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Abstract: ZnO film was deposited by the magnetron sputtering method. The thickness of
ZnO film is approximately 2 µm. The influence of UV light illumination on C2H5OH sensing
properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated
ZnO film displays excellent C2H5OH characteristics in terms of high sensitivity, excellent selectivity,
rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance
of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on
the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light,
high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and
porous surface.
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1. Introduction

Zinc oxide (ZnO) is a one of the wide band-gap metal oxide semiconductors and, as a promising
candidate for gas sensors, has been widely applied in detecting ethanol and other various harmful
gases [1–4]. The response mechanism of ZnO is that the resistance changes dramatically when the
target gas reacts with the chemically-absorbed oxygen of the zinc oxide [5]. In general, in order to speed
up the response rate and overcome the activation energy of the reaction, the operating temperature
of semiconducting-oxide gas sensors is very high (2000 ◦C). However, this high temperature is not
conducive to reducing power consumption, and makes the sensor difficult for usage in integrated
circuits. In addition, the secondary growth and aggregation of metal oxide particles at high
temperatures may lead to undesirable long-term drift problems.

In recent years, many techniques, such as doping of noble metals [6,7], MEMS fabrication [8],
nanosensing materials [9], usage of electrostatic fields [10], and ultraviolet (UV) irradiation [11,12],
have been adopted to reduce the operating temperature of these sensors. Among them, as a promising
strategy, UV light irradiation has attracted a great deal of attention. A few reports have indicated
that the sensing performances of semiconducting oxide gas sensors could be improved noticeably
under UV light irradiation [13–16]. However, most studies focus on the design and synthesis of novel
sensing materials with various morphologies and microstructure. To date, the reported gas sensors
with UV illumination usually utilized a tubular structure, and most of the sensing materials on the
backside of the tubular-structure sensor cannot be illuminated, which led to an insufficient influence
of UV illumination on the sensing performance. The film structure, having high electron mobility
and high utilizing efficiency of UV light, is proposed as a promising material for UV-enhanced gas
sensing applications. However, the planar-type film gas sensors with UV illumination have been rarely
proposed [17–19].
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Up to now, many methods have been used to produce ZnO thin films. Among them,
the magnetron sputtering method has demonstrated a great deal of attractive advantages, such as
long-term stability and well-controlled sputtering process, high deposition rates, and good
crystallization of the deposited film [20–22]. Thus, in this work, a planar-type gas sensor based
on ZnO film has been deposited by the magnetron sputtering method. The gas sensing performance of
the planar-type sensor with and without UV illumination was investigated.

2. Experimental

2.1. Preparation of the ZnO Film

A magnetron sputtering system was used for deposition of ZnO film. ZnO (99.9%) employed
as the sputtering target was sputtered in a commercial alumina substrate pre-printed with the
interdigitated gold electrodes. The chamber was evacuated to the base pressure of about 10−5 Pa,
and the deposition pressure was maintained at 308 Pa. The sputtering power was 120 W and the time
of RF application was about 100 min. The deposited ZnO layers were annealed at temperature of
450 ◦C for 60 min.

2.2. Characterizations

The crystalline structure of the film was characterized by X-ray diffraction (XRD, Rigaku, Tokyo,
Japan). Morphological property of the deposited sample was investigated by Scanning electron
microscopy (SEM, FBI Nova S-450, FEI, New York, NY, USA). Transmission electron microscopy (TEM)
images were recorded on a FEI Tecnai G220 (New York, NY, USA) transmission electron microscope
under a working voltage of 200 kV. The gas-sensing tests were carried out on a commercial CGS-4TPs
gas sensing analysis system (Beijing Elite Tech Co., Ltd., Beijing, China.)

