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Abstract: Along with the development of computer technology and informatization, the unmanned
vehicle has become an important equipment in military, civil and some other fields. The navigation
system is the basis and core of realizing the autonomous control and completing the task for unmanned
vehicles, and the Strapdown Inertial Navigation System (SINS) is the preferred due to its autonomy
and independence. The initial alignment technique is the premise and the foundation of the SINS,
whose performance is susceptible to system nonlinearity and uncertainty. To improving system
performance for SINS, an improved initial alignment algorithm is proposed in this manuscript.
In the procedure of this presented initial alignment algorithm, the original signal of inertial sensors
is denoised by utilizing the improved signal denoising method based on the Empirical Mode
Decomposition (EMD) and the Extreme Learning Machine (ELM) firstly to suppress the high-frequency
noise on coarse alignment. Afterwards, the accuracy and reliability of initial alignment is further
enhanced by utilizing an improved Robust Huber Cubarure Kalman Filer (RHCKF) method to
minimize the influence of system nonlinearity and uncertainty on the fine alignment. In addition, real
tests are used to verify the availability and superiority of this proposed initial alignment algorithm.

Keywords: strapdown inertial navigation system; initial alignment; denoising; robust filter;
Cubarure Kalman filter

1. Introduction

The unmanned vehicle has been used as a platform for aerial photogrammetry, marine monitoring,
geodetic surveying, hazard state investigation and security protection based on different sensors
equipped on it. The navigation information of the unmanned vehicle provided by its navigation
system, including the position, the velocity, the heading and the horizontal attitude, is the premise and
guarantee of the normal working. The precision of navigation system is directly related to its track
accuracy and safety.

The Global Navigation Satellite System (GNSS) can provide three-dimensional navigation
information including position and velocity of everywhere on the earth with high-accuracy by utilizing
satellite signals. Caused by signal blocking and multipath effect, GNSS has poor location accuracy
in urban areas and forests normally [1]. By utilizing the acceleration and angular rate measured by
gyroscopes and accelerometers, the Strapdown Inertial Navigation System (SINS) can calculate the
vehicle’s velocity, position and attitude simultaneously [2]. Thus, compared with GNSS, SINS is an
autonomous navigation system, which does not depend on external information, such as radio signal
or radiates electromagnetic waves. Since SINS can track and reflect the vehicle’s maneuvering in time,
the generated navigation data have the characteristics of high accuracy in a short-term, good stability
and high data update rate. However, SINS is a time integration system and the navigation error
is accumulated with time rapidly because of inertial sensors’ errors. Since the satellite navigation
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technology and the inertial navigation technology have their own advantages and limitations, therefore,
in the navigation system of unmanned vehicles, GNSS and SINS are often integrated together to
enhance the redundancy and accuracy [1,3–5].

With the continuous development of the autonomous navigation technology, higher requirements
have been set about accuracy, size and reliability for navigation systems, whereas, to improve the
accuracy of SINS, enhancing the manufacturing accuracy of inertial instruments simply will lead to a
sharp increase in cost, so researching on the system algorithm has become the focus [6].

Since the initial parameters are determined by the initial alignment, the initial alignment is the
prerequisite to ensure normal operation of the SINS for the unmanned vehicle [7,8]. In a general
way, the initial alignment is divided into two stages which are the coarse alignment and the fine
alignment [9,10]. In the coarse alignment, the initial attitude matrix containing large errors is obtained
roughly based on the output of the inertial sensors. In the fine alignment stage, an accurate attitude
matrix has been calculated after the compensation of the attitude error estimated by the optimal
estimation method [11].

Since the initial attitude is generally determined roughly by using the output of the inertial
sensor in the coarse alignment process, the accuracy and reliability of the coarse alignment process
largely depend on the accuracy of inertial sensors [9,12]. Limited by the unmanned vehicle’s payload,
high-precision inertial sensors cannot be installed on it since there are strict requirements on the size
and weight of its SINS. Thus, the output signal of inertial sensors contains a large amount of random
noise due to limitations in the manufacturing process and package level [13]. Thus, it is necessary to
denoise the output signal in order to suppress the impact of the random noise on coarse alignment.

