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Abstract: Standard Bayesian filtering algorithms only work well when the statistical properties
of system noises are exactly known. However, this assumption is not always plausible in real
target tracking applications. In this paper, we present a new estimation approach named adaptive
fifth-degree cubature information filter (AFCIF) for multi-sensor bearings-only tracking (BOT)
under the condition that the process noise follows zero-mean Gaussian distribution with unknown
covariance. The novel algorithm is based on the fifth-degree cubature Kalman filter and it is
constructed within the information filtering framework. With a sensor selection strategy developed
using observability theory and a recursive process noise covariance estimation procedure derived
using the covariance matching principle, the proposed filtering algorithm demonstrates better
estimation accuracy and filtering stability. Simulation results validate the superiority of the AFCIF.

Keywords: cubature information filter; multi-sensor bearings-only tracking; covariance matching;
sensor selection

1. Introduction

Bearings-only tracking (BOT), which is also named target motion analysis (TMA), has been
widely used in military applications, such as underwater tracking, aircraft surveillance and electronic
warfare [1]. As an efficient passive means, BOT tracks the target of interest without emitting
electromagnetic waves, which can prevent the tracking system from being detected and improve
the fighting capabilities. The goal of BOT is to acquire kinematic parameters of the target using bearing
measurements corrupted by noise [2].

For single-sensor BOT problem, the sensor must outmaneuver the target to guarantee the
observability of the tracking system. Therefore, how the sensor moves becomes a crucial factor
that influences the tracking accuracy and many researchers have devoted themselves to this research
topic [3–7]. However, it is always difficult and sometimes unrealistic to design an optimal trajectory
for the sensor. Under the premise that the sensor moves according to a given trajectory, there are also
many focusing on the tracking algorithms. Over the past decades, the evolution of Bayesian filtering
technology provides BOT with numerous choices, among which the most important and frequently
used method is the extended Kalman filter (EKF) [8–10]. Although simple to implement, tracking
algorithms that are based on the EKF linearize the nonlinear system model by utilizing Taylor-series
expansion, which may lead to unstable and even divergent filtering results. In recent years, sigma-point
based filters, including deterministic-point-based ones that are represented by cubature Kalman filter
(CKF) [11–13] and random-point-based ones represented by particle filter (PF) [14], have attracted
much attention. Instead of approximating the nonlinear functions, like EKF, this kind of filters adopt
different numerical rules to approximate the probability density distributions of nonlinear systems.
When filtering accuracy, numerical stability, and computational demands are all considered, the CKF
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seems to be a desirable choice for state estimation in BOT. This is because of the evident drawbacks
existing in other sigma-point based filters, including the possible invalidation of the unscented Kalman
filter (UKF) if the number of system states is more than three and the heavy computational burden of
quadrature Kalman filter (QKF) and PF, etc. The conventional CKF adopts the third-degree cubature
rule, which can guarantee at least second-order Taylor precision [15]. In order to further improve
filtering precision and numerical stability, a new class of CKFs based on the high-degree cubature
rules [16] is developed.

With the quick development of electronic technology, sensors become low-cost and tracking
systems equipped with multiple sensors are becoming increasingly preferable for BOT. The bearing
measurements received by sensors at different locations can be fused, thus the system observability
and tracking performance can both be improved significantly. Nonetheless, unobservable cases may
still occur in multi-sensor BOT. Therefore, the sensors that are used for tracking the target should
be selected properly and saving sensor network resource should also be put into consideration
at the same time. So we should try to achieve the optimal tracking efficacy with the fewest
sensors. The information filter [17], which is algebraically equivalent to the classical Bayesian filter,
is more suitable for multi-sensor data fusion. In the information filtering framework, the estimated
parameters are the information-form states and matrix. Compared with conventional filtering
algorithms, the information-form counterparts [18–20] have the advantages of easy initialization,
easy decentralization, and low computational burden.

The standard Bayesian filtering algorithms are efficient, provided only that the statistic of process
noise is exactly known. In real combat scenarios, however, this assumption is not usually reasonable.
Thus, adaptive filtering algorithms are needed to solve this model mismatching problem. This type
of filters can be mainly divided into innovation-based ones and the ones using multiple models [21].
Innovation-based filters [21–24] adopt covariance matching method or maximum likelihood estimation
to modify the statistic of the process noise. Drawbacks, such as heavy computation burden,
non-positive matrix, and offline estimation prevent these methods from being utilized in reality.
Since being proposed, the interacting multiple model (IMM) method [25] has been extensively used
for state estimation under unknown system parameters, but its performance depends on the selection
of model sets.

In this paper, we propose an adaptive nonlinear estimation approach, called the adaptive
fifth-degree cubature information filter (AFCIF), which shows better performance than the standard
algorithms for multi-sensor BOT especially when the statistic of process noise is unknown. It is built
on the basis of the newly introduced fifth-degree CKF [16] and adopts the structure of information
filter. A prominent feature of this algorithm is the recursive process noise covariance estimation
procedure, which is derived using covariance matching principle [22]. This can address the issue
of state estimation with unknown process noise covariance in BOT. In addition, a sensor selection
strategy is presented to enhance the system observability. Various kinds of criteria [26–29] have been
proposed for sensor selection in multi-sensor target tracking, including Fisher information, estimation
error covariance, and maximum entropy, etc. Our strategy is based on maximizing the inverse of the
condition number [30] of the observability matrix, intending to achieve the best observable condition
with the given sensor network. Combined with the sensor selection strategy and the recursive process
noise covariance estimation procedure, the novel algorithm demonstrates better adaptivity, filtering
accuracy, and stability.