2.3. Fabrication and Gas Sensing Measurements

Gas sensing measurement on the as-deposited ZnO thin film sensors were carried out by using
a climate chamber (Figure 1). A UV-LED light (365 nm; 0.5W/cm2) was used as the light source of
the UV-illuminated sensor. The distance between the UV-LED light source and gas sensors was kept
around 7 cm. The sensor was first irradiated with UV-LED light for 30 min to stabilize their electrical
properties. The response of the gas sensor is defined as the ratio of the resistance of the sensor in dry
air (Ra) to that in the target gases (Rg). The response or recovery time was defined as the time taken by
the sensor resistance output to reach 90% of its total resistance change after each process of applying
or clearing the target gas.
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3. Results and Discussion

3.1. Structure and Morphology of the As-Prepared Material

The XRD pattern of the ZnO thin film is illustrated in Figure 2. The main XRD peaks positioned
at 31.6◦, 34.2◦, 36.1◦, 47.3◦, and 56.5◦ were assigned to the scattering from (100), (002), (101), (102),
and (110) planes of wurtzite-type hexagonal ZnO (JCPDS no. 36-1451) along with a preferentially
c-axis orientation. On the other hand, the low reflection peaks observed at 25.5◦, 35.2◦, 38.2◦, 43.5◦,
44.3◦, 52.6◦, and 57.5◦ were assigned to the (102), (104), (110), (113), (202), (024), and (116) planes of
alumina (Al2O3) substrate. No other peaks belonging to impurities were observed in the XRD pattern
suggesting the successful growth of crystalline ZnO film on the Al2O3 substrate.
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Figure 2. XRD pattern of the synthesized ZnO film deposited by RF magnetron sputtering.

The morphology and structure of the as-deposited ZnO film were characterized by SEM and
HRTEM (High resolution-transmission electron microscopy). The SEM image (Figure 3) shows that
the surface of as-deposited ZnO film is relatively rough and has a porous structure. Additionally,
the thickness of ZnO film is approximately 2 µm based on the cross-section image (shown in the
inset of Figure 3a). The selected area diffraction (SAED) pattern and HRTEM images taken from a
random particle on ZnO film are shown in Figure 3b. Ordered lattice fringes were clearly seen from
the HRTEM image of ZnO film. The lattice spacing are 0.25 nm and 0.24 nm, corresponding to the
(002) and (101) planes of the wurtzite ZnO, respectively. The SAED pattern of ZnO film (shown in the
inset of Figure 3b) displays several ordered bright diffraction spots, suggesting the single crystalline
behavior of the as-deposited film.
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3.2. Sensing Properties

Gas sensing properties of the as-deposited ZnO film were studied towards C2H5OH.
The responses of the sensor to a fixed 1000 ppm concentration of C2H5OH were measured at different
temperatures and the observed results are presented in Figure 4a,b. The maximum response of the
sensor without UV light illumination is 163 at 390 ◦C, while the response reached to 197 at 170 ◦C under
UV illumination. Noticeably, the UV-illuminated ZnO-based sensor exhibits much lower optimum
sensing temperature and higher response compared to that of without UV illumination.
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The plot of the response as a function of different C2H5OH concentrations of the ZnO film sensor
with and without UV light illumination at their optimum operating temperatures is depicted in Figure 5.
Compared to without UV illumination, the response of the UV-illuminated ZnO sensor increases more
rapidly with the increase of C2H5OH concentration below 100 ppm. Afterwards (above 100 ppm),
the sensors tended to saturate gradually. It is noted that the sensor with UV light illumination exhibits
an obvious response to C2H5OH concentration even as low as 0.1 ppm (response = 2.5).
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The response and recovery characteristics of the ZnO film sensor to different concentrations of
C2H5OH with and without UV light illumination at their optimum operating temperatures were
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also studied (Figure 6a), wherein the response and recovery times of the sensor to 100 ppm C2H5OH
with UV light illumination are about 125 s and 109 s, respectively. Comparatively, those of the sensor
without UV light illumination are approximately 180 s and 171 s, respectively. The sensor with UV
light illumination exhibits a more rapid response–recovery process to C2H5OH than that under dark
conditions. Reproducibility measurements on the ZnO film sensor (with and without UV illumination)
were also carried out on a fixed 100 ppm C2H5OH concentration and the subsequent results are
displayed in Figure 6b. The observed six reversible cycles of the ZnO response curves indicate that
both of the sensors have good reproducibility.
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The selectivity study on ZnO film sensors (with and without UV illumination) was performed in
the presence of a variety of target gases and the obtained results are displayed in Figure 7a. Sulfur
dioxide (SO2), methanol (CH3OH), ethanol (C2H5OH), acetone (CH3COCH3), ammonia (NH3), carbon
monoxide (CO), and hydrogen (H2) were used as target gases. The selectivity study revealed that both
the ZnO sensors showing a maximum response to C2H5OH as compared to other target gases. It is
obvious that an appreciable increase in the response of the ZnO sensor with UV light illumination
toward C2H5OH compared to other target gases is noticeably observed, indicating its highest degree of
selectivity. The maximum response of 163 to UV-illuminated ZnO film sensor upon 100 ppm exposure
of C2H5OH was noticed. The long-term stabilities of the ZnO film sensor under dark and under UV
light illumination were monitored at 100 ppm ethanol for seven days after aging treatment. It can be
observed (Figure 7b) that the response varies slightly, indicating good sensor long-term stability.
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The obvious improvement of the response to C2H5OH with UV light illumination at a lower
temperature may arise from the photocatalytic conversion of C2H5OH [23]. The photon-generated
electron-hole pairs would activate the chemically-adsorbed oxygen on the surface of ZnO film. Then the
C2H5OH reacts with oxygen species (O2−) and produce carbon dioxide and water. This process will
release the electrons back to the conductance band of ZnO; as a result, the resistance of the sensor
decreases, simultaneously.

