table 6. The SNR and RMSE for EMD, EEMD, VMD and 2VMD denoising. 

 Noisy Signal EMD EEMD VMD 2VMD 
SNR/db −1.467 4.898 6.335 8.306 9.412 
RMSE 1.258 0.8652 0.8473 0.3065 0.1601 

4.4. Different Input Signal-to-Noise Ratio (SNR) and Times of Decomposition by VMD 

To further prove the suitability of the proposed 2VMD algorithm, the denoising effect is 
compared under different input SNRs and times of decomposition by VMD for the simulation 
signals in Sections 4.1–4.3. Input SNRs range from −10 dB to 5 dB, and the times of decomposition for 
VMD range from 1 to 3. Figure 11 shows the plots of input SNRs versus output ones for different 
denoising algorithms and simulation signals, where each output SNR is calculated by using the 
mean of 100 times. As can be seen in Figure 11, the output SNRs of the 2VMD and cubic VMD 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/s

A
m

pl
itu

de

Figure 10. The denoising results of EMD, EEMD, VMD and 2VMD for the noisy signal. (a) EMD;
(b) EEMD; (c) VMD; (d) 2VMD.

4.4. Different Input Signal-to-Noise Ratio (SNR) and Times of Decomposition by VMD

To further prove the suitability of the proposed 2VMD algorithm, the denoising effect is compared
under different input SNRs and times of decomposition by VMD for the simulation signals in
Sections 4.1–4.3. Input SNRs range from −10 dB to 5 dB, and the times of decomposition for VMD
range from 1 to 3. Figure 11 shows the plots of input SNRs versus output ones for different denoising
algorithms and simulation signals, where each output SNR is calculated by using the mean of
100 times. As can be seen in Figure 11, the output SNRs of the 2VMD and cubic VMD (3VMD)
denoising algorithms in most cases are higher than the others, especially in the case of low-input SNRs,
which are more suitable for SN signal denoising. However, 2VMD denoising has the advantage of low
computational cost over 3VMD denoising.
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Figure 11. The denoising results of EMD, EEMD, VMD, 2VMD and cubic VMD (3VMD) for different
simulation signals. (a) The denoising results of simulation 1; (b) the denoising results of simulation 2;
(c) the denoising results of simulation 3.
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4.5. Comparison with Denoising Algorithms Presented Recently

In recent research [26,29], two denoising algorithms have been proposed for the vibration signal
and SN signal, respectively. The same simulation signals in [26] are as follows:{

x = x1 + x2

x1 = sin(30πt + cos(60πt))
(17)

where x1 is a typical modulating signal; x2 is Gaussian white noise, whose mean value and variance
are 0 and 0.5, respectively. The clear signal x1 and noisy signal x2 are shown in Figure 12. The SNRs for
different variances of Gaussian white noise and different denoising algorithms are shown in Table 7.
As can be seen in Table 7, the proposed algorithm has high SNR for different variances of Gaussian
white noise compared with the wavelet denoising and the denoising algorithms presented recently
in [26,29].

Sensors 2018, 18, 48  13 of 17 

 

4.5. Comparison with Denoising Algorithms Presented Recently 

In recent research [26,29], two denoising algorithms have been proposed for the vibration signal 
and SN signal, respectively. The same simulation signals in [26] are as follows: 

1 2

1 sin(30 cos(60 ))
x x x
x t tπ π

= +
 = +

 (17) 

where 1x  is a typical modulating signal; 2x I s Gaussian white noise, whose mean value and variance 
are 0 and 0.5, respectively. The clear signal 1x  and noisy signal 2x  are shown in Figure 12. The SNRs 
for different variances of Gaussian white noise and different denoising algorithms are shown in Table 
7. As can be seen in Table 7, the proposed algorithm has high SNR for different variances of 
Gaussian white noise compared with the wavelet denoising and the denoising algorithms presented 
recently in [26,29]. 

(a) (b) 

Figure 12. (a) The clear signal; (b) the noisy signal. 

Table 7. The SNRs after denoising. 

Algorithms 
Variances 

0.4 0.5 0.6 
The proposed 2VMD denoising algorithm 13.12 12.34 11.87 

The denoising algorithm in [27] 12.57 11.63 11.21 
The denoising algorithm in [24] 12.13 11.31 10.28 

The wavelet denoising algorithm 10.32 9.328 8.315 
The noisy signal 0.9762 −0.05218 −0.9215 

5. Application in Feature Extraction for Ship-Radiated Noise (SN) 

First, three kinds of SN signals are performed by the proposed 2VMD denoising algorithm; 
then, the features of SN signals are extracted by the feature extraction algorithm in [16]; finally, the 
classification results before and after denoising are compared. 