The Wavelet Transform (WT) is a commonly used denoising method [14]. In the WT-based
denoising method, the signal is decomposed into several coefficients by WT firstly, and then, according
to containing noises or containing effective signals, coefficients are separated into two parts by the
threshold. After removing coefficients that contain noises, the rest of the coefficients containing
effective signals are reconstructed by utilizing the inverse WT method. Due to its advantage in
multiresolution, the WT-based denoising method plays an important role in signal denoising. However,
its performance entirely depends on the selection of wavelet basis functions, resulting in limitations
in practical applications [15]. The Empirical Mode Decomposition (EMD) method decomposes the
signal based on its time scale adaptively several times, and does not need the basis function for
decomposition [16]. Moreover, the EMD method has great advantages in dealing with nonlinear
and non-stationary random signals. In the EMD method, the generation of the envelope is the key
technique and its quality will affect the decomposition result directly [17]. Due to its smoothness,
the cubic spline method is one of the most commonly used envelope fitting methods. However, because
of its non-monotony between two adjacent interpolations, overshoot or undershoot will be existed
sometimes in practical applications. In severe cases, the intersection of the upper and lower envelopes
or over-ranging the envelope will cause the failure of decomposition. To solve the above problems,
B-spline (BS) interpolation is often used in place of the cubic spline interpolation. This decomposition
method, named the BS-EMD method, can not only improve the computational efficiency but also
preserve the local characteristics of the signal [18]. However, due to the uncertainty of the B-spline
function, the endpoint effect will occur when dealing with finite time series, which seriously affects
the reliability of the algorithm.

Methods to suppress the endpoint effect mainly include the suppression method based on
the Mirror Extension (ME), the suppression method based on Support Vector Machine (SVM),
the suppression method based on Neural Network (NN) integration and so on [19]. The ME-based
suppression method extends the data only depending on the characteristics of the extreme
points at the both ends, so the overall characteristics of the actual signal cannot be taken into
consideration, inevitably affecting the accuracy of decomposition; The SVM-based suppression
method completely depends on the selection of inner production function and the adjustment of
parameters, and inaccuracy parameter selection also can cause inaccurate decomposition. The NN
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integration-based suppression method requires that individual subnetworks used for integration have
large differences and the whole process takes a longer time compared with other algorithms. As a
result, it is urgent to propose an effective signal denoising method to preprocess the inertial sensor
data, enhancing the performance of coarse alignment.

In the process of fine alignment, the inertial sensors’ error is estimated and compensated using the
optimal estimation algorithm to enhance the precision of initial attitude matrix [20]. The most commonly
used estimations are based on a Kalman filter (KF) that can only handle linear systems and require
that the noise statistics should be accurately known [21,22]. However, in the unmanned vehicle’s SINS,
the performance of inertial sensors makes it difficult to determine the system and measurement noise,
especially when the unmanned vehicle is maneuvering [23]. In addition, the performance of inertial
sensors also leads to unsatisfactory results of the coarse alignment, resulting in the initial misalignment
angle not satisfying the small-angle assumption [24]. Therefore, nonlinear and robust state estimation
algorithms, such as Extended Kalman filter (EKF), Unscented Kalman filter (UKF), Cubature Kalman filter
(CKF), H∞ filter, and Huber filter, have been studied to solve the problems of error model nonlinearity,
noise uncertainty, and bad external interference [6,25].

In order to enhance the initial alignment accuracy of low-precision SINS for unmanned vehicles,
a novel initial alignment algorithm is proposed in this paper. In this novel initial alignment algorithm,
the inertial sensor signal is preprocessed by utilizing an improved EMD denoising method based on
Extreme Learning Machine (ELM) [26] and Shannon entropy to eliminate the effect of random noises
on the coarse alignment firstly. Furthermore, a robust estimation method is proposed based on CKF
and Huber filter to solve the influence of the nonlinearity and uncertainty on the accuracy of the fine
alignment. Real-data is used to test the effectiveness of this novel initial alignment algorithm.

The rest is organized as follows. Section 2 indicates the relative background knowledge about
initial alignment for unmanned vehicles. In Section 3, a novel initial alignment algorithm based on the
improved EMD method and robust Huber filter is presented. The verification results are presented in
Section 4 and the conclusions are drawn in Section 5.

2. Background Knowledge

2.1. Analytical Coarse Alignment Algorithm Based on the Solidification Coordinate Frame

The initial alignment is a key technology of the unmanned vehicle’s SINS. The speed and accuracy
of the initial alignment affect the system’s starting speed and navigation accuracy, respectively.
The initial alignment is divided into coarse alignment and fine alignment. Since there is no priori
knowledge, only the measurement information from the accelerometer and the gyroscope can be used
in the coarse alignment, the most common used coarse alignment method is the analytical method.
In the analytical coarse alignment algorithm, a non-collinear vector is constructed firstly by utilizing the
gravity vector and the earth’s rotation vector measured by accelerometers and gyroscopes, respectively.
Then, the strapdown attitude matrix is calculated analytically.