hν→ h+ + e−(UV) (1)

O2 + e−(UV) = O−2 (ads) (2)

CH3CH2OH + O2
−(ads) = CO2 + H2O + 2e− (3)

We have compared our observed gas sensing results (with UV illumination) with those of reports
available in the literature on ZnO and the corresponding comparison is tabulated in Table 1. It is noted
that the sensor based on ZnO film in the present study displays a much lower detection limit and
higher sensitivity when compared to other ZnO materials reported elsewhere [24–29]. The possible
reasons of excellent sensing performance of the ZnO film sensor with UV activation are discussed.
Firstly, the photocatalytic oxidation of ethanol on the surface of oxide species can improve electron
donation to the ZnO film. Secondly, the planar film structure deposited by magnetron sputtering has a
high utilizing efficiency of UV light, high electron mobility, and low grain-boundary barrier. Thirdly,
a good surface/volume ratio of the ZnO film with a relatively rough and porous surface may promote
the gas adsorption and diffusion on the active surface.

Table 1. Comparison of sensing properties of ZnO sensors with different microstructures under
UV illumination.

Nanostructure of ZnO UV Wavelength
(nm)/Energy

Working
Temperature (◦C)

Ethanol
(ppm) Response Detection

Limit (ppm) Reference

ZnO-SnO2 nanoparticles 380/60 mW/cm2 250 1000 23 (Ra/Rg) 100 [19]
ZnO nanoparticles 400/2.2 mW/cm2 RT 100 1.6 (4I/Ia) 10 [23]

ZnO nanodisk 365/1.6 mW/cm2 RT 200 0.3 (4I/Ia) 20 [24]
ZnO nanofiber 365/8 W/cm2 RT 60 0.8 (4I/Ia) 10 [25]

ZnO porous film 365/3.6 mW/cm2 - 100 1.5 (4I/Ia) 30 [26]
ZnO:AuNPs 254/4.1 mW/cm2 125 1000 6.3 (Ra/Rg) 100 [27]

ZnO nanowire 365/100 mW/cm2 53 100 1.2 (4R/Ra) 50 [28]
ZnO film 365/0.5 W/cm2 170 100 163 (Ra/Rg) 0.1 This work

4. Conclusions

The magnetron sputtering method was successfully employed for the deposition of ZnO film
and utilized for the application of ethanol sensors. The as-deposited ZnO film sensor exhibits good
sensitivity, low operating temperature, excellent selectivity, and a low detection limit with the activation
UV LED. The observed gas sensing results indicate that the as-deposited ZnO film is a promising
candidate for applications in the detection of low concentrations of C2H5OH.
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