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Abstract: Demand Response (DR) aims to motivate end consumers to change their energy consumption
patterns in response to changes in electricity prices or when the reliability of the electrical power system
(EPS) is compromised. Most of the proposals found in the literature only aim at reducing the cost for
end consumers. However, this article proposes a home energy management system (HEMS) that
aims to schedule the use of each home appliance based on the price of electricity in real-time (RTP)
and on the consumer satisfaction/comfort level in order to guarantee the stability and the safety of
the EPS. Thus, this paper presents a multi-objective DR optimization model which was formulated as a
multi-objective nonlinear programming problem subjected to a set of constraints and was solved using
the Non-Dominated Sorted Genetic Algorithm (NSGA-II), in order to determine the scheduling of home
appliances for the time horizon. The multi-objective DR optimization model not only to minimize the
cost of electricity consumption but also to reduce the level of inconvenience for residential consumers.
Moreover, a priori, it is expected to obtain a more uniform demand with fewer peaks in the system
and, potentially, achieving a more reliable and safer EPS operation. Thus, the energy management
controller (EMC) within the HEMS determines an optimized schedule for each home appliance through
the multi-objective DR model presented in this article, and ensures a more economic scenario for
end consumers. In this paper, a performance evaluation of HEMS in 15 Brazilian families between
1 January and 31 December 2016 is presented with different electric energy consumption patterns in
the cities of Belém—PA, Teresina—PI, Cuiabá—MT, Florianópolis—SC and São Paulo—SP, with three
families per city, located in the regions north, northeast, central west, south and the southeast of Brazil,
respectively. In addition, a total of 425 home appliances were used in the simulations. The results show
that the HEMS achieved reductions in the cost of electricity for all the Scenarios used while minimally
affecting the satisfaction/comfort of the end consumers as well as taking into account all the restrictions.
The largest reduction in the total cost of electricity occurred for the couple without children, resident in
the city of Teresina—PI; with a drop from US$ 99.31 to US$ 90.72 totaling 8.65% savings in the electricity
bill. Therefore, the results confirm that the proposed HEMS effectively improves the operating efficiency
of home appliances and reduces electricity costs for end consumers.
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1. Introduction

The increase of the global population has caused a greater complexity of the electricity supply.
Due to this, there is a need for studies and research concerning the quality and reliability of electric
power systems in order to avoid interruptions in the supply of electricity and in price increases,
among other problems [1–4]. At the same time, the pressure on natural resources worldwide and
concern for the environment is also increasing rapidly. One of the solutions to help overcome such
problems is to use a smart grid (SG). An SG is a system that applies information and communication
technologies (ICT) to improve the interaction between all the devices of an electrical power system
(EPS) and consumers connected to it [5]. This interaction can be used by end consumers to improve
their electricity consumption pattern in order to reduce the cost of electricity.

The authors in [6] state that the demand response control methodologies and smart appliances
can optimize the use of electrical resources more efficiently. In this sense, the authors in [7–9] defined a
demand response (DR), from the point of view of a smart grid, as a program that provides various
incentives and benefits to end consumers to change their electricity consumption patterns in response to
changes in the price of electricity over time or when electrical power network reliability is compromised
by any EPS overhead.

The most commonly used DR programs (DRPs) are based on price, following one of three tariff
models: (1) Time-of-Use (TOU), which offers consumers different electric energy tariffs during different
periods of the day [10,11] and is generally based on the average cost of generation and delivery of
energy over a 24-h period [12]; (2) Real-Time Pricing (RTP), when the price of electricity is modified
hourly throughout the day, and this may reflect the cost for generation or the wholesale price level;
and finally, (3) Critical-Peak Pricing (CPP), which is a dynamic pricing mechanism that uses elements
of TOU and RTP to adjust tariffs as a temporary response to events or conditions such as high market
prices, or decreasing reserves [10]. The authors in [5,13] affirm that RTP has a much greater flexibility
than TOU and CPP. Therefore, the increase in the price of the tariff is linked to the increase in demand
for electricity or the low energy productivity of the EPS.

Thus, the DRPs can be regarded as one of the most important tools for Home Energy Management
Systems (HEMS). DRPs are able to interrupt, control, regulate, or curtail the energy of the devices and
end consumers have financial support to modify their electricity consumption patterns in order to
improve the reliability and efficiency of EPS [14]. Moreover, DRPs help the utility companies to shift
the load from peak hours to off-peak hours in order to reduce electricity prices as well as to balance
the supply and demand [15].

Due to the costs and restrictions related to energy, HEMS is of great importance nowadays because
it is becoming essential for modern societies, cities, and smart homes [16,17]. HEMS manages home
energy consumption in order to increase the stability and efficiency of the EPS using Internet of Things
(IoT) and optimization algorithms. The authors in [14] describe IoT as a technological revolution in
terms of information and communication. IoT allows Radio Frequency Identification (RFID) tags,
sensors, actuators, smartphones, etc. into a network where they are able to inter-communicate without
human intervention for a common purpose. The IoT has introduced fresh applications, i.e., smart
homes, smart cities and so on. Therefore, different techniques are being studied to improve residential
energy usage. The main technique to improve energy usage is by adjusting the planning of residential
appliances to maximize the consumption. Such adjustments allow a reduction in the final amount
of energy required and, by operating the appliances in periods when the cost of electricity is lower,
reduce the final costs even further; moreover, the use of appliances in off-peak hours with cheaper
rates reduces the demand during peak-hours [14,15].
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End consumers have home appliances [18–20] that need to be programmed in an orderly
manner to guarantee a balance between supply and demand of electric energy [18,20,21]. However,
the programming of these home appliances within the same time interval requires specific knowledge
and availability of time on the part of the consumer [22]. In addition, residential management
scheduling must take into account consumer preferences regarding the usage of these appliances
and the price variation of electricity. Consequently, an infrastructure able to program the operational
periods of these home appliances over the planning horizon is required. This program must be able
to adjust itself in relation to the peak periods, and thus improve the reliability and efficiency of the
EPS without modifying the satisfaction/comfort of the consumers. Although problems of DR in smart
grid environments have been investigated in recent studies [23–27], the scheduling of residential
loads considering the different peculiarities that involve the communication system, the operating
characteristics of the different categories of home appliances and the level of satisfaction/comfort of
the end consumers have not been well analyzed.

