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Abstract: Target localization, which aims to estimate the location of an unknown target, is one
of the key issues in applications of underwater acoustic sensor networks (UASNs). However,
the constrained property of an underwater environment, such as restricted communication capacity
of sensor nodes and sensing noises, makes target localization a challenging problem. This paper
relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm
for the localization problem in communication-constrained underwater acoustic sensor networks.
A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern
to participate in the sensing process at each time frame. Subsequently, we propose a least-square
support vector regression (LSSVR)-based observation function, through which an iterative regression
strategy is used to deal with the distorted data caused by sensing noises, to improve the observation
accuracy. At the same time, we integrate the observation to formulate the likelihood function,
which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to
avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the
performance of the proposed localization algorithm, two different noise scenarios are investigated.
The simulation results show that the proposed localization algorithm can efficiently improve the
localization accuracy. In addition, the node-selection strategy can effectively select the subset of
sensor nodes to improve the communication efficiency of the sensor network.

Keywords: target; localization; particle filter; support vector learning; underwater acoustic sensor
networks (UASNs)

1. Introduction

In recent years, underwater acoustic sensor networks (UASNs) have been proposed to explore the
ocean and realize aquatic applications, such as safety systems, oil platform monitoring, navigation [1,2].
In [3,4], the UASNs are used for the protection of offshore platforms and energy plants. In UASNs,
the target localization, which aims to estimate the location of unknown target, is an important task.
In advance, the target localization systems are divided into two categories: passive localization [5–7]
and active localization [8,9]. For instance, a passive localization was presented in [10] to analyse the
received acoustic signals based on Energy Detection and extended Kalman Filter (EKF) algorithm.
In [11], an optimal long-term robot motion planning algorithm was proposed to realize the active source
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localization. In addition, an asynchronous localization algorithm with mobility prediction in [12] is
presented to realize collaboratively localize an underwater target. In this paper, we investigate the
active localization system in UASNs, where the target transmits localization request message actively
and the receivers of the sensor nodes estimate the distances to the target.

Difficulty of the underwater target localization is the constrained underwater environment. Firstly,
the limited bandwidth capacity and limited battery power [13] make long-distance communication
pattern inefficient in the process of communicating between target and sensor nodes.To optimize
the limited communication capacity of sensor nodes, the sensor nodes were divided into several
subnetworks in [14] to realize short-distance transmissions instead of the long-distance, improving
the sensing accuracy of each sensor node. However, the short-distance pattern is only implemented
in the process of data aggregation rather than the process of communicating between the target
and sensor nodes.Thus, how to realize the low-cost and short-distance pattern in the process of
communicating between the target and sensor nodes is one of the pivotal issues to be addressed in this
paper. Base on the classification property of SVM [15], SVM algorithm was applied to discriminate
whether the target lies in the region near the location of a sensor node. Motivated by classification this
character, we propose a node-selection strategy to structure a low-cost and communication-efficient
sensor networks by selecting fractional sensor nodes within the efficient range from the entire sensor
networks to communicate with the target.

Subsequently, sensor networks are required to achieve the underwater target localization task.
In [16,17], the state-space approach based on particle filter method has been employed to realize target
localization in UASNs. The particle filter recursively estimates the probability density of the unknown
target location conditioned on all measurement data up to the current frame. Using a sequential Monte
Carlo method, the probability density is represented by a set of random particles with associated
weights which are updated by the likelihood function of observation. In [18], the time of arrival (ToA)
measurement model which relies on precise time synchronization and the speed of sound was adopted
to construct the likelihood function. The time synchronization has been improved in [19–21]. However,
the ToA is vulnerable to the sensing noises from the speed of sound which is affected by many factors
such as water temperature, pressure, and salinity [22]. The sensing noises will distort the likelihood
function, which makes the particles cannot be weighted accurately and leads to “particle degeneracy”
problem. In order to solve this problem, various methods such as human memory model [23], adaptive
method [24] and mean-shift method [25] were applied to establish the likelihood function. Specially,
learning-based methods have been incorporated into particle filter to deal with sensing noise problem.
In [26], the least-square support vector regression (LSSVR) was used to obtain the accurate observation
in the noise conditions owe to its black-box model. However, considering that the unique underwater
circumstances where the target is occluded by objects results in excessive sensing noise, the method
cannot be effective in target localization.