The traditional analytical coarse alignment requires the carrier to be static. However, SINS is
inevitably subjected to various disturbance in the alignment process such as gusts, engine vibration,
and maneuvering in dynamic conditions when the unmanned vehicle is moving. Thus, to extend the
application and improve the accuracy of the coarse alignment, an analytical coarse alignment algorithm
based on solidification coordinate frame was proposed. Its basic principle is illustrated as follows:
the output of gyroscopes tracks the change of the inertial coordinate frame (i-frame), the output of
accelerometers is projected on the i-frame, and, after isolating the vehicle’s acceleration relative to the
Earth, it can be observed that the gravity acceleration g due to the earth rotation is slowly drifting
in the i-frame; the drift of g is in a cone in which the earth rotation axis is the main axis, and the
geographical north can be determined from the g drift.

The solidification coordinate frame (ib0-frame) is defined as an orthogonal reference frame
nonrotating relative to the i-frame, which is formed by fixing the body coordinate frame (b-frame) at
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startup in the inertial space. The attitude matrix Cn
b is time-changing when the unmanned vehicle is

moving. The attitude matrix Cn
b (t) at time t can be decomposed as follows:

Cn
b (t) = Cn

e (t)C
e
i (t)C

i
ib0
(t)Cib0

b (t), (1)

where n-frame means the navigation coordinate frame and e-frame denotes the earth coordinate frame;
Cn

e denotes the coordinate transformation matrix between the e-frame and the n-frame; Ce
i is the

coordinate transformation matrix between the i-frame and the e-frame; Ci
ib0

indicates the coordinate

transformation matrix between ib0-frame and i-frame; Cn
e , Ce

i and Cib0
b are known previously and

expressed as follows:

Cn
e =

 0 1 0
− sin L 0 cos L
cos L 0 sin L

 , (2)

Ce
i =

 cos ωie(t− t0) sin ωie(t− t0) 0
− sin ωie(t− t0) cos ωie(t− t0) 0

0 0 1

 , (3)

Ċib0
b = Cib0

b [ωb
ib×], (4)

wherein L denotes the local latitude; ωie is the Earth’s rotation angular rate; t0 denotes the starting
time of initial alignment and t indicates the present time; ωb

ib is the angular rate that is measured by
the gyroscope directly.

Since only Ci
ib0

is not determined in Equation (1), the calculation of Cn
b can be translated into the

calculation of Ci
ib0

. According to the principle of the double-vector attitude, Ci
ib0

can be determined by
two non-collinear vectors whose projections in the i-frame and the ib0-frame are already known.

The moving trajectory of the gravity vector in the i-frame is shown as Figure 1. It is known from
this figure that the projection in the i-frame of the gravity vector trajectory, which, changing with
time, is a cone. Since these projections are non-collinear at different time epochs, two non-collinear
vectors a and b can be constructed by utilizing the gravity vector and their projections in the i-frame
are expressed as ai and bi. Thus, it is obvious that

aib0 = Cib0
i ai, (5)

bib0 = Cib0
i bi. (6)

Define a vector c = a× b satisfying

cib = Cib
i ci. (7)

Ci
ib0

is calculated from Equations (5)–(7) as

Ci
ib0

=

 (ai)>

(bi)>

(ci)>


−1

·

 (aib)>

(bib)>

(cib)>

 . (8)

Therefore, the matrix Cn
b can be calculated by Equations (1) and (8), accomplishing the coarse

alignment based on the solidification coordinate frame.
There are two methods to construct the non-collinear vectors in the coarse alignment algorithm

based on the solidification coordinate frame, which are velocity-based method and position-based
method. In addition, in this manuscript, the position-based method is utilized:
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{
ãib0 = S̃ib0(tk1) =

∫ tk1
t0

Ṽ ib0(t)dt,
b̃ib0 = S̃ib0(tk2) =

∫ tk2
t0

Ṽ ib0(t)dt.
(9)

C̃ib0
b is the actual value of Cib0

b and obtained from the following equation:

˙̃Cib0
b = C̃ib0

b [ω̃b
ib×], (10)

wherein ω̃b
ib is the actual measured value of gyroscopes and expressed as

ω̃b
ib = ωb

ib + δωb
ib, (11)

wherein δωb
ib is the measurement uncertainty of gyroscopes. In addition, Ṽ ib0(tkj) in Equation (9) is

expressed as

Ṽ ib0(tkj) =
∫ tkj

t0

C̃ib0
b f̃ bdt, j = 1, 2, (12)

where f̃ b is the actual measured value of accelerometers and expressed as

f̃ b = Cb
ib0
[−Cib0

i gi(t) + v̇ib0 + ω
ib0
ie × vib0 ] + δ f b, (13)

where v̇ib0 is the unmanned vehicle’s acceleration projected to the ib0-frame in the moving base and
vib0 is the unmanned vehicle’s velocity projected to the ib0-frame; δ f b is the measurement uncertainty
of accelerometers.