This paper proposes the general architecture of an HEMS and presents a mathematically
formulated multi-objective DR optimization model as a nonlinear programming (NLP) problem
to determine the optimal scheduling of home appliances considering real-time pricing (RTP) as well as
different categories of appliance. The multi-objective DR optimization model aims to minimize the cost
of energy consumption and minimally affect convenience (satisfaction/comfort) of end consumers.
The main constraints are: minimum and maximum load limits for each time period; ramp limits;
minimum consumption within the planning horizon; and some restrictions for the different home
appliance categories. Although it is difficult to overcome the NLP problem, it was solved by applying
the Non-Dominated Sorted Genetic Algorithm (NSGA-II) [28] and an optimal solution was obtained.

The main contributions of this paper are as follows:

(1) The HEMS and multi-objective DR optimization model present in this work can optimize
the scheduling of different categories of home appliances considering different planning
horizons and real-time pricing. Thus, with these smart tools, families can reduce the level
of dissatisfaction/discomfort as well as energy costs;

(2) The DR model presented here can be set up in any country, worldwide for any energy layout;
(3) The impact of different energy consumption profiles can be analyzed considering the management

of home appliances;
(4) The system takes into account various different effects on residential energy consumption, such

as geographic location, different climates and temperatures, consumer preferences and the hourly
price of electricity.

(5) The ability to assess any inconvenience to end consumers so they can decide whether or not to
join the DR program;

(6) A statistical evaluation of the multi-objective model with NSGA-II was performed to verify its
overall performance compared to a random search algorithm;

(7) The DR model can also offer greater flexibility so that end consumers can choose their preferences
considering satisfaction and costs.

The rest of this paper is organized as follows. Section 2 reviews the related work on the topic; Section
3 shows the layout of the home energy management system; Section 4 presents the multi-objective DR
optimization model for electricity load scheduling and the NSGA-II optimization technique; Section 5
details a case study that shows the experimental scenarios and the numerical results obtained through
simulations of the HEMS using the multi-objective model to minimize the cost of electricity associated
with consumption as well as the level of inconvenience of end consumers; and, finally, Section 6
explains the main contributions of this work and outlines possible future research work.

2. Related Work

Significant research, in recent years, has been carried out to manage home appliances in SG
environments. The authors in [5] proposed an home energy management system architecture in
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order to minimize the cost of electricity and the peak-to-average ratio. The proposal contemplates the
management of loads through DR that was formulated mathematically as a nonlinear programming
problem. The optimization problem is solved using a genetic algorithm. The approach was limited to
evaluation of nine home appliances; however, all of the parameters (start and stop times; time intervals
between operations) of these appliances must be programmed by the consumers.

In Ref. [13], the authors proposed a constrained Particle Swarm Optimization (PSO)-based
residential consumer-centric load-scheduling method. The proposal was developed a linear
programming (LP) problem. The main objective of the work is to shift load profiles by home appliances
as well as cut down on peak energy demands through a new constrained swarm intelligence-based
residential consumer-centric demand-side management (DSM) method. The swarm intelligence,
constrained PSO, is used to minimize the energy consumption cost while considering the user’s
comfort and satisfaction for the implementation fo the DR. However, the proposal only evaluated the
programming of nine appliances in a household. Thus, the proposal does not consider the different
categories of home appliances.

The authors in [29] proposed a DR optimization model that takes into account a set of
energy-related constraints to determine the optimal operation schedule for home appliances.
The objective is to minimize the cost associated with energy consumption, taking into account
the satisfaction and comfort of final consumers and the various constraints associated with the
consumption of electric energy. The problem was formulated as nonlinear programming. The results
of the computational simulations show that the optimization process by means of a Genetic
Algorithm (GA) using the model proposed in this work effectively manage the different categories of
appliances in the ten Brazilian households. Thus, the proposed DR model is able to reduce the cost
associated with the consumption of electric energy and the level of inconvenience of the families when
considering the preferences of the consumers in relation to the use of the home appliances. However,
the paper does not have a multi-objective perspective and it does not use statistical techniques to
analyze and validate the DR model.

In order to cut unnecessary consumption and minimize energy costs, the authors in [17]
applied a management system that integrated automatic switching off with load balancing and
a planning algorithm. Cost minimization was dealt with as a mixed-integer programming problem.
All appliances were scheduled to a least slack time (LST) algorithm while also taking user comfort into
consideration. The computational simulations showed that the LST plan reduced the costs of energy
consumption. However, the different classes of appliances were not considered in this study by the
planning algorithm.

A home load control (HLC) system was put forward by the authors [22] to manage the operational
planning of home appliances. The novel day-ahead HLC program was established to plan the home
appliances and a plug-in hybrid electric vehicle (PHEV) in such a way as to minimize overall costs
for the following day. In this work, only seven appliances, which included a heating system and a
PHEV, were evaluated. Moreover, no details of the bidirectional communication between consumer
and the utility were given nor information concerning the control of the residential devices by the
HLC. In addition, according to the computational simulations, the use of different classes of appliances
simultaneously were not considered in the new planning system proposed in this work.

A Home Energy Management as a Service (HEMaaS) method was investigated by the authors
in [30]. The aim of this method was to reduce the demand at peak times and total energy consumption
by moving and reducing the usage of residential appliances. HEM was expressed as a set of discrete
states, which represent the binary formulation of the power levels of domestic devices. The Main
Command and Control Unit (MCCU) control the power states, which were expressed as a Markov
Decision Process (MDP). Reinforcement learning (RL) based on a Neural Fitted Q-Iteration (NFQI)
algorithm was applied to obtain the solutions. However, the computational simulations showed that
the simultaneous use of the different classes of home devices were not considered in this work when
faced with the new planning criteria.
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In Ref. [31], the authors proposed an algorithm that determines the thermostat settings that
minimize the electricity bill for a consumer. The main goal was to use energy storage to minimize
the electricity costs. The problem was formulated as dynamic programming and the results showed
that the algorithm was able to reduce the cost associated with the consumption. However, it was
restricted to only programming thermal devices without taking into account the other categories of
home appliances. The goal of the authors in [32] was to introduce voltage hopper technology for
autonomous and automated grid ancillary services and load control without a centralized controller
using an electronic interface and a hybrid direct current (DC)/alternating current (AC) grid concept.
Validation of the system was carried out in an interfaced dSPACE/OPAL-RT real-time simulator
(Isfahan, Iran). However, the simultaneous use of the different classes of devices and the customer
satisfaction were not considered.