The rest of the paper is organized as follows. Section 2 describes the problems that we will solve
in multi-sensor BOT. The Bayesian filtering theory is reviewed in Section 3. Section 4 derives the sensor
selection strategy and Section 5 introduces the AFCIF algorithm for multi-sensor BOT. The convergence
of the proposed algorithm is analyzed in Section 6. Simulations for a certain multi-sensor BOT scenario
and performance analysis are given in Section 7. Section 8 summarizes our main contributions.
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2. Problem Formulation

The multi-sensor BOT problem in a two-dimensional (2-D) Cartesian coordinate plane is depicted
in Figure 1. The position and velocity of the target at time k are denoted by (xk, yk) and (

.
xk,

.
yk), and the

state vector of the target at time k is defined as xk =
[
xk yk

.
xk

.
yk
]T, then the system model can be

written as
xk = Fxk−1 + wk−1 (1)

zk = hk(xk) + vk (2)

where xk ∈ Rn, n (= 4) is the dimension of the state vector and F denotes the state transition matrix
that decides the motion model of the target and is given by

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 (3)

where ∆T represents the sample interval. zk ∈ Rm is the measurement vector at time k and m (= 2) is
its dimension. hk(·) is the measurement function at time k, wk−1 and vk represent process noise and
measurement noise, respectively.
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At time k, two sensors among the available sensor network are selected to measure the azimuths
between the target and themselves. So hk(xk) can be written as follows:

hk(xk) =

[
hk,1(xk)

hk,2(xk)

]
=

[
βk,1
βk,2

]
=

 arctan( xk−sx
1

yk−sy
1
)

arctan( xk−sx
2

yk−sy
2
)

 (4)

and

vk =

[
vk,1
vk,2

]
(5)

where (sx
i , sy

i ) and vk,i denote the location and measurement noise, respectively, of the ith sensor.
wk−1 and vk,i are assumed to be uncorrelated noises with Gaussian distributions N (wk−1; 0, Qk−1)

and N (vk,i; 0, Ri), and vk ∼ N (0, R) with R = diag(R1, R2).

Problem 1. The process noise covariance is assumed to be time-invariant but unknown. In this case, standard
filtering algorithms will collapse and some improvements should be made on them.
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Problem 2. At each time step k, given a set of sensors at different fixed locations, S =
{

s1, s2, · · · , sNk

}
,

si = (sx
i , sy

i ), i = 1, 2, · · · , Nk and the state estimates of the target xk, the sensor selection problem can be
formulated as

max
s1,s2

OD(s1, s2)

subject to si ∈ S, i = 1, 2.
(6)

where OD(s1, s2) denotes the observability degree of the BOT system when s1, s2 are selected to track the target.

Remark 1. In this paper, we only consider the problem of tracking the target using the bearing measurements from
two selected sensors, which is a special case of multi-sensor BOT. With the number of passive sensors increasing,
the system observability and tracking performance will be enhanced gradually. Therefore, the two-sensor case
seems to be the most difficult in multi-sensor BOT and worth studying.

3. Bayesian Filtering

The aim of BOT is to acquire estimates of the target state xk given a set of measurements z1:k.
Based on the posterior density p(xk−1|z1:k−1) at time k− 1, the predicted density of the state can be
firstly evaluated through one-step prediction in Bayesian filtering techniques

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (7)

and then the posterior density at time k can be computed recursively by

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫

p(zk|xk)p(xk|z1:k−1)dxk
(8)

where p(xk|xk−1) is the state transition density and p(zk|xk) is the measurement likelihood.
It is obvious that the multidimensional integrals in Equations (7) and (8) are intractable if nonlinear

relationships exist in the system model. Since the measurement function in the BOT system is nonlinear,
the traditional Kalman filter (KF) could not be directly applied and nonlinear solutions are needed.
By linearizing the nonlinear function in the system model, the EKF has the similar filtering procedure
to KF. However, since the nonlinearity of the measurement function (arc tangent) in BOT system is
severe, the performance of the EKF will be degraded significantly.

Instead of approximating the nonlinear function in the system model, the kind of
deterministic-point-based filters approximate the probability density distribution of the system state
through a group of deterministic weighted points. Under the assumption that the state is following the
Gaussian distribution, the main goal of deterministic-point-based filters is to approximately calculate
the multidimensional integrals, which can be expressed as the product of a nonlinear function and
a Gaussian probability density, as follows:

I(g) =
∫

g(x)N (x; x̂, P)dx
=
∫

g(
√

Px + x̂)N (x; 0, In)dx

=
Nξ

∑
i=1

ωig(
√

Pξ i + x̂)
(9)

where g(·) is an arbitrary nonlinear function andN (x; x̂, P) denotes a Gaussian distribution with mean
x̂ and covariance P. ξi and ωi are the chosen deterministic points and their corresponding weights,
which can be generated by various rules, such as the unscented transform, the cubature rules, and the
Gauss-Hermite quadrature rule. For more details of these rules, please refer to [15,16,18–20].