It is known from the previous analysis that the measurement uncertainty of gyroscopes δωb
ib

affects the calculation result of Cib0
b ; and the measurement uncertainty of accelerometers δ f b affects

the calculation result of the gravity vector. Meanwhile, δωb
ib and δ f b will lead the bias between the

calculated value and the expected value of aib0 and bib0 , affecting the accuracy of coarse alignment.

ix

iz

g
iy

ny

nx
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ie

Figure 1. Moving trajectory of gravity vector in the inertial frame.

2.2. Integrated Fine Alignment Algorithm Based on the CKF Method

2.2.1. Nonlinear Model for Integrated Fine Alignment of SINS/ GNSS Integrated Navigation Systems

In order to improve the initial alignment accuracy and speed of the unmanned vehicle’s SINS,
the localization information from the external GNSS is provided and the state vector of SINS/GNSS
integrated navigation systems is estimated in real time by utilizing estimation methods to complete
the fine alignment of the unmanned vehicle. Considering the nonlinear problem in the actual system,
the nonlinear model of SINS/GNSS integrated navigation systems is established firstly.
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In the literature [27,28], the nonlinear model of SINS/GNSS integrated navigation systems is
derived in detail. No longer exhaustive, only the nonlinear equations are given here. The attitude error
of SINS is expressed as follows based on the Euler error angle method:

φ̇ = C−1
ω [(I − Cn′

n )ω̂n
in + Cn′

n δωn
in − Cn′

b εb] + C−1
ω Cn′

b wb
g, (14)

wherein φ = [ φx φy φz ]> is the Euler error angle vector, n′ denotes the calculation navigation
coordinate system of SINS, and the direction cosine matrix from n to n′ is Cn′

n ; Cn′
b denotes the direction

cosine matrix from b to n′; εb and wb
g are the gyro constant drift vector and the zero-mean Gaussian

white noise vector, respectively; ω̂n
in is the gyro measurement vector; ωn

in is the rotating angular rate
vector of n relative to i; δωn

in is the calculated error vector of ωn
in. The gyro measurement vector is

equal to ω̂n
in = ωn

in + δωn
in. Cω is an intermediate matrix as follows:

Cω =

 cos φy 0 − sin φy cos φx

0 1 sin φx

sin φy 0 cos φy cos φx

 . (15)

The velocity error equation is given by:

δv̇n = Cn′
b f̂ b − Cn

b f̂ b + Cn
b∇

b − (2δωn
ie + δωn

en)

×(v̂n − δvn)− (2ω̂n
ie + ω̂n

en)× δvn + Cn
b Wb

a ,
(16)

wherein f̂ b denotes the specific force vector; ω̂n
ie and ω̂n

en are the calculated Earth’s rotating angular
rate and calculated angular rate, δωn

ie and δωn
en indicate the error vectors of ω̂n

ie and ω̂n
en, respectively;

v̂n and δv̂n denote velocity measurement vector and its corresponding error vector.
The longitude error δλ and the latitude error δϕ:{

δλ̇ = δϕ tan ϕ sec ϕ vx
RN

+ sec ϕ δvx
RN

,

δϕ̇ =
δvy
RM

,
(17)

wherein RM and RN are the Earth’s radii of the meridian circle and the prime vertical circle, respectively;
λ and ϕ are the longitude and latitude of a point of interest; vx and vy are the east and north velocities
with their velocity errors δvx and δvy, respectively.

The differential equation of inertial sensors are:{
ε̇b = 0,
∇̇b = 0.

(18)

The state function is expressed as follows:

Ẋ(t) = f [X(t), w(t)], (19)

where the state vector and the process noise are expressed as follows:

X(t) = [δλ δϕ δh δvx δvy δvz φx φy φz ∇x ∇y ∇z εx εy εz]>, (20)

w(t) = [01×3 wax way waz wgx wgy wgz 01×6]
>, (21)

where Q(t) denotes the covariance matrix of the process noise.
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The difference between the localization information provided by GNSS and the localization
information calculated by SINS is used as the observation

Z(t) =

 δλ

δϕ

δh

 =

 λSINS − λGNSS

ϕSINS − ϕGNSS

hSINS − hGNSS

 (22)

and the observation function is expressed as

Z(t) = H(t)X(t) + η(t), (23)

wherein observation matrix and observation noise are expressed as follows:

H(t) = [ I3×3 03×12, ] (24)

η(t) = [ηλ ηϕ ηh]
>, (25)

where R(t) is the covariance matrix of the observation noise.