A hybrid scheme for planning residential loads, named GAPSO, was introduced by the authors
in [33]. The goal was to cut electricity cost and user discomfort but also consider the peak energy
consumption. A multiple knapsack problem (MKP) was used to express the binary optimization
problem. The simulation showed that GAPSO performed well to reduce costs and consumer discomfort,
but the different classes of home appliances were not considered. Here, the authors in [34] developed
an algorithm for the planning of residential loads to control the operational times and consumption of
all the household devices. A mixed integer nonlinear programming (MINLP) problem was developed.
A Benders decomposition approach was used to overcome the problem with low computational
complexity. However, this work only evaluated one residence and the impact of changing the
programing of the appliances was not assessed in terms of consumer satisfaction.

The authors in [35] proposed a real-time closed-loop residential electricity price-based DR system
to modify consumer behavior on a smart grid. The proposal was expressed mathematically as a linear
programming problem. However, neither the different classes of devices nor consumer satisfaction
were evaluated. A home energy management planner algorithm to reduce residential consumption
and costs using stochastic dynamic programming was presented by the authors in [36]. However,
only seven home appliances were appraised and the impact of changing the times of these appliances
on the consumer satisfaction was not considered.

The coordination of residential loads using a DR management distribution algorithm was
presented by the authors in [37] and was expressed mathematically as a bi-level programming problem.
The distributed algorithm enhanced the general load profile, the magnitude of the network voltage
and the system reliability. Simulations were performed in the MATLAB environment and problems
associated with home load management (HLMs’) rescheduling were solved by the General Algebraic
Modeling System (GAMS). However, the simultaneous use of different classes of home devices was
not assessed nor was client satisfaction evaluated.

In order to reduce the peak-to-average ratio (PAR) in aggregate load demand, two interactive
algorithms based on the stochastic approximation technique were introduced by the authors in [38].
However, the algorithms did not consider the simultaneous use of different classes of residential
appliances nor the client satisfaction level with this new improved planning. A DR algorithm was
set up to manage energy consumption, which was expressed mathematically as a mixed integer
programming problem, in order to modify residential electricity consumption profiles by the authors
in [39]. The daily price of electricity and the client preferences for the use of their home appliances
were taken into account, then modeled with MATLAB and solved using a GUROBI-MATLAB interface.
However, only five consumers with similar consumption profiles and seven appliances were evaluated.

In [40], the authors suggested an operational planning algorithm for home appliances to
reduce electricity costs based on real-time pricing. A stochastic scheduling technique based on
deterministic linear programming was used to manage the times the appliances were in use. However,
the different classes of the home appliances were not taken into account. A novel Traversal-and-Pruning
(TP) algorithm to schedule thermostatically controlled household loads was introduced by the
authors in [41]. To meet the objective of the project, both payment and comfort settings were
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considered. The planning of the loads was considered a mixed integer nonlinear programming
(MINLP) problem. However, only thermal devices were evaluated and the other classes of domestic
appliances were ignored.

Most of the recent studies presented here show that the main goal is to minimize the cost associated
with the consumption of electric energy without considering the preferences/needs of end consumers.
Therefore, we can say that these works do not consider the real difficulty of the problem which
involves scheduling the use of home appliances and they do not evaluate aspects such as: (a) different
residential scenarios; (b) various categories of home appliances; (c) the level of satisfaction/comfort of
consumers with the new scheduling of their home appliances. Moreover, the studies that dealt with
the inconvenience aspect performed simulations without taking into account the different categories
of home appliances, thus reducing the complexity of the method.

This paper and other works in the literature have the following differences:

(1) HEMS using the EMC with the DR multi-objective optimization model allows the different
categories of home appliances and the levels of satisfaction/comfort of end consumers for the
new scheduling of the home appliances to be considered;

(2) The impact of different energy consumption profiles can be evaluated in relation to the
management of home appliances;

(3) The HEMS using the multi-objective DR optimization model in the EMC reduced the cost
of electricity for all the used scenarios, minimally affecting the satisfaction/comfort of end
consumers as well as taking into account all the restrictions;

(4) HEMS can be used in any country worldwide and with any energy scenario.

3. Architecture of Home Energy Management System (HEMS)

HEMS is defined as the system that provides power management services in order to
efficiently monitor the generation, storage and consumption of electricity in smart homes. Therefore,
HEMS consists of demand response programs, automation services, power management, data
visualization/analysis, auditing and security services [42].

Thus, HEMS provides a bidirectional communication between homes and the electric utility to
monitor, control and analyze the data that involves the consumption of electricity in smart homes [42].
In this sense, the communication technologies, Wide Area Network (WAN), Neighborhood Area
Network (NAN) and Home Area Network (HAN) [43–45] used in the smart grid serve as the basis for
the HEMS as proposed in this work.

Thus, the HEMS proposed in this work is basically composed of advanced metering
infrastructure (AMI), smart meter (SM), an energy management controller (EMC) and home appliances.
The architecture from HEMS is presented in Figure 1.
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Figure 1. Illustration of home energy management system (HEMS) architecture.

The smart meter is equivalent to a communication interface and is usually mounted between the
AMI and EMC in order to collect the electrical energy consumption data from each device using ZigBee
(IEEE 802.15.4) technology [46] and it also receives the price of electricity from the utility company in
real time.

The AMI provides intelligent bidirectional communication between the SMs and the utility
company. This enables automated measurement functions and also enables the utility company to
send real-time data on energy consumption and price. The information is transmitted or received
from the utility company through commonly available fixed networks such as PLC (Power Line
Communication), GSM (Global System for Mobile Communications) or WiMax [47,48]. Thus, this data
can be used for further analysis such as: each consumer’s demand for energy in a specific area or the
schedules with the lowest electricity prices that can be used for moving loads.

The EMC is considered the operating nucleus of the home network and is responsible for the
management of the consumption and production of energy. Based on this, the proposed HEMS can
manage various devices such as electric vehicles, electrical energy storage systems, renewable energy
generation, and home appliances. The HEMS uses an algorithm to allow consumers to monitor and/or
reschedule the configurations of the existing devices in the residence according to their needs and the
DRP data provided by the AMI, received via the smart meter.

The integration of multiple technologies combined with the optimized control of the EMC enables
intelligent decision making, reliability and security. An application of this architecture envisages that
the generated and stored electricity can be used over a time horizon to charge not only electric vehicles
but also to provide loads to the other residential devices when, for example, the cost of electricity is
high. In addition, HEMS’s communications infrastructure allows the consumers to participate actively.
This is because consumers can access the whole process of monitoring, controlling and managing
household energy through an Internet Mobile App. Consumers, with an HEMS Mobile App, can obtain
information about energy consumption, demand and price of electricity for a certain interval of time
via the SMs. Thus, consumers can make the decision to intervene or not in the optimized programming
as suggested by the EMC.