Taking both estimation precision and time complexity into account, we adopt the fifth-degree
cubature rule [16] to approximate the multidimensional integrals. Since being proposed, this new
rule for CKF has attracted a lot of attention in various research areas [31–33]. The set of Nξ = 2n2 + 1
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deterministically selected cubature points and their corresponding weights that are based on this rule
are defined in Equations (10) and (11).

ξ i =



(0, 0, · · · , 0)T i = 0
√

n + 2ei i = 1, 2, · · · , n

−
√

n + 2ei−n i = n + 1, · · · , 2n
√

n + 2η+i−2n i = 2n + 1, · · · , n(n + 3)/2

−
√

n + 2η+i−n(n+3)/2 i = n(n + 3)/2 + 1, · · · , n(n + 1)
√

n + 2η−i−n(n+1) i = n(n + 1) + 1, · · · , n(3n + 1)/2

−
√

n + 2η−i−n(3n+1)/2 i = n(3n + 1)/2 + 1, · · · , 2n2

(10)

ωi =


2

n+2 i = 0
4−n

2(n+2)2 i = 1, 2, · · · , 2n
1

(n+2)2 i = 2n + 1, · · · , 2n2

(11)

where n is the dimension of the state vector, ei ∈ Rn is the unit vector with the ith component
being 1, and {

η+j

}
=

{√
1
2
(ek + el) : k < l, k, l = 1, 2, · · · , n

}
(12)

{
η−j

}
=

{√
1
2
(ek − el) : k < l, k, l = 1, 2, · · · , n

}
(13)

Another category of point-based filters, which choose points randomly, can be represented by
PF. Although the performance is better, the heavy computational burden restricts their application in
reality. For detailed rules of choosing points and the filtering process, refer to [34].

Being algebraically equivalent to the conventional filters, information filter has been widely used
in multi-sensor information fusion. Instead of estimating the state x̂ and the covariance P, it computes
the information states ŷ and information matrix Y at each time step. The relationships between x̂, P and
ŷ, Y are given by

x̂ = Y−1ŷ (14)

P = Y−1 (15)

4. Sensor Selection

In this section, a sensor selection strategy is developed to address the problem 2 introduced
in Section 2. Based on the classical control theory and the condition number [30], an observability
metric is derived as the criterion to select the best combination of sensors. The continuous kind of the
multi-sensor BOT system model (1) and (2) is given by{ .

xp = fp(xp) = [
.
x,

.
y]T

z = h(xp)
(16)

where xp = [x, y]T denotes the position vector of the target and

h(xp) =

[
h1(xp)

h2(xp)

]
=

[
β1

β2

]
=

 arctan( x−sx
1

y−sy
1
)

arctan( x−sx
2

y−sy
2
)
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The local nonlinear observability matrix of the multi-sensor BOT system can be computed as

O =



∇L0
fp
(h1)

∇L1
fp
(h1)

...
∇L0

fp
(h2)

∇L1
fp
(h2)

...


=



y−sy
1

d2
1

−(x−sx
1)

d2
1

Oh1
21 Oh1

22
...

...
y−sy

2
d2

2

−(x−sx
2)

d2
2

Oh2
21 Oh2

22
...

...


(17)

where ∇Ln
fp
(hi) represents the n-order Lie derivative of hi along fp and

di =

√
(x− sx

i )
2 + (y− sy

i )
2
, i = 1, 2

denotes the relative distance between the target and the ith sensor.
For simplicity, we neglect Oh1

21, Oh1
22, Oh2

21, Oh2
22, and other high-order terms, then the observability

matrix can be simplified as

O =

 y−sy
1

d2
1

−(x−sx
1)

d2
1

y−sy
2

d2
2

−(x−sx
2)

d2
2

 (18)

Through some basic trigonometric transform, Equation (18) can be rewritten as

O =

 cos β1
d1

− sin β1
d1

cos β2
d2

− sin β2
d2

 (19)

The range information is weakly locally observable if the observability matrix O has full column
rank. However, the rank could not tell us how well the tracking system is observable. In order to
solve Problem 2, we use the inverse of the condition number of O, defined as the ratio of the smallest
singular value to the largest one, given by

OD = C−1(O) =
σmin(O)

σmax(O)
(20)

to describe the observability degree of the BOT system when s1, s2 are used for tracking the target.
A larger OD means a better observability and OD ∈ [0, 1].

