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Abstract: In this paper, a quantum-based method for measuring the microwave magnetic field in free
space is presented by exploring atomic Rabi resonance in the clock transition of 133Cs. A compact
cesium glass cell serving as the microwave magnetic field sensing head was used to measure the
spatial distribution of microwave radiation from an open-ended waveguide antenna. The measured
microwave magnetic field was not restricted by other microwave devices. The longitudinal
distribution of the magnetic field was measured. The experimental results measured by the sensor
were in agreement with the simulation. In addition, a slightly electromagnetic perturbation caused
by the glass cell was investigated through simulation calculations.
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1. Introduction

In many production areas, building measurement of the electromagnetic field in the
radio-frequency (RF) range in a free space is either expected or required. At present, the main methods
of measuring RF electromagnetic field strength are the calorimetric method [1–3] and the technique of
peak demodulation [4]. However, the field strength cannot be measured directly by either method, and
the measurement principle of these methods is conversion of the field strength to measurable electrical
signals. In addition, the calorimetric method is greatly affected by temperature and the performance of
the technique of peak demodulation will worsen when the field strength is reduced. Moreover, with
these methods, a detector that consists of metallic parts can perturb the electromagnetic field distribution
and thus the detector must be calibrated when absolute measurement results are needed.

Recently, quantum-based RF field measurements have attracted attention for their simple and
non-metallic setup [5–32]. Alkali atoms in Rydberg states have been utilized to measure microwave
electric fields [14–22]. Specifically, the Rabi frequency associated with atomic transition is proportional
to the electromagnetic field strength. Moreover, the Rabi frequency can be conveniently measured
by a field-amplitude stabilization technique, based on the second harmonic oscillation of the atomic
population, when a phase modulation is added to the RF electromagnetic field. For ease of reference,
and by analogy to the atomic clock, we refer to the Rabi resonance, field-amplitude stabilization process
as an “atomic candle” [11,12]. The measurement of absolute electromagnetic field strength can be
realized and the measurement process is substantially free from interference because the proportionality
constant involved in the quantum-based method is determined only from fundamental physical
constants and atomic quantum based constants. Furthermore, the quantum-based electromagnetic
field measurement method is expected to be of higher accuracy and quicker than the present method.
Compared with the metallic sensing head, the perturbation for the targeted electromagnetic field
caused by glass sensing head can be reduced [21].
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In this paper, we report on a new sensor for measuring the spatial distribution of the magnetic
field strength in a perpendicular direction to the microwave ejection plane of a waveguide. The RF
electromagnetic field was radiated from the open-end waveguide. The magnetic field strength was read
by the atomic candle spectrum, observed by a fast Fourier transform (FFT) analyzer. In addition, the
measured results were compared with simulating calculation results to verify the function of the sensor.
Electromagnetic disturbance caused by the glass cell was also analyzed using simulation calculations.
The method using a Cs glass cell as the antenna to detect microwave magnetic fields is generally so
simple. This sensor can be applied in many fields, such as integrated circuit manufacturing, military,
communications, and medical rescue.

2. Principle

In our experiment, the quantum-based method refers to using an atomic candle to measure the
microwave magnetic field in free space. Theoretically, atoms can be pumped from the lower state
to the upper state and return, when it interacts with an electromagnetic field at the frequency that
corresponds to the energy difference between these two levels. According to Reference [11], when an
electromagnetic field with phase modulation at a frequency of ωm and a modulation amplitude of
θ interacts with a two-level atom, the probability of finding the atoms in the upper-state, P0, has an
oscillating component at a modulation frequency of ωm and harmonic frequency of 2ωm. According to
a calculation based on density-matrix evolutions, P0 can be theoretically written as:

P0 = Pα(t) + Pβ(t) (1)

where Pα(t) and Pβ(t) are the first- and second-harmonic probability oscillations and t is a time variable.
Pα(t) is written as:

Pα(t) = ∆Pα sin(ωmt + ϕ1) (2)

where ϕ1 is the phase, ∆ is the average field-atom detuning, Pα is the amplitude of first harmonic
probability oscillation, which is written as:

Pα ∝
θωmΩ2

γ2

√
(Ω2 −ω2

m)
2
+ γ2

1ω2
m

(3)

where Ω is the Rabi frequency, the oscillation frequency of the population of atomic states, γ1 and γ2

are the longitudinal and transverse relaxation rates. Pα is maximal when Ω = ωm.
However, Pα(t) is equal to 0 when the electromagnetic field is exactly on-resonance (∆ = 0), and P0

is written as:
P0 = Pβ(t) = Pβ sin(2ωmt + ϕ2) (4)

where ϕ2 is the phase, and Pβ is the amplitude of second harmonic probability oscillation, which is
written as:

Pβ ∝
θ2ωmΩ2√

(Ω2 − 4ω2
m)

2
+ 4γ2

1ω2
m

(5)

Obviously, Pβ is maximal when Ω = 2ωm. In other words, the probability of finding the atoms
in the upper-state displays a resonant enhancement when Ω takes on specific values. Note that laser
absorption is proportional to the existence probability on the upper-state when the resonated laser
interacted with the two-level atom. Since the Pα and Pβ may be experimentally distinguished, the
resonant behaviors of the first- and second-harmonic probability oscillations amplitudes were termed
as the α and β Rabi resonances, respectively. According to quantum theory, Ω is written as:

Ω =
gJµ0µB〈F, mF|J|F + 1, mF〉

} H (6)
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where H is the magnetic field strength, h̄ the reduced Planck’s constant, gJ the Landé g-factor, µ0 the
permeability, µB the Bohr magneton, and 〈F, mF|J|F + 1, mF〉 the matrix element, J the component of
the electron angular momentum. The objective of this experiment is to determine H by measuring the
number of atoms in the F = 3 and F = 4 states after exposure to resonant microwaves [13]. Thus, Ω
can be adjusted by H, and it gives the maximum P0 when the magnetic field strength is adjusted to
specific values. Thus, the quantum-based measurement of the microwave magnetic field strength can
be realized. Moreover, as Equation (6) shows, the proportional relation between Ω and H is determined
ultimately by the fundamental physical constants. Theoretically, the experiment is not influenced by
outside conditions.

As shown in Figure 1, a Cs atom can be transported from F = 3 of the ground state to F = 4 of the
ground state by the RF electromagnetic field at a clock frequency of 9.19263177 GHz. The population
of F = 4 can be increased. Then, it can be pumped from F = 4 of the ground state to F′ = 4 of the excited
state by the laser locked in the F = 4→ F′ = 4 transition of the Cs D2 line [33]. In this process, the
laser is absorbed by Cs atoms, and the laser absorption can be increased because of the increase of
the Cs atom population of F = 4 when the RF electromagnetic field is present. The laser absorption
have a maximum value when the population of F = 4 reach to maximum. The laser absorption has
an oscillating component corresponding to harmonics oscillation of the Cs atom population of F = 4,
when the phase of the RF electromagnetic field is modulated.
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Figure 1. The left side is diagram of the interaction between laser and Cs atoms when the RF
electromagnetic field is present. And the right side is diagram of energy level transition made in
the interaction.

The interaction between an atom and a RF electromagnetic field is very weak and cannot be
observed directly only with a RF electromagnetic field. In this experiment, the interaction between Cs
atoms and a phase-modulated RF electromagnetic field was observed by measuring the intensity of the
transmitted laser resonated by Cs atoms. The double resonance experiment [34] was processed. As we
know, H is proportional to the square root of the RF electromagnetic field strength (

√
P). According to

the above-mentioned quantum-based theory, the atomic candle signal was obtained when the values
of the laser absorption varied with

√
P were recorded. The amplitude of oscillating laser absorption is

maximal when the phase-modulated RF electromagnetic field strength is adjusted to specific values.