This work proposes an EMC that aims to minimize the cost associated with the consumption of
electricity, the peak-to-average ratio and the level of inconvenience (dissatisfaction/discomfort) of
consumers as well as to guarantee the stability and safety of the EPS. Figure 2 shows the communication
between the EMC and the different devices used in the residential load management process.
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Figure 2. Model of an EMC communication system.

In an HEMS, EMC has an important role because it manages all home appliances through
the multi-objective DR model of this work and the ZigBee communication technology involved in
switching gadgets on/off. The EMC schedules all operations based on the energy consumption records,
the real-time electricity price and the client’s preferences. In this work, the residential devices are
divided into three classes [49] as follows: interruptible and deferrable; uninterruptible and deferrable;
and, uninterruptible and non-deferrable. Uninterruptible indicates that an operation cannot be
interrupted until it has finished. Non-deferrable and Deferrable refer to whether an operation may
start at the first time slot of the operational window, or not.

HEMS makes it easier to control and manage home appliances, to reduce the electricity
consumption costs, the level of inconvenience associated with the use of appliances and it results in a
lower peak-to-average ratio, which contributes to improving the reliability of the EPS operation.

4. Multi-Objective DR Optimization Model for Electricity Load Scheduling with NSGA-II

This section presents the multi-objective DR optimization model that will be solved using the
NSGA-II algorithm to manage the loads of all the appliances taking into account the real-time pricing
(RTP) structure and the operational characteristics of each appliance.

4.1. Mathematical Formulation

The multi-objective DR optimization model used in this work has two minimization functions:
f 1 and f 2. The first one (f 1) aims to minimize the electricity consumption costs and the second (f 2) to
minimize the level of inconvenience of end consumers in relation to the optimized planning of the use
of residential loads provided by the utility.

The function f 1 used in the proposed HEMS, is formulated as follows:

Minimize
N

∑
i=1

Ei

T

∑
t=1

(Prt · DSAt,i)
2 , (1)

where N is the number of home devices; Ei(i = 1, . . . , N) represents the vector for the energy
consumption of home devices i when in operation; T is the time horizon; Prt is to the price of
electric at time t; DSAt,i (Daily Setup of Appliances) refers to the load planning matrix with the
following configuration:

DSAt,i =

{
1, if appliance i is on at time t,

0, otherwise.
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The function f 2 aims to minimize the inconvenience and evaluate how the optimized scheduling
of home appliances can modify the satisfaction/comfort of the final consumer and is given by

Minimize
T

∑
t=1

N

∑
i=1

(Baselinet,i −OPTt,i)
2. (2)

Accordingly, the f 2 calculation compares the real electricity consumption (Baseline) in the time
interval t for the home appliance i of the family analyzed by the Load Profile Generator (LPG) tool [50]
and the OPT consumption, which is the consumption suggested by the optimization technique,
and which was used in the computational simulations. Thus, the Baselinet,i matrix can be defined
as follows:

Baselinet,i =

{
1, if appliance i is on at time t,

0, otherwise.

The OPTt,i consumption arises from the loading schedule suggested by the optimization technique
for the various DR models defined as follows:

OPTt,i =

{
1, if appliance i is on at time t,

0, otherwise.

Thus, the calculation of the inconvenience associated with optimized programming for the home
appliances allows the final consumer to make the best decision on when and how to use an appliance
in the DR program. Function f 2 is shown in Equation (2) and both Baselinet,i and OPTt,i are assumed
to be in the form of a binary matrix (composed only of 1’s and 0’s) to indicate which home appliances
are in operation at each time interval t.

Equation (2) assesses the difference between the real (Baselinet,i) and suggested consumption
(OPTt,i) for each time interval t, for each domestic device i in the problem. Thus, it compares the
suggested consumption according to the proposed technique and the actual consumption of the family
under analysis. Therefore, the best solution is the one where the domestic devices are only minimally
affected and at the same time reduce the final cost. The closer the normal consumption is to the
suggested one, the better the solution will be.

The functions f 1 and f 2 are subject to the following restrictions:
Constraint 1 (Equation (3)) establishes the limits (minimum and maximum) for the load levels at

each time interval t:

dmin
t ≤

N

∑
i=1

DSAt,i · Pi ≤ dmax
t , ∀t=1,...,T , (3)

where dmin
t is the minimum demand for the load levels at each time interval t; Pi(i = 1, . . . , N) is the

vector with the power (in kW) of each home appliance; dmax
t is the maximum demand for the load

levels at each time interval t.
Constraint 2 (Equation (4)) defines the minimum ramp limit for the time interval t:

N

∑
i=1

(DSAt,i − DSAt+1,i) · Pi ≤ rD, ∀t=1,...,T−1, (4)

where rD is the minimum ramp limit for the time interval t.
Constraint 3 (Equation (5)) sets the maximum ramp limit for the time interval t:

N

∑
i=1

(DSAt+1,i − DSAt,i) · Pi ≤ rU , ∀t=1,...,T−1, (5)

where rU is the maximum ramp limit for the time interval t.
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Constraint 4 (Equation (6)) defines the minimum daily consumption (mdc):

N

∑
i=1

T

∑
t=1

DSAt,i · Ei ≥ mdc. (6)

The constraints 1–4 (Equations (3)–(6)) refer to characteristics common to power consumption.
In this work, the home appliances are divided into three classes based on their operational
characteristics [49] which are: interruptible and deferrable (AI); uninterruptible and deferrable (AI I);
and, uninterruptible and non-deferrable (AI I I). Uninterruptible refers to an operation that cannot be
interrupted until completed. Non-deferrable and Deferrable state whether the operation can begin at
the first time slot of the operational window, or not. The limitations that deal with the different classes
of home appliances AI , AI I and AI I I are based on these definitions and are specified below.

Constraint 5 (Equation (7)) states that the operational startup of category AI home appliances
may vary over the time horizon T provided that Reqi is respected:

T

∑
t=1

DSAt,i ≥ Reqi, ∀i ∈ AI , (7)

where Reqi is the required time for appliance i to finish its operation; AI is a set of indices of the device
categories interruptible and deferrable.