The singular values of O are equal to the square-root of the eigenvalues of the symmetric matrix,
given as

O = OTO (21)

and {
σmin(O) =

√
λmin(O)

σmax(O) =
√

λmax(O)
(22)
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After some fundamental calculation, we can obtain the singular values of the observability matrix
for the multi-sensor BOT system, as follows:

σmin(O) =

√
(d2

1+d2
2)−

√
(d2

1+d2
2)

2−4d2
1d2

2 sin2(β1−β2)

2d2
1d2

2

σmax(O) =

√
(d2

1+d2
2)+

√
(d2

1+d2
2)

2−4d2
1d2

2 sin2(β1−β2)

2d2
1d2

2

(23)

By substituting Equation (23) into Equation (20), the observability metric, which is used to select
the best pair of sensors, can be computed, as follows

OD =

√√√√√ (d2
1 + d2

2)−
√
(d2

1 + d2
2)

2 − 4d2
1d2

2 sin2(β1 − β2)

(d2
1 + d2

2) +
√
(d2

1 + d2
2)

2 − 4d2
1d2

2 sin2(β1 − β2)
(24)

At time step k, the OD of each possible couple of sensors is calculated and the one with the largest
value will be selected to track the target. Since the true target state is not usually available, we use the
one-step prediction of the state, namely xk|k−1, to compute OD.

Remark 2. It is obvious that OD = 0 when β1 = β2 or β1 = β2 + π, which means that the selected pair of
sensors should not at the same position or on a straight line with the target.

Remark 3. This sensor selection strategy can help improve the observability of the tracking system as well as
enhance the filtering precision. Besides, well-estimated state ensures that the process noise covariance estimation
which is introduced in Section 5 could converge to the true value quickly.

5. Adaptive Fifth-Degree Cubature Information Filter

The fifth-degree cubature information filter (FCIF) is algebraically equivalent to the fifth-degree
CKF. In this section, two improvements, including the sensor selection strategy that was developed
in Section 4 and a recursive process noise covariance estimation strategy are introduced into FCIF,
thus both Problems 1 and 2 can be solved.

Assume that the posterior state and covariance estimates at time k− 1 are x̂k−1|k−1 and Pk−1|k−1,
the proposed AFCIF algorithm incorporates the following parts.

5.1. Time Update

The one-step prediction of the information state and covariance are given by

ŷk|k−1 = Yk|k−1x̂k|k−1 = Yk|k−1Fx̂k−1|k−1 (25)

Yk|k−1 = P−1
k|k−1 = (FPk−1|k−1FT + Qk−1)

−1
(26)

5.2. Measurement Update with Sensor Selection

In order to improve the observability of the range information and the precision of the target
state estimation, the sensor selection strategy that was constructed in last section will be employed.
By using this strategy, a pair of sensors that has the largest value of C−1(O) will be selected and the
azimuth measurements that were received by them will be utilized to update the state and covariance.

Assume that the sensor network has Nk individual sensors at time k and there will be Nk(Nk−1)
2

kinds of combinations, including (s1, s2), (s1, s3), · · · , (s1, sNk ), · · · , (sNk−1, sNk ), then we calculate
C−1(O) of all combinations and choose the one that achieves the largest value.
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In the measurement update, the generated cubature points and propagated ones are given by

χi,k|k−1 =
√

Pk|k−1ξ i + x̂k|k−1 (27)

zi,k|k−1 = hk(χi,k|k−1) (28)

the predicted measurement is

ẑk|k−1 =
2n2+1

∑
i=1

ωizi,k|k−1 (29)

According to [19], once the measurement at time k is available, the filtered information state and
the covariance can be computed as

ŷk|k = ŷk|k−1 + Yk|k−1Pxz
k|k−1R−1

[
zk − hk(x̂k|k−1) + Pxz,T

k|k−1YT
k|k−1x̂k|k−1

]
(30)

Yk|k = Yk|k−1 + Yk|k−1Pxz
k|k−1R−1Pxz,T

k|k−1YT
k|k−1 (31)

where the cross covariance matrix is given by

Pxz
k|k−1 =

2n2+1

∑
i=1

ωi(χi,k|k−1 − x̂k|k−1)(zi,k|k−1 − ẑk|k−1)
T (32)

At last the state and covariance can be recovered by

x̂k|k = Y−1
k|k ŷk|k (33)

Pk|k = Y−1
k|k (34)

5.3. Recursive Estimation of Process Noise Covariance

In reality, statistic of the process noise is not usually available as described in Problem 1,
so we build a recursive estimation strategy through covariance matching principle.

Consider one-step prediction of state x̂k|k−1 at time k − 1 and the filtered state x̂k|k at time k,
the residual between them can be represented by

ζk = x̂k|k − x̂k|k−1 (35)

Given the residual data from time k− N + 1 to time k, the mean and the covariance of ζk can be
estimated by

ζk =
1
N

k

∑
i=k−N+1

ζ i (36)

Σζk
=

1
N − 1

k

∑
i=k−N+1

(
ζ i − ζk

)(
ζ i − ζk

)T
(37)

where N is an adjustable parameter. Inspired by the measurement noise covariance update rule derived
in [24], we can obtain the following results.