3. Experiment and Results

In our experiment, Cs vapor enclosed in a cylindrical glass cell was used to detect microwaves.
N2 buffer gas at a pressure of 40 torr was enclosed in the glass cell to slow the collision of Cs atoms with



Sensors 2018, 18, 3288 4 of 14

the glass walls, which can destroy the effect of optical pumping. Glass cell was a cylinder and column
basal plane was the base of a cylinder. The diameter of the column basal plane of the cylindrical glass
cell was 20 mm, its height was 10 mm, and its wall thickness was 0.5 mm. An open-ended waveguide
was used as an emitter to send out microwaves. The dimensions of the waveguide were 22.86 mm ×
10.16 mm × 17 mm, which allows the transmission of microwaves at nearly 9.19 GHz. A side of the
waveguide was opening and its dimensions were 22.86 mm × 10.16 mm. This side was defined as
ejection plane of the waveguide.

As shown in Figure 2, the collimated laser with a wavelength of 852 nm and linewidth of 2 MHz
was emitted from a commercial distributed-feedback (DFB) diode laser. A combination of a λ/2 plate
and a polarizing beam splitter (PBS) was used to adjust the laser intensity. The laser was locked in
the F = 4→ F′ = 5 transition of the Cs D2 line by Cs saturation absorption spectroscopy. And, the
frequency of the laser was shifted 250 MHz by an acoustic optical modulator. The laser was stabilized
to the F = 4→ F′ = 4 transition of the Cs D2 line. Cs atoms enclosed in the glass cell were pumped
from F = 4 of the ground state to F′ = 4 of the excited state by the laser, and the transmitted laser was
detected by a photodiode (PD). The detected signal was analyzed by the FFT analyzer. The diameter
of the laser spot was 3 mm and the laser intensity was 85 µW/cm2. The direction of laser propagation
was perpendicular to the column basal plane of the cylindrical Cs glass cell.
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Figure 2. Experimental setup of quantum-based method. Cs cell 1 was used to generate saturation
absorption spectroscopy. Cs cell was used to measure microwave magnetic field. The frequency of the
laser was locked by the saturation absorption system.

The microwave at the frequency of nearly 9.19 GHz was generated by the microwave signal
source. Cs atoms were irradiated by microwaves, radiated from the open-ended waveguide, and
transported from F = 3 of the ground state to F = 4 of the ground state. The Cs glass cell was put in
a position towards the ejection plane of the waveguide. The centers of the waveguide and the Cs
cell were placed in the same horizontal plane. The normal vector of the column basal plane of the
cylindrical Cs glass cell was parallel to the microwave ejection plane of the waveguide. The distance
between the ejection plane of the waveguide and the center of the Cs glass cell was defined as the
measurement distance. The y-axis was perpendicular to the ejection plane of the waveguide.√

P was adjusted by the microwave signal source and a sinusoidal phase modulation at a
frequency of ωm/2π was added to the microwave by the microwave signal source. The phase
modulation index of θ was set 2.3 rad. The harmonic oscillation was induced on the transmitted
laser when the laser and the phase-modulated microwave simultaneously interacted with Cs atoms.
The first- and the second-harmonic oscillations were all induced on the transmitted laser when the
microwave was near-resonance, and two signal peaks at frequencies of ωm/2π and 2(ωm/2π) were
read out on the FFT analyzer. Moreover, only the second harmonic oscillation was induced when
the microwave was exactly on-resonance, and only one signal peak at the frequency of 2(ωm/2π)
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was observed in the FFT analyzer. The resonance frequency of the microwave was confirmed by
the above-mentioned process, and the resonance frequency was slightly shifted about 33.8 kHz from
9.19263177 GHz due to the presence of N2 buffer gas. It was consistent with theoretical calculating
value of 33.4 kHz [35,36]. The amplitude of the signal peaks at the frequency of 2(ωm/2π) corresponded
to harmonic oscillation of the Cs atom population of F = 4. The amplitude of the signal peaks at each√

P was recorded; then, the atomic candle signal was obtained as a function of
√

P.
Figure 3 shows the atomic candle signal at the phase-modulating frequencies of ωm/2π (300 Hz,

500 Hz, 700 Hz, 900 Hz, 1.1 kHz, 1.3 kHz, and 1.5 kHz). Theoretically, the corresponding Rabi
frequencies were 2(ωm/2π) (600 Hz, 1 kHz, 1.4 kHz, 1.8 kHz, 2.2 kHz, 2.6 kHz, and 3.0 kHz) when
each atomic candle signal was maximal. The microwave magnetic field strengths were evaluated from
the
√