5.1. Denoising of SN 

Three kinds of SN signals, which are the same as the signals in [16], were recorded using 
calibrated omnidirectional hydrophones at a depth of 29 m in the South China Sea. During 
recording, there were no observed disturbances from biological or man-made sources. The distance 
between the ship and hydrophone was about 1 km. The sampling frequency and sampling points 
were set as 44.1 kHz and 5000, respectively. The samples were normalized to get the time-domain 
waveform for three kinds of SN signals shown in Figure 13a,c,e. The denoising results for three 
kinds of SN signals by the proposed denoising algorithm are shown in Figure 13b,d,f. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/s

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

t/s

A
m

pl
itu

de

Figure 12. (a) The clear signal; (b) the noisy signal.

Table 7. The SNRs after denoising.

Algorithms
Variances

0.4 0.5 0.6

The proposed 2VMD denoising algorithm 13.12 12.34 11.87
The denoising algorithm in [27] 12.57 11.63 11.21
The denoising algorithm in [24] 12.13 11.31 10.28

The wavelet denoising algorithm 10.32 9.328 8.315
The noisy signal 0.9762 −0.05218 −0.9215

5. Application in Feature Extraction for Ship-Radiated Noise (SN)

First, three kinds of SN signals are performed by the proposed 2VMD denoising algorithm;
then, the features of SN signals are extracted by the feature extraction algorithm in [16]; finally,
the classification results before and after denoising are compared.

5.1. Denoising of SN

Three kinds of SN signals, which are the same as the signals in [16], were recorded using calibrated
omnidirectional hydrophones at a depth of 29 m in the South China Sea. During recording, there were
no observed disturbances from biological or man-made sources. The distance between the ship and
hydrophone was about 1 km. The sampling frequency and sampling points were set as 44.1 kHz and
5000, respectively. The samples were normalized to get the time-domain waveform for three kinds of
SN signals shown in Figure 13a,c,e. The denoising results for three kinds of SN signals by the proposed
denoising algorithm are shown in Figure 13b,d,f.
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Figure 13. Three kinds of ship-radiated noise (SN). (a) Ship 1 without denoising; (b) Ship 1 after
denoising; (c) Ship 2 without denoising; (d) Ship 2 after denoising; (e) Ship 3 without denoising; (f) Ship
3 after denoising.

5.2. Feature Extraction of SN

According to the research in [16], three kinds of SN signals after denoising are decomposed by
VMD. It is then easy to obtain the IMF with the highest energy (EIMF) by calculation, and the center
frequency of EIMF is regarded as characteristic parameter in this paper. Forty samples for each kind of
SN were selected to calculate the center frequency of the EIMF. The center frequency distribution of
EIMF before and after denoising is shown in Figure 14. The proposed denoising algorithm is useful for
distinguishing the first and second kinds of ships.
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Figure 14. The center frequency of the IMF with the highest energy (EIMF). (a) without denoising;
(b) after denoising.

5.3. Classification

To further prove the effectiveness of the proposed 2VMD denoising algorithm, the center
frequencies of EIMF are classified by a support vector machine (SVM), and the polynomial kernel
function is used for training and identifying. The classification results of train and test samples are
shown in Tables 8 and 9. As shown in Tables 8 and 9, the accuracy of ship 3 is 100%. However,
the recognition rates of Ship 1 and Ship 2 have been improved significantly. The accuracy after
denoising is 95.67%, which is obviously superior to that before denoising.

Table 8. The center frequency classification results without denoising.

Ship
Train Sample Test Sample

Accuracy
Sample Accuracy Sample Accuracy

1 100 64% 100 66%
68.5%2 100 38% 100 43%

3 100 100% 100 100%

Table 9. The center frequency classification results after denoising.

Ship
Train Sample Test Sample

Accuracy
Sample Accuracy Sample Accuracy

1 100 94% 100 93%
95.67%2 100 95% 100 92%

3 100 100% 100 100%

6. Conclusions

In order to achieve denoising of SN signals, a hybrid secondary denoising algorithm is proposed
in this article. The proposed denoising algorithm employs 2VMD and CC. The target signal is
decomposed using VMD, and the CC threshold is used to determine the useful IMFs. Through
abundant simulation experiments and analytical comparisons, the proposed denoising algorithm
demonstrated its superiority and the following contributions:

(1) A secondary VMD algorithm for denoising is put forward for the first time in this paper.
(2) A novel denoising algorithm is proposed using 2VMD and CC for the SN signal in the field of

underwater acoustic signal processing.
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(3) Compared with EMD and EEMD, the CCs between the simulation signal and its IMFs using VMD
are closer to the true values. This shows that the VMD algorithm can better reflect the correlation.