In this paper, we investigate a support vector learning-based particle filter algorithm in
communication-efficient UASNs to improve the localization accuracy. A node-selection strategy is first
proposed, using support vector machine (SVM) algorithm to train all sensor nodes and judge whether
the sensor node locates within the communication-efficient range to the target, to select fractional
sensor nodes to participate in the sensing process. Since the node-selection strategy provides the
short-distance communication pattern, it has advantages of the communication cost and measurement
accuracy compared to the analog long-distance particle filter method [27]. Next, based on the raw
data obtained from the selected sensor nodes, a LSSVR-based observation model, where an iterative
regression function is proposed to deal with distorted raw data, is established to yield accurate
observation against the sensing noises. At the same time, we integrate the observation to formulate
the likelihood function of the particle filter. Compared with the ToA-based particle filter [28], where
the ToA measurement model was adopted to construct the likelihood function, this approach has a
better performance against the sensing noise and effectively update the weights of particles to solve
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the “particle degeneracy” problem. Based on the above solutions, the communication efficiency and
localization accuracy are improved. The main contributions of this paper are threefold.

• A node-selection strategy, where the discrimination criteria is the distance to target so as to realize
the short-distance communication, is proposed to select fractional number of sensor nodes from
the sensor networks. The pattern where less sensor nodes participate in the sensing process by
the way of short-distance communication enhances the communication property and reduces the
sensing noises.

• A learning-based observation model coupled with an iterative regression function is proposed to
yield an accurate observation against the sensing noise.

• A likelihood function integrating the accurate observation is formulated to effectively update
the weights of particles, avoiding the “particle degeneracy”. The solution yields an accurate
localization result.

The rest of this paper is organized as follows. In Section 2, the problems for particle filter estimation
in UASNs are formulated. In Section 3, the detailed solutions for the problems are presented. Then,
Section 4 shows the simulation results and analysis of them. Finally, conclusions are given in Section 5.

2. Problem Formulation

In this section, we formulate the problems for particle filter estimation in UASNs. First, the
network architecture for UASNs is briefly introduced. Next, considering the limited communication
resources and sensing noises, the particle filter localization problems are described.

2.1. System Model

In [3], the protection system requires a unified model based on aerial, ground and underwater
sensor to guarantee foolproof protection. The project targets obtain sensor data using the acoustic
communication network. This data is also used to tune the communication system for optimal
performance. The tuning process can be carried out by an Autonomous Underwater Vehicle (AUV) to
physically separate the acoustic modules and guarantee the time synchronization of the sensor network.

In this paper, the underwater sensor network is used to realize active localization. In the process
of the active localization, the target transmits localization request message and the receivers of the
sensor nodes which are attached to the entire monitoring region including its bottom estimate the
distances to the target. After this process of sensing, each sensor node obtains the distance data to
target. Next, the all distance data is transmitted to fusion node which is capable of data aggregation
and computation. As shown in the Figure 1, the AUV is regarded as the target; The buoy floats at the
surface of water to aggregate measurement data and realize the communication between underwater
and the terrestrial workstation.

In the sensing process, the time-synchronous measurement model of time of arrival (ToA) is
adapted to obtain the distance data. Assuming a target and N sensor nodes in UASNs, the discrete-time
signal received at the lth sensor node (where l = 1, ..., N) is

rl = (tl2 − tl1) · vs (1)

where rl is the relative distance from target to lth sensor node and tl1 is the time that the target
sends signal, while the time of receiving signal from the target is tl2; vs ≈ 1500 m/s represents the
propagation speed of the acoustic wave.
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The acquired distance data from N sensor nodes at time frame k are stacked to form the raw data
Rk, that is N × 1 matrix

Rk =

 r1(k)
...

rN(k)

 (2)

Physically, the observation of target location Zk is obtained through the transformation of the
raw data

Zk = f (θ, Rk) (3)

where f (·) is relevant observation function and θ is the observation parameter corresponding to the
observation function.

2.2. The Problems of the Particle Filter Localization Scheme in UASNs

The state-space model contains the state transition equation and observation equation [29]. At time
frame k, the mobile target state is described with the state vector Xk = [xk, yk, zk]

T . The state vector
can be acquired based on the state transition relation

Xk = H(Xk−1, vk−1) (4)

where H(·) is a known, not necessarily linear, function of the previous state Xk−1 and a noise term
vk−1. The observation state-space equation is described as

Zk = F(Xk, wk) (5)

where F(·) is an unknown, not necessarily linear, function of the state Xk and a noise term wk.