P set by microwave signal source and the microwave magnetic field strength was proportional to√
P. As shown in Figure 3, the peak of the atomic candle signal theoretically corresponds to Ω = 2ωm,

and the horizontal axis value of the peak of the atomic candle signal increased with ωm/2π. Figure 4
shows the dependence of inferred Rabi frequency on microwave magnetic field strength. The Rabi
frequency was proportional to the microwave magnetic field strength, a result in accord with (4).
This allows us to use the quantum-based method to measure the magnetic field strength, and then
realize the microwave magnetic field sensor.
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Figure 3. Atomic candle signal at phase-modulating frequencies of ωm/2π (300 Hz, 500 Hz, 700 Hz,
900 Hz, 1.1 kHz, 1.3 kHz, and 1.5 kHz). The detected signal was analyzed by the FFT analyzer.
Vertical axis values of the plots were the peak value of the laser absorption signal observed by FFT
analyzer. Horizontal axis values were observed in microwave signal source. These curves were
measured at different microwave phase-modulating frequency. What we focus are the horizontal axis
values of the atomic candle signal peak. The signal peak values were increased with the microwave
phase-modulating frequency. The diameter of the laser spot was 3 mm and the laser intensity was
85 µW/cm2. The phase modulation index of θ was set 2.3 rad. The measurement distance was 20 mm.
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Figure 4. Dependence of Rabi frequency on microwave magnetic field strength. Plots were obtained
from Figure 3. Horizontal axis values of plots were abscissa values of the atomic candle signal peak at
different microwave phase-modulating frequencies of ωm/2π (300 Hz, 500 Hz, 700 Hz, 900 Hz, 1.1 kHz,
1.3 kHz, and 1.5 kHz). Vertical axis values of the plots were the corresponding Rabi frequencies of
2(ωm/2π) (600 Hz, 1 kHz, 1.4 kHz, 1.8 kHz, 2.2 kHz, 2.6 kHz, and 3.0 kHz). The straight line was fitted
by the measured plots. The Rabi frequency is proportional to the microwave field strength, which
is expected from Equation (6). The diameter of the laser spot was 3 mm and the laser intensity was
85 µW/cm2. The phase modulation index of θ was set 2.3 rad.

The validity of the experiment was verified by the results showed in Figure 4. The spatial distribution
of a magnetic field strength was measured using the quantum-based method. The measurement
distance was changed from 12 to 102 mm by changing the position of the Cs glass cell and its moving
direction was parallel to o-x (as the Figure 5c shows). The center of the Cs glass cell was regarded
as the measurement point and the location of the measurement point was varied with measurement
distance. Theoretically, with the increasing of the measurement distance, the microwave magnetic field
strength at the measurement point decreases. What we focus was the spatial distribution trend of a
magnetic field strength. The power of the microwave generated by the microwave signal source was
adjusted to obtain the atomic candle signal when the Cs glass cell was placed at a measurement points.
The microwave magnetic field strength at the atomic candle signal peak was measured when ωm/2π =
500 Hz. According to the above content, square root of the microwave powers read from the microwave
signal source constituted horizontal axis of the atomic candle signal. According to the Equation (6),
because the ωm was invariable, the measured microwave magnetic field strengths at the atomic candle
signal peak were equal to each other when the Cs glass cell was placed at different measurement points.
But, the horizontal axis value corresponding to the peak of the atomic candle signal were different when
the Cs glass cell was placed at different measurement points. The power of the microwave generated
by the microwave signal source should be increased to obtain the atomic candle signal peak when the
measurement distance was increased. Actually, the proportional relation between the square root of the
microwave powers read from the microwave signal source and the microwave magnetic field strength
at the measurement point was not changed with the power of microwave generated by the microwave
signal source. The distribution trend of the microwave magnetic field strength in the direction of o-x
(as the Figure 5c shows) can be expressed by a series of measured values. The measured value of the
12 mm was calculated out according to the Equation (6) when ωm/2π = 500 Hz, and other measured
values was expressed by the products of the measured value of the 12 mm and the ratio of two horizontal
axis values. One was the horizontal axis value corresponding to the peak of the measured atomic candle
signal when the measurement distance was set to 12 mm, and the other was the horizontal axis value
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corresponding to the peak of the measured atomic candle signal when the measurement distance was
set to other values. The measured value vs. measurement distance was plotted. The distribution of the
magnetic field strength in the perpendicular direction to the microwave ejection plane of the waveguide
was obtained and is shown in Figure 6.
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Figure 5. Simulation result of distribution of microwave magnetic field strength. (a) Three-dimensional
diagram of magnetic field distribution. (b) Two-dimensional diagram of magnetic field distribution.
(c) Three-dimensional diagram of the open-ended waveguide. Observation plane of the simulated
distribution of microwave magnetic field strength was in the x-y plane. The size of the observation
plane was 160 mm × 160 mm. A open-ended waveguide was placed at the upside. Electromagnetic
waves were radiated to the down at 9.19 GHz. The dimensions of the open-ended waveguide were
22.86 mm × 10.16 mm × 17 mm.
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Figure 6. The distribution of microwave magnetic field strength along the direction of o-x (showed in
Figure 5c). The square solid spot represents the measured magnetic field strength, and the solid line
represents the simulated field strength. The simulated data were extracted from the results showed in
Figure 5b. The magnetic field strengths were measured by changing the position of the Cs glass cell
along the direction of o-x. The measurement distance was changed from 12 to 102 mm and ωm/2π
= 500 Hz. The variation trend of the measured results was roughly identical to the simulated results.
The measured results are a little more than the simulated results at every measurement points. It is
because the glass cell had a resonance effect on the microwave magnetic field when the Cs glass cell
was inserted. The error bars on square solid spot represents the measurement uncertainty.