Constraint 6 (Equation (8)) states that the operational startup of category AI I home appliance can
be delayed within the time horizon T, but, once it has started, it cannot be interrupted:

T−(Reqi−1)

∑
q=1

Reqi+(q−1)

∏
t=q

DSAt,i ≥ 1, ∀i ∈ AI I , (8)

where q is initial time slot of the interval that will be checked if the category AI I home appliances was
used without; AI I is a set of indices of the device categories uninterruptible and deferrable.

Constraint 7 (Equation (9)) establishes that the operation of a category AI I I home appliance
between its startup (STi) and end (ETi), as defined by the consumer, is uninterruptible for the required
time Reqi in the time horizon T:

ETi

∑
STi

DSAt,i ≥ Reqi, ∀i ∈ AI I I , (9)

where STi is start time of the operation; ETi is final time of the operation; AI I I is a set of indices of the
device categories uninterruptible and non-deferrable.

5. Case Study

This section covers the scenarios of the experiments, the results and the discussions to evaluate
the HEMS using the multi-objective DR optimization algorithm to solve the scheduling problems for
home appliances. In the following results, NSGA-II represents the scheduling algorithm presented.

5.1. Characterization of the Case Study

Three (03) different scenarios of electric power consumption were used for the simulations
(Scenario 1—two adults without children; Scenario 2—two adults with three children and Scenario
3—one adult without children). These profiles were provided by the LPG [50] tool for 15 Brazilian
families living in the cities of Belém—PA, Teresina—PI, Cuiabá—MT, Florianópolis—SC and São
Paulo—SP, with one family per city, located in the north, northeast, midwest, south and southeast
regions of Brazil, respectively. In addition, the scenario had different numbers of home appliances:
Scenario 1 (29 appliances), Scenario 2 (33 appliances) and Scenario 3 (23 appliances), totaling
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425 appliances for analysis. Table 1 shows the load profiles and the different categories of the
home appliances.

The total time horizon in this study is given as T = 24 h. Each time interval t means one hour and
t ε T such that: T = {1 h, 2 h . . . 24 h}, for each family between 1 January and 31 December 2016. Other
data used in the evaluations were the dynamic price of electricity in American dollars (Brazil does not
use a DR program based on real-time prices). The multi-objective DR model used here allows electricity
prices from studies that use forecasts or price history values to be used. Price information is an input
parameter, and so the model is not restricted to the prices of any specific country or location. In such
cases, RTP is considered to be the incorporated tariff. Figure 3 was created by the authors to show the
price per unit power consumption at each sub-interval for an energy-intensive day (24 December 2016)
of Profile I in Palmas—TO.

Table 1. Load profiles and categories of home appliances.

Profiles Categories Home Appliances

Profile I

AI

Light 100 W, 20 W and 60 W, SAT—Receiver, TV, Cell Phone Charging,
Microsoft Xbox, Laptop, CD/DVD Player, Computer,

DVB—T Receiver, Router, Computer Screen, Kitchen Radio.

AI I
Wine Cellar, Steam Iron, Hair Dryer, Electric Stove, Microwave, Juicer,
Washing Machine, Toaster, Electric Kettle, Nespresso Coffee Machine.

AI I I Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.

Profile II

AI

Light 100 W, 20 W and 60 W, SAT—Receiver, TV, Cell Phone Charging, Playstation,
Microsoft Xbox, Laptop, CD/DVD Player, Computer, Home Cinema System,

DVB—T Receiver, Router, Computer Screen, Kitchen Radio.

AI I

Wine Cellar, Steam Iron, Hair Dryer, Electric Razor, Electric Stove,
Electronic Hometrainer, Microwave, Juicer, Washing Machine,

Toaster, Electric Kettle, Nespresso Coffee Machine.

AI I I Refrigerator, Air Conditioning, Electric Heater, Freezer, Dryer.

Profile III

AI
Light 100 W, 20 W and 60 W, SAT—Receiver, TV, Playstation, Laptop,

CD/DVD Player, Computer, DVB—T Receiver, Router, Computer Screen.

AI I
Wine Cellar, Steam Iron, Food Multiprocessor, Microwave,

Washing Machine, Electric Kettle, Nespresso Coffee Machine.

AI I I Refrigerator, Air Conditioning, Electric Heater, Freezer.
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Figure 3. Price per unit power consumption.
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The parameters in NSGA-II in Table 2 were used by the DR model for validation purposes.
The values of the parameter were obtained via simulations with a control map, which is a series of
tests with different configurations applied to the NSGA-II. The best configuration to overcome the
multi-objective problem is indicated by the NSGA-II. Other parameters such as Maximum (dmax) and
Minimum Demand (dmin), Maximum (rD) and Minimum Ramp Limit (rU) were used with values of
3 kW, 0 kW, 1 kWh and 1 kWh, respectively.

The values first used for these parameters were based on a definition required by the consumers
and the utility. Brazil has different and distinct climatic characteristics; for example, in the south
and southeast regions, certain periods of the year have relatively low temperatures and therefore
air conditioners are not used with much frequency; on the other hand, the north and northeast of
the country are subtropical and the climate is divided into dry and rainy periods but with high
temperatures all year round. Consequently, air conditioners are used much more frequently. Each city
has its own distinct mdc value due to the different locations within Brazil and the families in this study
have different energy consumption profiles. Consequently, these differences affect the final power
consumption of each family differently.

Table 2. NSGA-II parameters.

Parameter Value

Population size 500
Maximum number of iterations 1.000

Selection method Tournament (3)
Crossover method Single Point

Crossover probability 85%
Mutation method Bit Flip

Mutation probability 1%

5.2. Simulation Results

This section presents the results associated with the scheduling of home appliances for the different
scenarios of energy consumption taking into account a varied set of constraints. Thus, the impact of
HEMS using the multi-objective DR optimization model was demonstrated in three aspects: (1) the
cost of electricity; (2) the consumption of electricity and (3) the level of satisfaction/comfort of
end consumers. In the following is a breakdown of the results for these three different scenarios.
The analysis showed that the best solution is the cost minimization objective ( f 1, defined by
Equation (1)), indicated by the letter A in Figure 4, which presents the optimal Pareto frontier reached
with the experiments.

1700 1720 1740 1760 1780 1800 1820
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A
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Figure 4. Optimal Pareto frontier.
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5.3. Scenario 1

Table 3 presents the results obtained for the cost of electric energy consumption for each family,
taking into account the usage profiles of their home appliances. The results were acquired using LPG
(Cost Without DR (US$)) and the technique of optimization (Cost With DR (US$)) using the DR model
presented in this work. The table shows that the family living in Teresina—PI compared to the other
families in the other cities (Belém—PA, Cuiabá—MT, Florianópolis—SC and São Paulo—SP) obtained
the largest cost reduction: dropping from US$ 99.31 to US$ 90.72.