Theorem 1. Under the premise that the covariance of process noise stay constant, the recursive relation between
Qk−1 and Qk can be described as

Qk =
N − 1

N
Qk−1 + ∆Qk (38)
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where
∆Qk =

1
N − 1

(
ζk − ζk

)(
ζk − ζk

)T
− 1

N

(
FPk−1|k−1FT − Pk|k

)
(39)

Proof. Under the condition that the process noise covariance is constant, the expectation of Equation (37)
is given by [22]

E(Σζ) =
1
N

k

∑
i=k−N+1

(FPi−1|i−1FT − Pi|i) + Qk (40)

Combine Equations (37) and (40), the covariance of process noise can be approximately calculated by

Qk =
1

N − 1

k

∑
i=k−N+1

(ζ i − ζk)(ζ i − ζk)
T − 1

N

k

∑
i=k−N+1

(FPi−1|i−1FT − Pi|i) (41)

Similarly, Qk−1 can be computed as

Qk−1 =
1

N − 2

k−1

∑
i=k−N+1

(ζ i − ζk)(ζ i − ζk)
T − 1

N − 1

k−1

∑
i=k−N+1

(FPi−1|i−1FT − Pi|i) (42)

Through some simple mathematical transformation, Equation (41) can be rewritten as the
following form

Qk =
N − 1

N
Xk + ∆Qk (43)

where

Xk =
N

(N − 1)2

k−1

∑
i=k−N+1

(ζ i − ζk)(ζ i − ζk)
T − 1

N − 1

k−1

∑
i=k−N+1

(FPi−1|i−1FT − Pi|i) (44)

If N is large enough, the difference between N/(N − 1)2 and 1/(N − 2) is negligible. So, Xk can
be approximated as

Xk ≈
1

N − 2

k−1

∑
i=k−N+1

(ζ i − ζk)(ζ i − ζk)
T − 1

N − 1

k−1

∑
i=k−N+1

(FPi−1|i−1FT − Pi|i) (45)

Obviously, the above equation has the equivalent form with Qk−1, therefore we can obtain
Equation (38). This completes the proof. Similarly, the recursive estimation equation of ζk is given by

ζk =
N − 1

N
ζk−1 +

1
N

ζk (46)

So, we can use Equations (35), (38), (39) and (46) to update the covariance of process noise. �

Remark 4. The parameter N in Equations (38) and (46) needs to be adjusted when this noise covariance
estimation strategy is used in reality. A large N means that relatively accurate statistical information of the
process noise can be obtained and the updated Qk is very close to Qk−1. A small N, however, indicates that there
is no knowledge of the process noise available and Qk is more dependent on the newly estimated state.

5.4. Adaptive Fifth-Degree Cubature Information Filter for Multi-Sensor Estimation

When compared with the conventional Bayesian filters, the information-form ones are preferred
in multi-sensor tracking due to the simpler measurement update process. In the information filter, the
measurements received by the sensors at different locations can be fused by adding each measurement
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contribution to the information state and matrix, and then the filtered information state and matrix can
be calculated as

ŷk|k = ŷk|k−1 +
2

∑
i=1

P−1
k|k−1Pxz

i,k|k−1R−1
i

[
zk,i − hk,i(x̂k|k−1) + Pxz,T

i,k|k−1P−T
k|k−1x̂k|k−1

]
(47)

Yk|k = Yk|k−1 +
2

∑
i=1

P−1
k|k−1Pxz

i,k|k−1R−1
i Pxz,T

i,k|k−1P−T
k|k−1 (48)

where Pxz
i,k|k−1 is the ith column of Pxz

k|k−1, Ri is the measurement noise covariance of the ith sensor and
zk,i is the measurement of the ith sensor at time k.

6. Convergence Analysis

Now, we analyze the convergence of the novel algorithm when used in multi-sensor BOT for
state estimation. Firstly, we define the posterior state estimation error, the predicted state error and
measurement error at time k, respectively, by

x̃k = xk − x̂k|k (49)

x̃k|k−1 = xk − x̂k|k−1 (50)

z̃k = zk − hk(x̂k|k−1) (51)

and the relationships between them are described, as follows

x̃k = x̃k|k−1 −Kkz̃k (52)

x̃k|k−1 = Fx̃k−1 (53)

For simplicity, Equation (51) can be transformed into the following linearized form

z̃k = αkHkx̂k|k−1 (54)

where αk is a diagonal matrix. Since the CKF is a kind of derivative-free algorithm and no linearization
error can be produced, we use this exact form just for the convenience of theory analysis. Here, instead
of Hk, αkHk becomes the measurement matrix.

Theorem 2. The proposed AFCIF algorithm is stable and can guarantee the estimation of the multi-sensor BOT
system convergent if the following conditions hold

I. The filtered covariance matrix is bounded.

aIn ≤ P−1
k−1|k−1 ≤ bIn (55)

II. The state transition matrix is invertible and bounded.

‖F‖ ≤ c (56)

III. The updated process noise covariance satisfies

(1− λ)σ(FPk−1|k−1FT + Qk−1) ≥ σ(F)2σ(Pk−1|k−1) (57)

where a, b, c are positive real numbers, 0 < λ < 1, σ, and σ denote the minimum and maximum
singular values.
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Proof. The Lyapunov function at time k is defined as

V(x̃k) = x̃T
k P−1

k|k x̃k (58)