To verify the reliability of the measurement results, the distribution of the microwave magnetic
field strength was simulated by the Ansoft high frequency structure simulator (HFSS) (ANSYS,
Pittsburgh, PA, USA). The square solid spot in Figure 6 represents the magnetic field strength measured
by the quantum-based sensor, and the solid line represents the field strength simulated by the Ansoft
HFSS. The simulation results are shown in Figure 5. The frequency of the simulation was 9.19 GHz.
The microwave radiated from the open-ended waveguide with the dimensions of 22.86 mm× 10.16 mm
× 17 mm. As shown in Figure 6b, the size of the two-dimensional diagram of magnetic field distribution
was 160 mm × 160 mm.

The distribution of magnetic field strength measured by the quantum-based sensor and simulated
by the Ansoft HFSS is plotted in Figure 6. The magnetic field strength decreased with increasing
measurement distance. As Figure 6 shows, the measured and simulated magnetic field distributions
are in agreement.

4. Discussion

The electromagnetic field perturbation caused by the Cs glass cell used in the quantum-based
sensor is lower than that caused by a metal-antenna used in calorimeters. However, the perturbation
introduced by the Cs glass cell remained in the measurement. We investigated the electromagnetic
field perturbation by the simulation calculations when the glass cell was inserted. The distribution
of microwave magnetic field strength was simulated when we set the diameter of the column basal
plane of glass cell to 20 mm, its height to 10 mm, and its thickness to 0.5 mm. The normal vector of the
column basal plane of the cylindrical Cs glass cell was parallel to the microwave ejection plane of the
waveguide. The simulation frequency was 9.19 GHz.
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As shown in Figures 5 and 7, the microwave magnetic field strength inside the glass cell is higher
than that in same place without the glass cell. The distribution of microwave magnetic field strength
was slightly perturbed by the glass cell. It is expected that a resonance inside the glass cell occurs as
the size of the glass cell matched that of the rectangular waveguide in the experiment.
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Figure 7. Simulation result of distribution of microwave magnetic field strength when glass cell was
inserted. (a) Three-dimensional diagram of magnetic field distribution. (b) Two-dimensional diagram
of magnetic field distribution. The yellow cylinder on the distribution map represents the glass cell.
The size of the observation plane was 160 mm × 160 mm. A waveguide was placed at the upside.
Electromagnetic waves were radiated to the down at 9.19 GHz. The dimensions of the open-ended
waveguide were 22.86 mm × 10.16 mm × 17 mm. We set the diameter of the column basal plane of
glass cell to 20 mm, its height to 10 mm, and its thickness to 0.5 mm. The measurement distance was
52 mm. As shown in Figure 5c, observation plane of the distribution of microwave magnetic field
strength was in the x-y plane (as the Figure 5c shows).