Table 3. Reduction of electricity costs per family in Scenario 1 for each city.

Family City Without DR (US$) With DR (US$) Reduction (%) Reduction (US$)

I Belém—PA 92.09 87.42 5.06 4.66
II Cuiabá—MT 97.78 90.48 7.46 7.29
III Florianópolis—SC 84.45 78.48 7.07 5.97
IV São Paulo—SP 88.96 83.35 6.31 5.61
V Teresina—PI 99.31 90.72 8.65 8.59

Another analysis evaluated the HEMS using the DR optimization model for the reduction of the
consumption. Table 4 shows that the family residing in Teresina—PI reduced their consumption from
1891.45 kWh to 1709.57 kWh.

Table 4. Reduction of energy consumption per family in Scenario 1 for each city.

Family City Without DR (kWh) With DR (kWh) Reduction (%) Reduction (kWh)

I Belém—PA 1684.17 1597.64 5.14 86.53
II Cuiabá—MT 1937.84 1771.05 8.61 166.79
III Florianópolis—SC 1737.39 1685.25 3.00 52.13
IV São Paulo—SP 1637.76 1550.90 5.30 86.86
V Teresina—PI 1891.45 1709.57 9.62 181.87

The power consumption of domestic devices is compared on an hourly basis in kWh, with
DR (driven by HEMS) and without DR (base consumption) in Table 5. This DR model moves the
operational times to when the electricity price is cheaper (off-peak). For example, the electric stove
of the family in Teresina—PI, runs without DR between 2:00 p.m. and 5:00 p.m., and with DR its
operation is transferred to between 4:00 p.m. and 7:00 p.m. The model with DR demonstrated a good
reduction in the total cost: without DR US$ 0.20, with DR US$ 0.17, making a savings of US$ 0.03.
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Table 5. Comparison of the electric energy consumption of home appliance with and without optimization (in kWh) in Scenario 1.

Cities Home
Appliances DR 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00 Total Cost

(US$)

Cuiabá—MT

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.95
With 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67

Computer Without 0.3 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0.3 0.16
With 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.14

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28

Oven Without 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.47
With 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.79
With 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57

Energy Price (US$/kWh) 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.08 0.07 0.06 –

São Paulo—SP

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.69
With 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52

Computer Without 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0 0.12
With 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22

Oven Without 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34
With 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.26

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.55
With 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44

Energy Price (US$/kWh) 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.07 0.07 0.08 0.08 0.07 0.06 –

Teresina—PI

Stove Without 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0.40
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0.34

Computer Without 0 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0.09
With 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0.08

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19

Oven Without 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0.20
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0.17

Microwave Without 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0.32
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0.30

Energy Price (US$/kWh) 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 –
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Based on the results obtained, the trade-off solution was calculated, that is, the relation between
each unit of inconvenience caused to an end consumer and the reduction attributed to it, which results
in the total reduction (in US$) obtained with each unit of inconvenience caused. Thus, the highest
trade-off value found was 0.11 for the family located in Teresina—PI, which is equivalent to a reduction
of US$ 0.11 per unit of inconvenience caused to the end consumer. Table 6 shows a summary of
the results for the inconvenience and trade-off simulations for each family resident in Belém—PA,
Cuiabá—MT, Florianópolis—SC, São Paulo—SP and Teresina—PI.

Table 6. Inconvenience analysis and trade-off in Scenario 1.

Family City Inconvenience Caused Trade-off

I Belém—PA 72 0.07
II Cuiabá—MT 76 0.09
III Florianópolis—SC 70 0.09
IV São Paulo—SP 73 0.08
V Teresina—PI 75 0.11

5.4. Scenario 2

The results show that the family living in Teresina—PI reduced the total electricity cost from
US$ 250.66 to US$ 229.08. Thus, the family living in Teresina—PI had the highest values related to cost
minimization associated with the consumption of electric energy compared to other families in the
cities of Belém—PA, Cuiabá—MT, Florianópolis—SC and São Paulo—SP. Table 7 shows a summary of
the results achieved for Scenario 2.

Table 7. Reduction of electricity costs per family in Scenario 2 for each city.

Family City Without DR (US$) With DR (US$) Reduction (%) Reduction (US$)

I Belém—PA 216.96 205.93 5.08 11.02
II Cuiabá—MT 229.32 212.17 7.48 17.15
III Florianópolis—SC 199.89 185.49 7.20 14.39
IV São Paulo—SP 208.12 194.86 6.37 13.26
V Teresina—PI 250.66 229.08 8.61 21.58

Table 8 shows a comparison of the electric energy consumption of each family in each city. Once
again, the family residing in Teresina—PI obtained the greatest reduction in consumption, dropping
from 4774.09 kWh to 4316.96 kWh.

Table 8. Reduction of energy consumption per family in Scenario 2 for each city.

Family City Without DR (kWh) With DR (kWh) Reduction (%) Reduction (kWh)

I Belém—PA 3967.96 3763.35 5.16 204.62
II Cuiabá—MT 4544.95 4152.92 8.63 392.03
III Florianópolis—SC 4112.01 3983.02 3.14 128.99
IV São Paulo—SP 3831.38 3625.93 5.36 205.45
V Teresina—PI 4774.09 4316.96 9.58 457.14

Table 9 is a comparison of the consumption (in kWh) for each hour of the domestic devices
considering the base consumption without DR and with DR driven by HEMS using the model
proposed here. For example, the electric stove of the family in Cuiabá—MT, runs without DR between
2:00 p.m. and 5:00 p.m. and with DR its operation is moved to between 4:00 p.m. and 7:00 p.m.
The HEMS compared with the base consumption gives a satisfactory reduction in the total cost:
without DR US$ 0.69, with DR US$ 0.52, giving a savings of US$ 0.17.
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Table 9. Comparison of the electric energy consumption of home appliances with and without optimization (in kWh) in Scenario 2.