Problem 1. As described in Section 2.1, the raw data is obtained from N sensor nodes at time frame k. However,
in underwater region, the sensor nodes staying away from the target are unable to communicate with the
target effectively because of the limited communication capacity. Moreover, it is known that long-distance
communication means more noises and the obtained distance data from the sensor node staying away from target
is not available to the fusion node. Thus, we prefer short-distance transmissions that are influenced by less
noises compared with long-distance transmissions in an underwater environment. Based on this, we propose a
communication-efficient network architecture shown in Figure 1. In the sensor network, the fractional sensor
nodes coming close to the target are selected to transmit their distance data to fusion node.

Let Z1:k = {Z1, Z2, ..., Zk} denotes all observations up to time k. The aim is to recursively estimate
the posterior probability density function, that is, p(Xk|Z1:k). Based on Bayesian recursive estimation,
the posterior distribution [30] can be described as

p(Xk|Z1:k−1) =
∫

p(Xk|Xk−1)p(Xk−1|Z1:k−1) (6)

p(Xk|Z1:k) ∝ p(Zk|Xk)p(Xk|Z1:k−1) (7)

where p(Xk−1|Z1:k−1) is the posterior distribution estimated at the last time step, and p(Xk|Z1:k−1) is
the prior distribution for the current time step. Equation (4) is modeled as a state transition probability
p(Xk|Xk−1) and the Equation (5) is modeled as the likelihood function p(Zk|Xk).

In general, the Bayesian recursion described in (6) and (7) cannot be calculated analytically except
for special linear Gaussian state-space model such as Kalman filter. For the nonlinear localization
model, the particle filter approximates the posterior probability function using Monte Carlo method to
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sample a set of particles associated with weights [31]. Let {xi
k, wi

k}
Np
i=1 denotes Np weighted particles.

Thus, (7) is represented as follows

p(Xk|Z1:k) '
Np

∑
i=1

wi
kδ(Xk − xi

k) (8)

where δ(·) is the Dirac delta function. Considering the difficulty of drawing the particles from (8),
the important sampling is used to draw the particles using known important distribution function
q(Xk|X1:k−1, Z1:k). By employing the posterior distribution function as the important distribution
function, that is q(Xk|X1:k−1, Z1:k) = p(Xk|Xk−1), the particles and weights are given as

xi
k ∼ p(Xk|Xk−1) (9)

wi
k = wi

k−1
p(Zk|xi

k)p(xi
k|x

i
k−1)

q(Xk|X1:k−1, Z1:k)
= wi

k−1 p(Zk|xi
k) (10)

The likelihood function is designed as Gaussian likelihood function given by

p(Zk|xi
k) = ∏

j∈M
N (Zj

k; dj
k, σ) (11)

where N (Zj
k, dj

k, σ) represents a Gaussian distribution with mean dj
k and variance σ; dj

k = ‖x
i
k − sj‖ is

the distance between the ith particle and jth selected sensor node (j ∈ M). sj is the known location of
jth sensor node.

Thus, the target location can be estimated as

X̂k =
Np

∑
i=1

wi
kxi

k (12)

Figure 1. The communication-efficient architecture for underwater acoustic sensor networks.
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Problem 2. The Equation (10) reveals that the weights are updated by likelihood function p(Zk|xi
k).

The measurement model (1) is easily influenced by the complex underwater environment. Many kinds of
sensing noises are introduced into raw data Rk at time frame k. The inaccurate acoustic propagation is a vital
factor. In general, the sound propagation vs is closely connected with the density of the water, the temperature of
the water, the multipath and so on. Consequently, the unauthentic propagation speed results in sensing noise.
Moreover, as shown in Figure 2a, the line of sight between target and sensor node is blocked by the appearance of
the obstacles. The relationship between ToA measurement and distance is shown in Figure 2b, which reveals the
excessive sensing noise is contained in the raw data Rk when the acoustic link is blocked by the obstacles. When
the raw data is distorted, we mark it as Zj∗

k . When Zj∗
k > Zj

k is established, it is obvious that the inequality

ω
j∗
k < ω

j
k is approved. Thus, the distorted raw data will lead to the problem of “particle degeneracy", where

the particles can obtain negligible weights after some updates. Accordingly, the estimated target location will
lose accuracy.

Obstacle

factor

(a) (b)

Figure 2. (a) The target is occluded by obstacle; (b) ToA measurement in the situation of obstacle
between two nodes.