(4) Compared with EMD, EEMD and VMD denoising, the proposed denoising algorithm is a better
denoising algorithm which has a high SNR and low RMSE by numerical simulations.

(5) Compared with the different input SNRs and the times of decomposition by VMD, the proposed
2VMD denoising algorithm has high SNRs for different simulation signals, especially in the case
of low-input SNRs. In addition, the proposed 2VMD denoising algorithm is superior to the two
denoising algorithms presented recently in [26,29].

(6) Using the proposed 2VMD denoising algorithm and the feature extraction method in [16],
the dominant frequency information is extracted. Compared with the feature extraction algorithm
without denoising, the experimental results indicate that the proposed 2VMD denoising algorithm
can effectively improve the recognition rate of different kinds of ships.

Acknowledgments: The authors gratefully acknowledge the support of the National Natural Science Foundation
of China (No. 51179157, No. 51409214, No. 11574250 and No. 51709228).

Author Contributions: Yuxing Li and Yaan Li conceived and designed the research, Yuxing Li analyzed the data
and wrote the manuscript, Xiao Chen and Jing Yu collected the data. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, X.; Shen, C.; Chen, L. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for
Fault Diagnosis in Rotating Machinery. Appl. Sci. 2017, 7, 41. [CrossRef]

2. Siddagangaiah, S.; Li, Y.; Guo, X.; Yang, K. On the dynamics of ocean ambient noise: Two decades later.
Chaos 2015, 25, 103117. [CrossRef] [PubMed]

3. Murguia, J.S.; Campos, C.E. Wavelet analysis of chaotic time series. Rev. Mex. Fis. 2006, 52, 155–162.
4. Liu, Y.X.; Yang, G.S.; Jia, Q. Adaptive Noise Reduction for Chaotic Signals Based on Dual-Lifting Wavelet

Transform. Acta Electron. Sin. 2011, 39, 13–17.
5. Zhang, L.; Bao, P.; Wu, X. Multiscale LMMSE-based image denoising with optimal wavelet selection.

IEEE Trans. Circuits Syst. Video Technol. 2005, 15, 469–481. [CrossRef]
6. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.

The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [CrossRef]

7. Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition
method. Proc. R. Soc. Lond. A 2004, 460, 1597–1611. [CrossRef]

8. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

9. Lei, Y.; He, Z.; Zi, Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery.
Mech. Syst. Signal Process. 2009, 23, 1327–1338. [CrossRef]

10. Gao, B.; Woo, W.L.; Dlay, S.S. Single Channel Blind Source Separation Using EMD-Subband Variable
Regularized Sparse Features. IEEE Trans. Audio Speech Lang. Process. 2011, 19, 961–976. [CrossRef]

11. Zhao, L.; Yin, A.; Gao, B.; Woo, W.L. Fast Partial differential equation De-noising filter for Mechanical
Vibration Signal. Math. Methods Appl. Sci. 2015, 38, 4879–4890. [CrossRef]

12. Shih, M.; Doctor, F.; Fan, S.; Jen, K.; Shieh, J. Instantaneous 3D EEG Signal Analysis Based on Empirical
Mode Decomposition and the Hilbert-Huang Transform Applied to Depth of Anaesthesia. Entropy 2015, 17,
928–949. [CrossRef]

13. Xue, C.; Hou, W.; Zhao, J.; Wang, S. The application of ensemble empirical mode decomposition method
in multiscale analysis of region precipitation and its response to the climate change. Acta Phys. Sin. 2013,
62, 109203.

http://dx.doi.org/10.3390/app7010041
http://dx.doi.org/10.1063/1.4932561
http://www.ncbi.nlm.nih.gov/pubmed/26520083
http://dx.doi.org/10.1109/TCSVT.2005.844456
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.2003.1221
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1016/j.ymssp.2008.11.005
http://dx.doi.org/10.1109/TASL.2010.2072500
http://dx.doi.org/10.1002/mma.3119
http://dx.doi.org/10.3390/e17030928


Sensors 2018, 18, 48 17 of 17

14. Yang, L. A empirical mode decomposition approach to feature extraction of ship-radiated noise.
In Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May
2009; pp. 3682–3686.