Cities Home
Appliances DR 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00 Total Cost

(US$)

Cuiabá—MT

Stove Without 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0.69
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0.52

Computer Without 0 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0.12
With 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0.11

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22

Oven Without 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0.34
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0.26

Microwave Without 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0.55
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0.44

Energy Price (US$/kWh) 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 –

São Paulo—SP

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.40
With 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34

Computer Without 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0 0.09
With 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19

Oven Without 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20
With 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.17

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.32
With 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30

Energy Price (US$/kWh) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.06 –

Teresina—PI

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.95
With 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67

Computer Without 0.3 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0.3 0.16
With 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.14

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28

Oven Without 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.47
With 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.79
With 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57

Energy Price (US$/kWh) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.06 –
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The inconvenience and trade-off analysis shows that the family resident in Teresina—PI obtained
the highest trade-off value with a total of 0.17, which is equivalent to US$ 0.17 reduction per unit of
inconvenience caused to the end consumer. Table 10 shows a summary of the results obtained in the
study for the inconvenience and the trade-off for the families in their respective cities.

Table 10. Inconvenience and trade-off analysis in Scenario 2.

Family City Inconvenience Caused Trade-off

I Belém—PA 125 0.09
I Cuiabá—MT 127 0.12

III Florianópolis—SC 123 0.12
IV São Paulo—SP 124 0.11
V Teresina—PI 126 0.17

5.5. Scenario 3

Table 11 gives a summary of the electricity cost for each family in Scenario 3. The family residing
in Teresina—PI managed to obtain a greater reduction compared to the other families, with the cost
dropping from US$ 57.45 to US$ 52.52.

Table 11. Reduction in electricity costs per family in Scenario 3 for each city.

Family City Without DR (US$) With DR (US$) Reduction (%) Reduction (US$)

I Belém—PA 50.44 47.88 5.07 2.56
II Cuiabá—MT 50.34 46.61 7.42 3.74
III Florianópolis—SC 49.06 45.59 7.07 3.47
IV São Paulo—SP 49.95 46.86 6.19 3.09
V Teresina—PI 57.45 52.52 8.58 4.93

Table 12 shows a comparison of the electric energy consumption of each family in each city.
The simulation results show that the family living in Teresina—PI reduced their consumption from
1094.23 kWh to 989.75 kWh.

Table 12. Reduction of electric energy consumption per family in Scenario 3 for each city.

Family City Without DR (kWh) With DR (kWh) Reduction (%) Reduction (kWh)

I Belém—PA 922.46 874.99 5.15 47.47
II Cuiabá—MT 997.75 912.29 8.57 85.46
III Florianópolis—SC 1009.22 978.94 3.00 30.28
IV São Paulo—SP 919.52 871.92 5.18 47.60
V Teresina—PI 1094.23 989.75 9.55 104.48

Table 13 gives a per hour comparison of the consumption (in kWh) of the domestic devices
considering consumption with DR and without DR driven by HEMS. For example, the microwave
of the family in São Paulo—SP runs without DR between 2:00 p.m. and 6:00 p.m. and with DR,
its operation is moved to between 3:00 p.m. and 7:00 p.m. This change with HEMS gives a good
reduction in the total cost: without DR US$ 0.79, with DR US$ 0.57, giving a savings of US$ 0.22.
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Table 13. Comparison of the electric energy consumption of home appliances with and without optimization (in kWh) in Scenario 3.

Cities Home
Appliances DR 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00 Total Cost

(US$)

Cuiabá—MT

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.40
With 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34

Computer Without 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0 0.09
With 0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19

Oven Without 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.20
With 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.17

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.32
With 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.30

Energy Price (US$/kWh) 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.06 –

São Paulo—SP

Stove Without 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0.95
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0.67

Computer Without 0 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0.16
With 0 0 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0.14

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28

Oven Without 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0.47
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0.34

Microwave Without 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0.79
With 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0.57

Energy Price (US$/kWh) 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 –

Teresina—PI

Stove Without 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0.69
With 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52

Computer Without 0.3 0 0 0 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0.3 0.3 0 0.3 0 0 0 0.3 0.12
With 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.11

Washing Machine Without 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23
With 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22

Oven Without 0 0 0 0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0.34
With 0 0 1.5 1.5 1.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26

Microwave Without 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0.55
With 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.44

Energy Price (US$/kWh) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.06 –



Sensors 2018, 18, 3207 19 of 24

Table 14 summarizes the results for the inconvenience and trade-off. The inconvenience and
trade-off values show that the family residing in Teresina—PI had the highest trade-off value which
was 0.12, and this is equivalent to a US$ 0.12 reduction per unit of inconvenience caused to the
end consumer.

Table 14. Inconvenience and trade-off analysis in Scenario 3.

Family City Inconvenience Caused Trade-off

I Belém—PA 42 0.06
II Cuiabá—MT 43 0.09
III Florianópolis—SC 39 0.09
IV São Paulo—SP 40 0.08
V Teresina—PI 41 0.12

5.6. Statistical Analysis

The results from the experiments with scheduling for the home appliances were analyzed by
three performance metrics: Diversity, Coverage, and Hypervolume. Diversity [51] measures the
number of different solutions given by an algorithm in a search space between extreme solutions
(maximum/minimum solutions of each objective function). Thus, a great number of solutions found
in the search space means there are a great number of options available for decision-making.

The Coverage (metric C) is used to evaluate the optimal approach capability of the solutions,
which is the (theoretical) distance between the current Pareto Frontier and the theoretical optimal
Pareto Frontier. Thus, based on its theoretical properties [52], coverage ensures a space of solutions
closer to the theoretical optimum to solve the DR problem.

Simulations with a random search algorithm are used to calculate the Coverage metric. A random
search algorithm is a genetic algorithm (GA) [53], with a random selection method that does not use
heuristics, called random GA, and is compared to the NSGA-II optimization technique. Therefore,
the C [52] metric is used to determine which of the techniques (NSGA-II or random GA) has the best
coverage. The Hypervolume (HV) metric [52,54] is used to evaluate the overall performance of the two
techniques (NSGA-II or random GA) in more detail. Both NSGA-II and random GA were performed
1000 executions to reduce the impact of their stochastic nature and to obtain the values to be used in
the statistical analysis.

5.6.1. Diversity

The spacing metric [51] was used to calculate the Diversity, which is given by s:

s =

√
1

n− 1

n

∑
i=1

(
d̄− di

)2, (10)

where di = minj ∑M
a=1

(
| f i

a(x)− f j
a(x) |

)
, i,j = 1, 2, 3,. . . , n, i 6= j. d̄ represents the average values of di,

M is the number of objectives of the problem and n is the number of solutions.
The closer the value of s is to zero, the greater the similarity between the solutions will be, within

the analyzed set. Thus, there will be a lower diversity of solutions [51].