Similarly,
V(x̃k−1) = x̃T

k−1P−1
k−1|k−1x̃k−1 (59)

and it is obvious that V(0) = 0.
The Kalman gain and the inverse of the error covariance can be calculated as

Kk = Pk|k−1HT
k αk(αkHkPk|k−1HT

k αk + R)
−1

= Pk|kHT
k αkR−1 (60)

P−1
k|k = P−1

k|k−1 + HT
k αkR−1αkHk (61)

V(x̃k) becomes

V(x̃k) = x̃T
k|k−1P−1

k|k x̃k|k−1 − x̃T
k|k−1HT

k αkR−1z̃k − z̃T
k R−1αkHkx̃k|k−1 + z̃T

k R−1αkHkPk|kHT
k αkR−1z̃k (62)

by substituting (60) into (52) and (52) into (58). Then, substitute (61) into (62), we obtain

V(x̃k) = x̃T
k|k−1P−1

k|k−1x̃k|k−1 + x̃T
k|k−1HT

k αkR−1αkHkx̃k|k−1

−x̃T
k|k−1HT

k αkR−1z̃k − z̃T
k R−1αkHkx̃k|k−1 + z̃T

k R−1αkHkPk|kHT
k αkR−1z̃k

(63)

Combined with (26), (53), and (54), (63) becomes

V(x̃k) = x̃T
k−1FT(FPk−1|k−1FT + Qk−1)

−1Fx̃k−1 − z̃T
k (R

−1 −R−1αkHkPk|kHT
k αkR−1)z̃k

= x̃T
k−1FT(FPk−1|k−1FT + Qk−1)

−1Fx̃k−1 − z̃T
k P−1

zz z̃k

≤ x̃T
k−1FT(FPk−1|k−1FT + Qk−1)

−1Fx̃k−1

(64)

where R−1 −R−1αkHkPk|kHT
k αkR−1 = P−1

zz , as shown in [12]. Then according to (57), (59), and (64),

V(x̃k)− (1− λ)V(x̃k−1) ≤ 0 (65)

further
0 ≤ ax̃T

k x̃k ≤ V(x̃k) ≤ (1− λ)kV(x̃0) (66)

Since
0 ≤ a lim

k→∞
(x̃T

k x̃k) ≤ lim
k→∞

V(x̃k) ≤ V(x̃0) lim
k→∞

(1− λ)k = 0 (67)

we can obtain
lim
k→∞

(x̂k − xk) = 0 (68)

Therefore, the state estimation error will converge to 0 over time. This completes the proof. �

Remark 5. The sensor selection strategy helps make the tracking system locally observable, which ensures that
Condition I is satisfied. Condition II is naturally satisfied according to Equation (3).

Remark 6. An easy way to keep the filtering stability is to use a sufficiently large Qk−1. However, this may
cause degenerated estimation performance. On the contrary, a small Qk−1 could lead to unstable performance,
even though it may produce better filtering precision at some time. The proposed AFCIF algorithm can provide
accurate estimation of Qk as k→ ∞ , thus both the precision and stability can be guaranteed.
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7. Simulation Analysis

In this section, the proposed AFCIF algorithm is compared with FCIF through 500 Monte Carlo
runs in a multi-sensor BOT scenario. The motion of the target follows the dynamic equation that is
described by (1). The sample interval ∆T = 1 s and the target’s motion lasts for 150 s. The initial
target state is x0 = [−10 km, 10 km, 50 m/s, −100 m/s]T and the initial covariance is set to be
P0 = diag([104 m2, 104 m2, 102 m2/s2, 102 m2/s2]). The initial state estimate x̂0 follows the Gaussian
distributionN (x̂0; x0, P0). We assume that a group of four passive sensors are ready to track the target
using bearing measurements and only two of them will be selected at each time. The fixed localizations
of the four sensors are given by

sx
1 = 4 km, sy

1 = −10 km sx
2 = 5 km, sy

2 = −7 km

sx
3 = 0 km, sy

3 = −10 km sx
4 = −8 km, sy

4 = −7 km

The measurement noises of all the sensors are assumed to be white Gaussian with covariance
Ri = (0.1◦)2, i = 1, 2, 3, 4. The process noise is also assumed to be zero-mean Gaussian with unknown
covariance Qtrue = diag([100 m2, 100 m2, 1 m2 · s−2, 1 m2 · s−2]). The prior process noise covariance
is set to be Qbig = 100Qtrue and Qsmall = 0.01Qtrue. Under these two initializations, we conduct
simulations using the standard FCIF and the proposed AFCIF with different combinations of sensors.