3. Algorithm Description

In this section, we first design a node-selection strategy, selecting appropriate sensor nodes from
the underwater sensor network, to improve the communication efficiency. Based on the optimized
sensor network, the support vector learning-based particle filter method is then developed to improve
the localization accuracy.

3.1. Node-Selection Strategy for UASNs

As described in Problem 1, it is unreasonable that the fusion node gathers the data from each
sensor node. Thus, we select fractional sensor nodes locating within efficient range ς to the target
to transmit their distance data to fusion node. A node-selection strategy is designed to ascertain the
satisfactory sensor nodes, using SVM algorithm to train all sensor nodes.

We consider a sensor network with N sensor nodes, each of which obtains distance data rl(k) at
time frame k, l = 1, ..., N. Given a training dataset {di, yi}Ns

i=1. Ns denotes the total number of training
data and yi ∈ {−1, 1} is the label corresponding to di (0 ≤ di ≤ ϑ). Each sensor node can be trained by
solving the following dual form of the SVM problem [8]

min
λi

1
2 ∑

i,j
yiyjλiλj ϕ(di, dj)−∑

i
λi

s.t. ∑
i

λiyi = 0, 0 ≤ λi ≤ P, i, j = 1, ...Ns
(13)
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where λi is the corresponding Lagrangian multipliers, P is a regularization constant and and ϕ(·, ·)
is a kernel function to express the nonlinearity of the data distribution. Solving the optimization
problem (13) with quadratic programming, a discriminant function is obtained as

f (l)(rl(k)) =
Ns

∑
i=1

λiyi ϕ(rl(k), di) (14)

The discriminant (14) decides whether lth sensor node within the efficient range ς ( f (l)(rl(k)) > 0)
or not ( f (l)(rl(k)) < 0). Based on this node-selection strategy, we pick out M sensor node from the
entire sensor network.

Remark 1. Based on the node-selection strategy, the less sensor nodes are used to participate in the transmission
process by means of short-distance communication. Thus, the communication efficiency will be improve at every
transmission frame and the short-distance transmissions mean less influence of sensing noise, such that fusion
node can obtain more accurate raw data. Meanwhile, the energy consumption of the sensor network reduce owe
to less transmissions process.

3.2. Support Vector Learning-Based Particle Filter Method

In this section, we focus on designing a support vector learning-based particle filter method base
on the aforementioned sensor network to solve the Problem 2.

3.2.1. Least-Square Support Vector Regression (LSSVR)-based Observation Function

The traditional particle filter regards the raw data as observation, that is Zk = Rk. The raw
data is easily distorted by the underwater noises, which leads to the likelihood function cannot be
formulated efficiently. In order to obtain accurate observation in the condition of sensing noises,
we first establish LSSVR-based observation model. Consider a regression problem using a training
dataset D = {xm, ym}J

m=1, where J denotes the total number of training data, xm ∈ RM is the input
pattern with the selected M sensor nodes, and ym is the corresponding output. A nonlinear observation
function can be obtained by solving the following optimization problem [32]:

min
ω,e
{ 1

2 ωTω + C
2

J
∑

m=1
e2

m}

s.t. ym = ωTφ(xm) + b + em, m = 1, ...J
(15)

where the vector ω represents the model complexity, b is the bias. e = [e1...eJ ]
T and C ≥ 0 are the

margin and the gain of the regulator, respectively. φ(·) is a nonlinear mapping that maps the input data
into a high-dimensional feature space whose dimensions can be infinite. As the Lagrange is applied
to (15), we get the following form:

L(ω, b : e, α) =
J

∑
m=1

αm(ym −ωTφ(xm)− b− em) +
1
2

ωTω +
C
2

J

∑
m=1

e2
m (16)

where α = [α1, ...αJ ]
T is the Lagrange multiplier that can be either positive or negative. Based on the

Karush-Kuhn-Tucker (KKT) condition, the (16) is replaced by the following matrix equation[
0 1̄
1̄ K̄

] [
b
α

]
=

[
0
ȳ

]
(17)

where 1̄ = [11, ...1J ]
T , ȳ = [y1, ...yJ ]

T , and K̄ is an J × J matrix whose elements are given as

K̄mn = κ(xm, xn) = φ(xm)
Tφ(xn) + ηmn/C (18)
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In (18), ηmn is given as

ηmn =

{
1, m = n
0, m 6= n

(19)

After the α and b are obtained by solving matrix Equation (17), the observation function is formed as

Zk =
J

∑
m=1

αmk(xm, Rk) + b (20)

Furthermore, in obstacles condition, the obstacles will introduce excessive sensing noise to Rk.
In order to address excessive sensing noise problem, we propose an iterative regression function based
on LSSVR to establish the observation function, given by

Z(ν+1)
k = Z(ν)

k (δRk) = Q(Z(ν)
k ) (21)

where superscript ν denotes the iteration step. As before, Zk values are the predictor; thus, they can be
treated as constants throughout the iterations. In Section 3.1, M sensor nodes have been selected to
transmit their distance data to fusion node, which composes of the M× 1 vector data Rk.