For a more detailed discussion of the electromagnetic field perturbation caused by the Cs glass
cell, the simulation results of distribution of microwave magnetic field strength in the perpendicular
and parallel direction to the microwave ejection plane of the waveguide are shown in Figure 8, which
corresponds to Figures 5 and 7. The comparison of the simulated distribution of the magnetic field
with glass cell and the magnetic field in the free space are shown in Figure 8.
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Figure 8. Simulation results of distribution of microwave magnetic field strength. The dash line represents
the results with glass cell, and the solid line represents the results in free space. The simulation model
was designed as the Figure 7a shows. Electromagnetic waves were radiated to the down at 9.19 GHz.
The dimensions of the open-ended waveguide were 22.86 mm× 10.16 mm× 17 mm. We set the diameter
of the column basal plane of glass cell to 20 mm, its height to 10 mm, and its thickness to 0.5 mm.
The measurement distance was 52 mm. (a) The distribution of magnetic field strength in the direction of
o-x (as the Figure 5c shows). Position 20 of horizontal axis was defined as the center of the glass cell at a
measurement distance of 52 mm. The diameter of the column basal plane of the glass cell was 20 mm
(10 to 30 mm). In the scope of 10 to 30 mm, magnetic field strength in the glass cell is larger than magnetic
field strength in the free space. (b) Field strength in perpendicular direction to o-x (as the Figure 5c shows).
Position 0 of horizontal axis was defined as the center of the glass cell at a measurement distance of 52 mm.
The height of the glass cell was 10 mm (−5 to 5 mm). In the scope of −5 to 5 mm, magnetic field strength
in the glass cell is larger than magnetic field strength in the free space.
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As shown in Figure 8a, the distributions of the microwave magnetic field strength are in the
perpendicular direction to the microwave ejection plane of the waveguide. Position 20 was defined as
the center of the glass cell at a distance of 52 mm from the microwave ejection plane of the waveguide.
The diameter of the column basal plane of the glass cell was 20 mm (10 to 30 mm). As shown in
Figure 8b, the distributions of microwave magnetic field strength are in the parallel direction to the
microwave ejection plane of the waveguide. Position 0 was defined as the center of the glass cell at
a distance of 52 mm from the microwave ejection plane of the waveguide. The height of the glass
cell was 10 mm (−5 to 5 mm). As the Figure 8 shows, the glass cell had a resonance effect on the
microwave magnetic field. Moreover, the microwave magnetic field strength at the center of the glass
cell was visibly enhanced. The size of the glass cell is the principal factor that effects the distribution
of the microwave magnetic field strength. The radiation properties of the waveguide may have been
modified by the glass cell when the quantum-based method was used to measure the distribution of
microwave magnetic field strength.

It is necessary to accurately illustrate the influence of the electromagnetic perturbation caused by
the Cs glass cell on the distribution trend of the electromagnetic field in the range of measurement
distance from 12 to 102 mm. Therefore, a verification simulation of the magnetic field strength was
performed to confirm the reliability of the measurement result when the glass cell was inserted.
The magnetic field strength at the center of the glass cell was calculated when the measurement
distance was changed from 12 to 102 mm. The calculated magnetic field strength at a relative position
is shown in Figure 9.
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Figure 9. Verification results of distribution of microwave magnetic field strength. Dot line represents
the simulated results of the distribution of the microwave magnetic field strength when the glass cell
was inserted. The error bars on square solid spot represents the measurement uncertainty. The dot
line was composed by a series of values, calculated by a series of simulation models. The frequency of
electromagnetic wave was set at 9.19 GHz. We set the diameter of the column basal plane of glass cell
to 20 mm, its height to 10 mm, and its thickness to 0.5 mm. The measurement distance was 52 mm.
The magnetic field strengths were measured by changing the position of the Cs glass cell along the
direction of o-x (showed in Figure 5c). The measurement distance was changed from 12 to 102 mm.
The square solid spot represents the measured magnetic field strength, and the solid line represents the
simulated field strength without the glass cell. They are consistent with the results showed in Figure 6.
The variation trends of the three results were roughly identical. The simulated results of the microwave
magnetic field strength when the glass cell was inserted are a little more than the simulated results
in the free space at every measurement points. The measured results are much more approached to
simulated results represented by the dot line.
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To facilitate comparison with the experimental results, the measurement and simulation results
without the glass cell were inserted into Figure 9. The square solid spot represents the distribution
of microwave magnetic field strength measured by the quantum-based sensor, the solid line the
distribution of field strength simulated without the glass cell, and the circular solid spot the simulated
distribution of microwave magnetic field strength when the glass cell was inserted. The microwave
magnetic field strength was calculated at the center of the glass cell and the center position of the glass
cell changed with measurement distance.