We use the root-mean-square error (RMSE) as our performance metric to compare the accuracy
and stability of these two algorithms. The RMSE of position at time k is defined as

RMSEpos
k =

√√√√ 1
M

M

∑
i=1

(x̂i
k − xi

k)
2
+ (ŷi

k − yi
k)

2 (69)

where M is the overall number of Monte Carlo runs, (xi
k, yi

k) and (x̂i
k, ŷi

k) are the true position and
estimated position of the target, respectively, in the ith run at time k. Similarly, the RMSE of velocity at
time k is defined as

RMSEvel
k =

√√√√ 1
M

M

∑
i=1

(
.̂
x

i
k −

.
xi

k)
2
+ (

.̂
y

i
k −

.
yi

k)
2

(70)

where (
.
xi

k,
.
yi

k) and (
.̂
x

i
k,

.̂
y

i
k) are true velocity and estimated velocity of the target, respectively, in the ith

run at time k.
The RMSE of process noise covariance is defined as

RMSEcov
k =

√√√√ 1
M

M

∑
i=1

4

∑
j=1

(Q̂jj
k,i −Qjj

true)
2

(71)

where Qjj
true and Q̂jj

k,i represent the jth component of the true process noise covariance and the estimated
one in the ith run at time k. Here, without considering units, we define this RMSEcov

k by integrating
each diagonal element in the covariance matrix.

In the target tracking literature, the posterior Cramér-Rao lower bound (PCRLB) has been
extensively used as an indication of the best possible performance that a filtering algorithm can
get close to, but typically not achieve. The PCRLB for the RMSE of position and velocity at time k are
computed, as follows:

PCRLB(RMSEpos
k ) =

√
J−1

k (1, 1) + J−1
k (2, 2) (72)

PCRLB(RMSEvel
k ) =

√
J−1

k (3, 3) + J−1
k (4, 4) (73)
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where J−1
k (i, i) denotes the ith element of the principal diagonal of J−1

k . In [35], Tichavský developed
the recursive formula below for calculating the Fisher information matrix, namely Jk, at each time step:

Jk = D22
k −D21

k [Jk−1 + D11
k ]
−1

D12
k (74)

where
D11

k = E
{

FT
k Q−1

k Fk

}
= FTQ−1

trueF

D12
k = −E

{
FT

k Q−1
k

}
= −FTQ−1

true

D21
k = −E

{
Q−1

k Fk

}
= −Q−1

trueF

D22
k = E

{
HT

k R−1
k Hk

}
+ Q−1

k = HT
k R−1Hk + Q−1

true

and Hk is the Jacobian of the measurement function.
The simulation results are illustrated in Figures 2–9. The PCRLB curves in Figure 2, Figure 4

and Figure 3, Figure 5 denote the posterior Cramér-Rao lower bounds for the RMSEs of position and
velocity, respectively. The PCRLB curves shown in the figures are based on the situation when all the
sensors are selected for tracking the target. Hence, the Jacobian of the measurement function used for
computing the PCRLBs is given by

Hk =



yk−sy
1

d2
k,1

−(xk−sx
1)

d2
k,1

0 0

yk−sy
2

d2
k,2

−(xk−sx
2)

d2
k,2

0 0

yk−sy
3

d2
k,3

−(xk−sx
3)

d2
k,3

0 0

yk−sy
4

d2
k,4

−(xk−sx
4)

d2
k,4

0 0


(75)

where dk,i =
√
(xk − sx

i )
2 + (yk − sy

i )
2
, i = 1, 2, 3, 4 denotes the relative distance between the ith sensor

and the target at time k.
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As depicted in Figure 2, the estimation performance of AFCIF on target position is better than that
of each standard FCIF when the initial estimate of process noise covariance is much larger. Although
experiencing some obvious fluctuations, the RMSE curves of the FCIFs with different combinations
of sensors stay descending until the last second, except the one with s1, s4 and the one with s2, s4

become gradually divergent at the last 20 s. However, the curve of the AFCIF keeps the downtrend
with smaller fluctuations, which indicates better filtering stability. As for the estimation performance
on target velocity, it can be seen in Figure 3 that the RMSE curves of AFCIF and FCIFs with s1, s4, s2, s4,
and s3, s4 almost overlap in the last 50 s. Overall, when the initial process noise covariance is larger
than the true value, the performance difference between FCIF and AFCIF is decreasing over time.
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be smaller than the true value.

While if the initial value of process noise covariance is smaller than the true one, the simulation
results are different. As shown in Figures 4 and 5, the RMSE curves of AFCIF are easy to be
distinguished from those of the FCIFs and the performance differences keep a growing tendency
in most of the time. This can be explained by the convergence condition that is shown in (57). A smaller
Qk−1 will lead to unstable and divergent results. With no accurate statistic of the process noise, we can
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use a larger initial value to guarantee the stability and convergence of the filtering algorithm. No matter
how the initial process noise covariance is assumed, the RMSE curves of AFCIF approach the PCRLB
gradually over time (as shown in Figures 2–5), which validates the superiority of AFCIF and the
correctness of the theoretical analysis.

Under the condition of unknown process noise covariance, the performance gap between FCIF
and AFCIF is due to the model mismatching, which means that the standard FCIF always uses
an inaccurate process noise covariance in the filtering procedure. However, the proposed AFCIF
estimates and modifies the covariance online, which can guarantee the estimation results stable and
convergent. In our simulation, since the initial estimate of the covariance (no matter Qbig or Qsmall)
has large deviation from the true value, the parameter N should be small. Otherwise the estimation
will reach convergence more slowly. All of the simulation results are based on N = 10.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 19 

 

 

Figure 4. Comparison of RMSE (position estimation) when the initial process noise covariance is set 

to be smaller than the true value. 