Rk =

 r1(k)
...

rM(k)

 (22)

At the frame k, it is assumed that target has its own transmitted intensity level TIL , and RIL
denotes the received intensity level of sensor node. In the process of transmitting and receiving,
the propagation loss of the acoustic wave PL is denoted. Thus, the received intensity level RIL for an
arbitrary sensing sensor is defined as

RIL = TIL − PL (23)

Under the surface of the water, the propagation loss PL is denoted as follows [33]

PL = 20 log r̂ + βr̂ · 10−3 (24)

where β > 0 is the attenuation coefficient, and r̂ is the relative distance level from target to sensor.
We establish the following diagnosis mechanism of excessive sensing noise to determine the δ,

the lth element of Rk is diagnosed{
TIL − RIL ≥ p̂τ(Rk[l]), 0 < p̂ ≤ 1
τ(Rk[l]) = 20 log Rk[l] + βRk[l] · 10−3 (25)

where Rk[l] denotes the lth element of the raw data Rk and 0 < p̂ ≤ 1 is the gain of propagation loss.
If TIL − RIL ≥ p̂τ(Rk[l]), it means that the excessive sensing noise is contained in raw data Rk[l].

Remark 2. The gain of propagation loss p̂ guarantees the flexibility and practicality because the sensing noise
is closely related with the environment and the communication capacity of the sensor nodes.

Based on the diagnosis mechanism of excessive sensing noise, the (l, l)th element of the M×M
diagonal matrix δ is given by

δ(l,l) =

{
|Rk [l]−S̄l |

Rk [l]
, TIL − RIL ≥ p̂τ(Rk[l])

1, otherwise
(26)
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where S̄l is the average of the lth element of all data in training dataset D.

Remark 3. Based on the diagnosis mechanism in (25), we can determine whether Rk[l] is distorted or not.
Meanwhile, the S̄l is determined by the data from dataset D. When the distorted Rk[l] contains excessive sensing
noise, the corresponding δ(l,l) will be smaller. This characteristic makes the distorted data be addressed more
efficient. After δ is obtained, the iterative regression function (21) is used to estimate the final observation Zk.

In general, the termination condition is indicated as
∣∣∣Z(ν+1)

k − Z(ν)
k

∣∣∣ ≤ ε. However, the (21) will be
approximately equal to b which is obtained by solving the matrix Equation (17) in the initial iteration
steps, when the sensing noises contained in raw data Rx are large enough. Namely, it reaches the
termination condition prematurely. Thus, we propose the following termination form:{

|Z(ν+1)
k − b| ≥ ε

|Z(ν+1)
k − Z(ν)

k | ≤ ε
(27)

where ε and ε are positive constants.
∣∣∣Z(ν+1)

k − b
∣∣∣ ≥ ε can avoid reaching the termination condition

prematurely and
∣∣∣Z(ν+1)

k − Z(ν)
k

∣∣∣ ≤ ε guarantees that the (21) converges to proper value. Thus, the
LSSVR-based observation function is shown in Algorithm 1.

Algorithm 1 LSSVR-based observation function

1: Initialization:Train LSSVR model with training dataset D and acquire α and b by solving matrix

Equation (17)
2: Input: Raw data Rk
3: Diagnosis of excessive sensing noise
4: for all l = 1, ..., M do

5: if There exists TIL − RIL ≥ p̂τ(Rk[l]) and τ(Rk[l]) = 20 log Rk[l] + βRk[l] · 10−3 in (25) then

6: Corresponding parameter which the excessive sensing occurs is set based on (26): δ(l,l) =
|Rk [l]−S̄l |

Rk [l]
7: else

8: Corresponding parameter which the excessive sensing does not occur is set based on (26):

δ(l,l) = 1
9: end if

10: end for
11: All corresponding parameters are determined and the diagonal matrix δ is obtained
12: Iteration: calculate the observations
13: while Termination condition:

∣∣∣Z(ν+1)
k − b

∣∣∣ ≥ ε and
∣∣∣Z(ν+1)

k − Z(ν)
k

∣∣∣ ≤ ε do

14: The iterative equation: Z(ν+1)
k = Z(ν)

k (δRk) = Q(Z(ν)
k ), ν = 0, 1, 2...