As Figure 9 shows, the distribution of microwave magnetic field strength was slightly perturbed
by the glass cell. A series of simulating data was obtained by changing the position of glass cell in the
simulation model. The simulated magnetic field strength at the center of the glass cell changed with
measurement distance from 12 to 102 mm, and was slightly higher than the magnetic field strength
simulated without the glass cell. The measured results was closer to the simulated results with the
glass cell in the range of 12 to 25 mm of the measurement distance, and the measured results was
closer to the simulated results without the glass cell in the range of 25 to 102 mm of measurement
distance. However, the distribution trend of magnetic field strength is hardly affected by the glass cell.
Moreover, the distribution of magnetic field measured by the quantum-based method is consistent
with that simulated with and without the glass cell.

In our experiment, the two column basal planes of the cylindrical glass cell were not in the
standard parallel configuration. The laser beam was slightly divergent and the detection of the
transmission laser was affected. Furthermore, the experiment was not conducted in an anechoic
chamber and the geomagnetic field was not shielded. The quantum-based measurement could
be affected by the reflected microwave when the microwave power was adjusted to be too large.
Moreover, the measurement could also be affected by the geomagnetic field. In addition, the laser
spot was not the standard Gaussian laser spot, and the interaction between the laser and the Cs atoms
could be affected by it. More accurate measurement results could be obtained when the experimental
conditions mentioned above are improved.

Compared with the electron component used in the conventional measurement methods
based on Maxwell formula, the atom-based sensor is more sensitive to electromagnetic fields.
The experimental and simulation results demonstrate the reliability of the proposed precision
electromagnetic field measurement based on atomic and molecular physics. Considering the theory
and experimental process, the quantum-based method may be used in the precision measurement of
the RF electromagnetic field; of the performance of RF circuits, microwave cavities, and RF waveguides;
and of the concentration of the buffer gas enclosed in the alkali metal vapor cell.

It should be pointed out that a phase modulation must be added to the electromagnetic field
when the magnetic field sensor was used. However, it was unrealizable when an electromagnetic field
of unknown origin wants to be measured. It was still a problem that needs to be solved. Our future
research work was to measure the electromagnetic field with higher power and to extend measurement
range of the quantum-based sensor.

5. Conclusions

In this paper, we described a new microwave magnetic field sensor that is based on the atomic
candle. The amplitude of second harmonic oscillation was enhanced when the Rabi frequency
determined by the magnetic field strength was twice the frequency of the phase modulation added to
the RF electromagnetic field. Cs atoms enclosed in a glass cell were used as the antenna to interact with
microwaves radiated from the waveguide and the laser locked in the transition line of Cs atoms at the
same time. The distribution of the magnetic field in the free space determined by the microwave power
was measured by the sensor. The distribution of the magnetic field measured by the sensor and the
results of the simulation calculation were in agreement. Furthermore, the electromagnetic disturbance
caused by the glass cell was analyzed using simulation calculation and an electromagnetic resonance
in the glass cell was found to have an effect on the magnetic field. The feasibility of the proposed
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quantum-based microwave magnetic field sensor was demonstrated and will be beneficial for the
development of electromagnetic field precision measurement based on atomic and molecular physics.
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