5.6.2. Coverage

The coverage ratio for two sets of solutions is compared by the metric C. The number of points
in set B dominated by set A over the total number of points in set B is represented by C(A, B).
Equation (11) demonstrates metric C:

C(A, B) =
| {x ∈ B | ∃y ∈ A : y dominates x} |

| B | . (11)
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If the value C(A, B) = 1, it means that all points in B are dominated by A or equal to the points
contained in A. In contrast, if C(A, B) = 0, it indicates that none of the points in B are dominated by
the set A. Thus, it should be noted that C(A, B) and C(B, A) should be considered because C(A, B)
6= 1− C(B, A) [52]. In the simulations, A will be composed of the Pareto frontier solutions of the DR
multi-objective model presented in this work using the NSGA-II, while B will be composed of the
Pareto frontier solutions of the random search algorithm.

5.6.3. Hypervolume

The Hypervolume (HV) was calculated to analyze the performance of the results from the DR
model. An HV is a performance metric that calculates the volume of the objective space among the set
of solutions found and a reference point; here, the reference point was the nadir point, which is the
vector whose elements are the worst values of each criterion of the multi-objective problem [55,56].
The higher the HV value is, the better the convergence, extension and uniformity [52].

The authors in [54] state that HV is the only unary metric that is able to evaluate if one set of
solutions S is not worse than another S set. Thus, a set of solutions is Pareto optima only when the HV
is maximized and vice versa [57]. Thus, the main characteristic of HV is that it is compatible with the
dominance of Pareto; if one population of Pareto dominates another, then this one has an HV greater
than the dominated one. In addition, it does not need the real Pareto frontier of the problem in its
calculation [52,54].

5.6.4. Statistical Results

The results of the study with the NSGA-II optimization technique were compared with the values
from the random GA in order to validate the correctness of the algorithm (sanity check). The values of the
spacing metric showed that the NSGA-II (minimum 14.32 and maximum 18.11) had a greater diversity
of solutions than the random GA (minimum 10.25 and maximum 15.96) Therefore, the NSGA-II had a
better coverage of the search space, and this translates into a better comprehension of the objectives
considered in the problem.

In the metric C, the values obtained for both C(A, B) and C(B, A) indicate that, in all cases,
the Pareto frontier solutions found by the NSGA-II completely dominated the frontier solutions of
Pareto found by random GA. Additionally, it utilized the time spent (milliseconds) in solving the
problem as another evaluation metric. This result shows that the NSGA-II presents better solutions
than the random GA, considering the Pareto frontier of both techniques.

Additionally, the analysis of the Hypervolume values found in the simulations indicates a
significantly better general performance of NSGA-II (minimum 0.55 and maximum 0.63) in relation to
random GA (minimum 0.34 and maximum 0.45). This information, as previously mentioned, reflects
the better performance, in terms of convergence and extension, of the solution considering the search
space [52]. Finally, it can be seen in the statistical results that the NSGA-II obtained a minimum
execution time of 56 and a maximum of 70, while the Random GA presented a minimum execution
time of 60 and a maximum of 77. Therefore, both the NSGA-II and Random GA with these execution
times enable the load scheduling to provide a reduction of electricity costs, as well as minimize the
inconvenience caused to the end consumers in a timely manner. Table 15 shows the statistical values
for the simulations.
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Table 15. Statistical analysis.

Algorithm Metric Min Max Average Standard Deviation

NSGA-II Spacing 14.32 18.11 16.06 1.14
Random GA 10.25 15.96 14.37 1.06

NSGA-II C (A, B) 1 1 1 0Random GA

Random GA C (B, A) 0 0 0 0NSGA-II

NSGA-II HV 0.55 0.63 0.58 0.01
Random GA 0.34 0.45 0.39 0.01

NSGA-II
Runtime (x103)

56 70 65 0.5
Random GA 60 77 70 0.5

6. Conclusions

Scheduling management of home appliances in smart grids enables the EPS to be more efficient
and effective because issues such as power interruptions during peak demands can be minimized.
Thus, DR plays a key role in managing energy consumption in order to avoid overloading as well
as reducing the cost of electricity for end consumers. However, this optimized operation of home
appliances requires an infrastructure capable of scheduling the operating periods of the devices over
the planning horizon, and thus reducing the periods of peak demand, and improving the reliability
and efficiency of the EPS minimally affecting the satisfaction/comfort of end consumers. This paper
proposes an architecture of a home energy management system (HEMS) and presents a multi-objective
DR optimization model to manage the scheduling of electrical appliances in residencies, aiming at
minimizing the cost associated to the energy consumption, as well as minimizing the inconvenience
(dissatisfaction/discomfort) of end consumers.

The performance of the HEMS using the DR optimization model was evaluated through
simulations. First, the efficiency of the HEMS was analyzed for cost minimization associated with the
consumption of electric energy as well as inconvenience (dissatisfaction/discomfort) minimization
of end consumers of the different residential Scenarios. In addition, the HEMS performance was
evaluated for the load scheduling of some appliances (Tables 5, 9 and 13) in order to verify the
influence of such appliances to reduce the cost of electricity. Next, through the diversity, coverage
and hypervolume metrics, the characteristics of the solutions for the problem of scheduling the home
appliances were evaluated.

The results of the study showed that there is a significant reduction in the total cost associated
with the consumption of electric power for the three scenarios analyzed. The families that obtained
the greatest reductions were the residents in Teresina—PI where the total cost of electricity was
reduced from US$ 99.31 to US$ 90.72, from US$ 250.66 to US$ 229.08, and from US$ 57.45 to US$ 52.52
for Scenarios 1, 2 and 3, respectively. Moreover, when the level of inconvenience and the trade-off
were analyzed, after optimizing the use of home appliances, the highest values for trade-off were
0.11, 0.17 and 0.12 for the Scenarios 1, 2 and 3, respectively, for the families living in Teresina—PI.
Thus, these families achieved a reduction in the price of electricity equivalent to US$ 0.11, US$ 0.17
and US$ 0.12. In addition, the statistical results in Table 15 show that, when the HEMS applied the
NSGA-II technique, with the multi-objective DR model, in the EMC, it obtained the best results of the
simulations when compared to the random search algorithm for all the metrics (Diversity, Coverage
and Hypervolume) used in this work.

Future research could further improve in several directions. One possibility would be to improve
the model so that some microgrid characteristics, such as the use of electric vehicles and renewable
sources for the generation of electric energy, can be included. Another direction could be to evaluate
the performance of our model using the NSGA-II technique for other residential scenarios. In addition,
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a third option could be to solve the multi-objective problems presented in this work with other
optimization techniques.
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