15: end while
16: Output: Observation of Zk = Z(ν+1)

k

3.2.2. Formulation Likelihood Function

The traditional particle filter regards the raw data as observations. Accordingly, the likelihood
function p(Zk|xi

k) in (10) is used to update the weight wi
k. The likelihood function is designed as

Gaussian likelihood function given by

p(Zk|xi
k) = ∏

j∈M
N (Zj

k; dj
k, σ) (28)
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where N (Zj
k, dj

k, σ) represents a Gaussian distribution with mean dj
k and variance σ; dj

k = ‖x
i
k − sj‖ is

the distance between the ith particle and jth selected sensor node (j ∈ M). sj is the known location of
jth sensor node. Thus, the weight of the ith particle is updated

wi
k = wi

k−1 ∏
j∈M

1√
2πσ

exp

(
−
(Rk[j]− dj

k)
2

2σ2

)
(29)

As described in Section 3.2.1, the LSSVR-based observation function is established to construct
the mapping f (·) : RM −→ R from raw data to three-dimensional target location. Once this mapping
is determined, the three-dimensional target location is regarded as the observation Zk. The likelihood
function and weight update are as follows

p(Zk|xi
k) = N (Zk; xi

k, σ) (30)

and

wi
k = wi

k−1
1√
2πσ

exp

(
−
‖Zk − xi

k‖
2

2σ2

)
(31)

The support vector learning-based particle filter algorithm, where the LSSVR-based observation
function is used to computer the observation and the proposed likelihood function is used to update
the particle weights, is shown in Algorithm 2.

Algorithm 2 Support vector learning-based particle filter algorithm

1: Initialization: generate Np initial particles {xi
0, i = 1, ...Np} and give them uniform weights

{wi
0 = 1/Np, i = 1, ..., Np}

2: for all k = 1, 2... do

3: for all i = 1, 2...Np do

4: - Draw particles according to state transition model (4)
5: xi

k ∼ p(xk|xi
k−1)

6: - Compute the observation according to the Algorithm 1
7: Zk = Z(ν+1)

k
8: - Compute the likelihood function based on (30): p(Zk|xi

k) = N (Zk; xi
k, σ)

9: - Update the weights based on (31): wi
k = wi

k−1
1√
2πσ

exp
(
− ‖Zk−xi

k‖
2

2σ2

)
10: end for
11: - Obtain total particle weights wi

k(i = 1, 2...Np)

12: - Normalize the weight: wi
k = wi

k/
Np

∑
i=1

wi
k

13: - Resample the particles according to the weights wi
k:weed out low-weight particles

14: - Estimate the target state X̂k =
Np

∑
i=1

wi
kxi

k
15: end for

4. Results and Discussion

In this section, we deploy a simulation environment with 20 sensor nodes to a region of
100 m × 100 m × 100 m. First, we investigate the communication-efficient network architecture.
According to the Section 3.1, the optimized network architecture in this paper can pick fractional
sensor nodes by the node-selection strategy to improve the communication efficiency. The distance
parameter is set ϑ = 180 to train the monitored region. We set the communication-efficient range
as ς = 10 m, 40 m, 50 m, 60 m, 70 m, 80 m and 100 m respectively. When the target locates in
(40,50,60), we give the Table 1 to show the discriminant performance of node-selection strategy in
the case of different communication-efficient range. According to the Table 1, the node-selection
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strategy has a great performance in discriminating and selecting sensor nodes in the different
communication-efficient range.

Table 1. Discriminant of sensor nodes in different communication-efficient range.

Communication-Efficient Range 10 40 50 60 70 80 90 100

Number of sensor node within the distance 0 2 8 14 18 20 20 20
Discriminant of sensor nodes 0 2 8 14 18 19 19 19

Meanwhile, considering that if the number of selected sensor nodes is too small, the obtained
observation in Section 3.2 will degrade because of the lack of data information. Thus, in the following
simulated experiments, we set the communication-efficient range as ς = 50 m, avoiding the shortage
of information. An example with target locating in (51.08,40.95,60.75) is shown in Figure 3. It can be
shown that the node-selection strategy select appropriate sensor nodes, that means M = 8.
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Figure 3. The selected sensor nodes in communication-constrained underwater acoustic sensor networks.