 

Figure 5. Comparison of RMSE (velocity estimation) when the initial process noise covariance is set 

to be smaller than the true value. 

Now we compare the tracking performance while using different combinations of sensors. 

From the PCRLBs for RMSE of position comparison shown in Figure 6, it is easy to notice that 2 4, s s  

is the best pair of sensors in most of the time and 1 2, s s  is the last choice. From about the 120th 

second to the end of the simulation, however, the performance of tracking the target with 2 4, s s  

begins to degrade and 3 4, s s  turns to be the best combination. These results are corresponding to 

the illustration in Figure 7, which shows the specific sensor selection of the AFCIF at each time step. 

Another valuable information in Figure 6 is that the tracking performance using 1 4, s s , 2 4, s s  and 

3 4, s s  are very close to that using all the sensors. The strategy of sensor selection helps reach the 

best tracking performance with as few sensors as possible, thus the sensor resources can be utilized 

reasonably and sufficiently. 

Figure 5. Comparison of RMSE (velocity estimation) when the initial process noise covariance is set to
be smaller than the true value.Sensors 2018, 18, x FOR PEER REVIEW  16 of 19 

 

 

Figure 6. Comparison of posterior Cramér-Rao lower bound (PCRLB). 

 

Figure 7. Sensor selection at each time step. 

In Figures 8 and 9, we compare the performance on estimating process noise covariance of 

AFCIF with sensor selection and AFCIFs with fixed combinations of sensors. Once again, sensor 

selection strategy is proved to make the estimation of target state more accurate and this also 

facilitates the estimation of the process noise covariance. 

Table 1 shows the computation time of the algorithms relative to that of FCIF. AFCIF runs a 

litter slower, since it incorporates the procedures of selecting the best pair of sensors and estimating 

the process noise covariance. While considering the prominent improvement over FCIF, this added 

computation burden of AFCIF is ignorable. 

Figure 6. Comparison of posterior Cramér-Rao lower bound (PCRLB).

Now we compare the tracking performance while using different combinations of sensors. From
the comparison of PCRLB for RMSE of position shown in Figure 6, it is easy to notice that s2, s4 is
the best pair of sensors in most of the time and s1, s2 is the last choice. From about the 120th second
to the end of the simulation, however, the performance of tracking the target with s2, s4 begins to
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degrade and s3, s4 turns to be the best combination. These results are corresponding to the illustration
in Figure 7, which shows the specific sensor selection of the AFCIF at each time step. Another valuable
information in Figure 6 is that the tracking performance using s1, s4, s2, s4 and s3, s4 are very close to
that using all the sensors. The strategy of sensor selection helps reach the best tracking performance
with as few sensors as possible, thus the sensor resources can be utilized reasonably and sufficiently.
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Figure 7. Sensor selection at each time step.

In Figures 8 and 9, we compare the performance on estimating process noise covariance of AFCIF
with sensor selection and AFCIFs with fixed combinations of sensors. Once again, sensor selection
strategy is proved to make the estimation of target state more accurate and this also facilitates the
estimation of the process noise covariance.

Table 1 shows the computation time of the algorithms relative to that of FCIF. AFCIF runs a litter
slower, since it incorporates the procedures of selecting the best pair of sensors and estimating the
process noise covariance. While considering the prominent improvement over FCIF, this added
computation burden of AFCIF is ignorable.Sensors 2018, 18, x FOR PEER REVIEW  17 of 19 
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Table 1. Relative Computation Times of the algorithms.

Algorithm Relative Computation Time

FCIF 1
AFCIF 1.7

8. Conclusions

In this paper, we have proposed an adaptive fifth-degree cubature information filter (AFCIF) for
multi-sensor BOT. Our main contributions are summarized, as follows:

(1) A sensor selection strategy based on the observability theory is developed for multi-sensor BOT
to choose the optimal combination of sensors to track the target at each sample interval. With the
given sensors at different locations, this strategy can help the tracking system reach the best
possible observability, which will enhance the filtering stability and accuracy. By using this
strategy, the sensor resource can also be made the best use of.

(2) A novel nonlinear estimation algorithm is constructed within the information filtering framework.
Using the newly introduced fifth-degree cubature rule, this algorithm can approximate the
multidimensional integrals existing in Bayesian filtering with considerable accuracy.

(3) In order to deal with the state estimation of nonlinear system that is corrupted by Gaussian noise
with unknown covariance, a recursive covariance estimation procedure derived through the
covariance matching principle is embedded into the proposed algorithm. Thus, the statistical
property of process noise, which is not usually available in reality, can be estimated and modified
in time. As a result, the estimated covariance will get close to the true value over time, which can
improve the estimation performance of the algorithm.

The efficacy of the proposed algorithm is verified by the simulation results in a multi-sensor BOT
scenario. Under the circumstance of unknown process noise covariance, the target state can still be
well estimated. Through the sensor selection strategy, the best combination of sensors with the lowest
PCRLB and the highest degree of observability can always be selected, which could further enhance
the estimation performance on target state and process noise covariance.
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