15. Yang, H.; Li, Y.; Li, G. Energy analysis of ship-radiated noise based on ensemble empirical mode
decomposition. J. Vib. Shock 2015, 34, 55–59.

16. Li, Y.; Li, Y.; Chen, X. Ships’ radiated noise feature extraction based on EEMD. J. Vib. Shock 2017, 36, 114–119.
17. Zhang, Z.; Liu, C.; Liu, B. Ship noise spectrum analysis based on HHT. In Proceedings of the 2010 IEEE 10th

International Conference on Signal Processing (ICSP), Beijing, China, 24–28 October 2010; pp. 2411–2414.
18. Li, Y.; Li, Y.; Chen, Z.; Chen, X. Feature Extraction of Ship-Radiated Noise Based on Permutation Entropy of

the Intrinsic Mode Function with the Highest Energy. Entropy 2016, 18, 393. [CrossRef]
19. Boudraa, A.O.; Cexus, J.C. EMD-Based Signal Filtering. IEEE Trans. Instrum. Meas. 2007, 56, 2196–2202.

[CrossRef]
20. Omitaomu, O.A.; Protopopescu, V.A.; Ganguly, A.R. Empirical Mode Decomposition Technique with

Conditional Mutual Information for Denoising Operational Sensor Data. IEEE Sens. J. 2011, 11, 2565–2575.
[CrossRef]

21. Kopsinis, Y.; Mclaughlin, S. Development of EMD-Based Denoising Methods Inspired by Wavelet
Thresholding. IEEE Trans. Signal Process. 2009, 57, 1351–1362. [CrossRef]

22. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.
[CrossRef]

23. Li, Y.; Li, Y.; Chen, X.; Yu, J. A Novel Feature Extraction Method for Ship-Radiated Noise Based on Variational
Mode Decomposition and Multi-Scale Permutation Entropy. Entropy 2017, 19, 342.

24. Huang, N.; Chen, H.; Cai, G.; Fang, L.; Wang, Y. Mechanical Fault Diagnosis of High Voltage Circuit Breakers
Based on Variational Mode Decomposition and Multi-Layer Classifier. Sensors 2016, 16, 1887. [CrossRef]
[PubMed]

25. Liu, J.; Lv, Y. Fault Diagnosis for Rolling Bearing Based on the Variational Mode Decomposition De-Noising.
Mach. Des. Manuf. 2015, 10, 21–25.

26. Yi, C.; Lv, Y.; Dang, Z.; Xiao, H. A Novel Mechanical Fault Diagnosis Scheme Based on the Convex 1-D
Second-Order Total Variation Denoising Algorithm. Appl. Sci. 2016, 6, 403. [CrossRef]

27. Wang, W.; Zhang, X.; Wang, X. Chaotic signal denoising method based on independent component analysis
and empirical mode decomposition. Acta Phys. Sin. 2013, 62, 050201.

28. Xiao, Q.; Li, J.; Bai, Z.; Sun, J.; Zhou, N.; Zeng, Z. A Small Leak Detection Method Based on VMD Adaptive
De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines. Sensors 2016, 16,
2116. [CrossRef] [PubMed]

29. Li, Y.; Li, Y.; Chen, X.; Yu, J. Denoising and Feature Extraction Algorithms Using NPE Combined with VMD
and Their Applications in Ship-Radiated Noise. Symmetry 2017, 9, 256. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e18110393
http://dx.doi.org/10.1109/TIM.2007.907967
http://dx.doi.org/10.1109/JSEN.2011.2142302
http://dx.doi.org/10.1109/TSP.2009.2013885
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.3390/s16111887
http://www.ncbi.nlm.nih.gov/pubmed/27834902
http://dx.doi.org/10.3390/app6120403
http://dx.doi.org/10.3390/s16122116
http://www.ncbi.nlm.nih.gov/pubmed/27983577
http://dx.doi.org/10.3390/sym9110256
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Variational Mode Decomposition (VMD) 
	Correlation Coefficient (CC) 
	Evaluation Criteria for Denoising Algorithm 

	Denoising Algorithm Using Secondary VMD (2VMD) and CC 
	Test with Numerical Simulation Signal 
	Simulation 1 
	Simulation 2 
	Simulation 3 
	Different Input Signal-to-Noise Ratio (SNR) and Times of Decomposition by VMD 
	Comparison with Denoising Algorithms Presented Recently 

	Application in Feature Extraction for Ship-Radiated Noise (SN) 
	Denoising of SN 
	Feature Extraction of SN 
	Classification 

	Conclusions 
	References