Next, this section is devoted to the experimental study for the verification of the localization
performance of the proposed support vector learning-based particle filter (SVL-PF) in sensing noise
condition. According to [26,28], the least-square support vector regression and ToA are used to establish
the observation function of particle filter respectively, improving the accuracy of the measurement
data. In Consensus Estimation [14], a regional optimal solution is proposed to avoid the occurrence of
no-solution situation and improve the localization accuracy. These algorithms have been demonstrated
to be effective when handling the universal sensing noise. In this paper, we propose a support vector
learning-based particle filter (SVL-PF) scheme to solve the excessive sensing noise on the basis of
the universal sensing noise. Thus, we compare the proposed SVL-PF algorithm with Consensus
Estimation [14], LSSVR-PF [26] and ToA-PF [28] in two different simulated scenarios from both
universal sensing noise and excessive sensing noise.

For all the simulated experiments, the gain of propagation loss p̂ in (25) is selected to be 1/2.
The parameters ε and ε in (27) are set to 1 and 0.2, guaranteeing the convergence performance. Since
the underwater target is usually assumed to be moving slowly, the CV model is employed for the
state model [

Xk
Ẋk

]
=

[
1 T
0 1

] [
Xk−1
Ẋk−1

]
+

[
1
0

]
Vk

where T representing the time period in seconds between the previous and current time step; Ẋk is
the motion velocity and Xk is the target state. Vk is a Gaussian random variable with zero mean and
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unit variance. We set the initial state X0 = (1, 1, 1)T and initial particles are drawn uniformly around
the workspace.

A. Scenario 1: A localization example in the universal sensing noise condition
In this scenario, we check the localization performance in the case where the universal sensing

noise is mingled in raw data. A Gaussian noise with a standard deviation of 10% of the raw data is
added to the raw data. The sensing noise is mainly caused on account of the insufficient communication
ability of sensor node. Figure 4 shows the localization trajectories of four algorithms. In the figure,
the green curve (SVL-PF estimation ) preferably follows the blue curve (real state) than the red curve
(ToA-PF), black curve (Consensus Estimation) and purplish red curve (LSSVR-PF).
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Figure 4. The localization trajectory of the proposed algorithm and the compared algorithms in the
universal noise condition.

To show more clearly, a localization error function is defined as Ek = [(x̂k − xk)
2 + (ŷk − yk)

2 +

(ẑk − zk)
2]

1
2 , where X̂k = (x̂k, ŷk, ẑk)

T is the estimated location of the target and Xk = (xk, yk, zk)
T is the

real location of the target at time frame k. The localization errors using the proposed SVL-PF algorithm
in this paper and the compared algorithms are shown in Figure 5.
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Figure 5. The localization errors of the proposed algorithm and the compared algorithms in the
universal noise condition.
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As shown, even though the localization errors of SVL-PF are larger than the compared algorithms
at certain time frames such as k = 54, 61 and 66, it is obvious that the SVL-PF presents better localization
accuracy as a whole.

Moreover, considering that the particle filter recursively estimates target location conditioned on
all measurement data up to the current time frame, the prior results have an effect on the current time
frame. Thus, the average of accumulated error function is defined to show the average localization
error from the initial time frame to present time frame k.

Eave =
tk

∑
k=1

Ek/k (32)

where Ek is the localization error at time frame k and tk represents the current time frame. When the
current time frames are tk = 10, 20..., 100, the average localization errors of all test algorithms are
shown in Table 2.

Table 2. The average localization errors in the universal noise condition.

Method
Time Step (s) k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100

SVL-PF in this paper 2.2723 2.3781 2.6469 2.6243 2.5688 2.5631 2.5405 2.5059 2.5209 2.4971
Consensus Estimation in [14] 2.4758 2.7938 3.3335 3.4380 3.3274 3.3984 3.4429 3.5236 3.6684 3.7120

LSSVR-PF in [26] 2.4915 2.6860 3.1510 3.1835 3.4320 3.3845 3.3690 3.5250 3.7554 3.8613
ToA-PF in [28] 5.3947 5.1016 4.8245 4.4975 4.5450 4.4157 4.3370 4.1996 4.2199 4.2943

Based on the Table 2, the SVL-PF in this paper has smaller average localization error at different
time frames. The significance of the different results among the algorithms (SVL-PF, ToA-PF, LSSVR-PF
and Consensus Estimation) illustrates that the SVL-PF using the support vector learning-based
measurement model is efficient against the sensing noise.

According to the results, we can easily verify that the proposed SVL-PF algorithm in this paper
presents better localization performance, although the compared algorithms have a good localization
performance in the universal sensing noise. It means that the proposed algorithm in this paper has a
better localization accuracy in the situation of universal sensing noise.

B. Scenario 2: A localization example in the excessive sensing noise condition
As described in Problem 2, the excessive sensing noise will lead to particle degeneracy and

accuracy loss. In this scenario, we check the localization performance in the case where the excessive
sensing noise arises. On the basis of the universal sensing noise, a Gaussian noise with a standard
deviation of 25% of the raw data is additional added to the raw data Rk. Similarly, the localization
trajectory and the corresponding localization errors are described in Figures 6 and 7. Taking Figure 7
as an example, the localization errors of the ToA-PF, LSSVR-PF and Consensus Estimation are larger
than the proposed SVL-PF in this paper. Moreover, Table 3 shows the average localization errors of all
test algorithms in the excessive sensing noise condition. The compared algorithms (ToA-PF, Consensus
Estimation and LSSVR-PF) contain the larger average localization errors which reach to 6.8802 m,
5.9295 m and 8.2197 m. It is obvious that the SVL-PF has a smaller average localization errors from the
initial time frame to the final time frame. The results declare that the LSSVR-based and ToA-based
cannot effectively handle the excessive sensing noise problem, and the the excessive sensing noise
results in the no-solution situation, causing the localization accuracy loss of the Consensus Estimation
algorithm. Besides, compared with the Tables 2 and 3, the average localization error of LSSVR-PF
algorithm has a great increase from universal condition to excessive condition. The reason is that the
LSSVR model closely related to the raw data cannot obtain satisfactory measurement data in excessive
noise condition and the correlation character of particle filter among all measurement data up to the
current time frame aggravates the localization accuracy.



Sensors 2018, 18, 8 14 of 17

As shown, SVL-PF is the most effective algorithm in terms of excessive sensing noise.
It demonstrates that SVL-PF can solve the excessive sensing noise problem by means of the iterative
regression function and improve the localization accuracy.
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Figure 6. The localization trajectory of the proposed algorithm and the compared algorithms in the
excessive noise condition.
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Figure 7. The localization errors of the proposed algorithm and the compared algorithms in the
excessive noise condition.

Table 3. The average localization errors in the excessive noise condition.

Method
Time Step (s) k = 10 k = 20 k = 30 k = 40 k = 50 k = 60 k = 70 k = 80 k = 90 k = 100

SVL-PF in this paper 3.4576 3.5440 3.5353 3.5832 3.4888 3.4695 3.4276 3.4292 3.4305 3.4523
Consensus Estimation in [14] 4.1671 4.6963 5.1126 5.9764 5.8122 5.7013 5.6783 5.6683 5.7145 5.9295

LSSVR-PF in [26] 5.2951 5.5807 5.5747 6.1289 6.1254 6.6172 7.1446 7.5155 7.8664 8.2197
ToA-PF in [28] 4.9028 4.6084 5.3006 5.8910 6.1165 6.3656 6.4334 6.4526 6.3611 6.5046

It is found from the aforementioned results that the proposed SVL-PF algorithm in this paper
has a better performance against the sensing noise from both universal sensing noise and excessive
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sensing noise. Specially, in the face of the sensing noise, SVL-PF algorithm can solve this problem and
improve the localization accuracy.

5. Conclusions

In this paper, we present the support vector learning-based particle filter for target localization
in communication-constrained underwater acoustic sensor networks. By taking advantage of the
node-selection strategy, the pattern where less sensor nodes participate in sensing process by the way
of short-distance communication improves the efficiency of communication and reduces the sensing
noise. Furthermore, a support vector learning-based particle filter approach formulates the likelihood
function to update the weights of particles, and yields accurate estimation in spite of excessive sensing
noise condition. We compare our algorithm with the related particle filter-based algorithms and
consensus estimation algorithm in estimating the target location. The simulation results show that the
node-selection strategy can effectively select the subset of sensor nodes and the proposed localization
algorithm can efficiently improve the localization accuracy than particle filter in the condition of
sensing noises.
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LSSVR-PF least-square support vector regression-based particle filter
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