2.2.2. Nonlinear Filter Algorithm Based on CKF

As we all know that CKF based on the spherical-radial cubature criterion is one of the most mature
practical nonlinear filters. The same as the EKF, it is also based on Bayesian estimation. However,
unlike the Taylor expression, which is used for linear approximation in EKF, in CKF, a set of Cubature
points and corresponding weights are utilized to approximate the mean and variance of the probability
distribution [29]. In this nonlinear filter, the Cubature points and weights are set by [ξi, ωi] firstly as follows:{

ξi =
√

N[1]i,
ωi =

1
2N ,

(26)

wherein ξi is the i-th cubature point and ωi is the corresponding weight; i = 1, 2, . . . , 2N, and N is the
dimension of the nonlinear system.

Algorithm 1 CKF algorithm

Require: k = 0, x̂0|0, P̂0|0, Q, R
Ensure: x̂k|k, P̂k|k

1: if k ≥ 1 then
2: Cholesky decomposition of Pk−1|k−1;
3: Calculate the Cubature point set Xi,k−1|k−1 (i = 1, 2, . . . , 2N);
4: Propagate the Cubature point by using the state equation X∗i,k|k−1;
5: Calculate the prediction of the state x̂k|k−1;
6: Calculate the prediction of the state covariance matrix Pk|k−1;
7: Cholesky decomposition of Pk|k−1;
8: Calculate the Cubature point set again Yi,k|k−1(i = 1, 2, . . . , 2N);
9: Propagate the Cubature point by using the measurement equation Y∗i,k|k−1;

10: Calculate the prediction of the measurement ŷk|k−1;
11: Calculate the autocorrelation matrix Pzz

k|k−1;
12: Calculate the cross-correlation matrix Pxz

k|k−1;
13: Calculate the filtering gain Kk;
14: Calculate the estimation of the state x̂k|k−1;
15: Calculate the estimation of the state covariance matrix Pk|k;
16: end if
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Since the CKF is under the Bayesian estimation framework, we suppose that the initial and the
prior density are already known accurately. Similar to EKF, the filtering operation can be divided into
two parts: the time update and the measurement update [29]. The implementation of the CKF is given
in detail as Algorithm 1.

3. Initial Alignment Algorithm for the Unmanned Vehicle

3.1. Improved Denoising Method Based on the ELM and EMD–Shannon Method

It is known from the analysis results of Section 2.1 that the accuracy of the coarse alignment
is affected by the measurement uncertainty of SINS inertial sensors. However, due to a vehicle’s
maneuvering, environment disturbance or mechanical noises in actual applications, the output signal is
large nonlinearity and contains non-stationary random noises, which seriously affects the measurement
accuracy of inertial sensors. In order to improve the accuracy of the coarse alignment, a denoising
method based on the ELMEMD-Shannon method is proposed in this paper to preprocess the output
signal of inertial sensors.

3.1.1. A Brief Review of the EMD Method

The EMD-based denoising method is one of the most common used signal denoising methods.
The EMD-based method relies on the time scale of the signal itself to decompose adaptively multiple
times and does not need the basis function. Therefore, the EMD-based method has great advantages in
dealing with nonlinear and non-stationary random signals. Considered the output signal characteristics
of inertial sensors, the EMD-based method is adopted to denoise the low-precision inertial measurement
unit (IMU) signal in this paper.

The EMD, an effective analysis method for nonlinear and non-stationary signals, decomposes the
signal into several Intrinsic Mode Functions (IMFs) and a residue adaptively based on the intrinsic
characteristics of the signal. The so-called IMF is a function or signal that satisfies the following
two conditions:

• In the entire data set, the difference between the number of extreme values and the number of
zero crossings must not be greater than one;

• At any point of the data set, the mean value of the envelope defined by the local extrema is all zero.

For a given signal x(t), the process of EMD decomposition is illustrated as follows:

• First of all, all local extreme values of the signal should be found out and identified. The cubic
spline line is used to connect all the local maxima and all the local minima, producing the upper
envelope and the lower envelope, respectively. Thus, all of the signal data x(t) should be covered
by the upper and lower envelopes. We suppose that m1 is the mean of the covered data by the
envelopes, so the difference between the signal x(t) and the mean m1 can be taken as a new signal,
indicated as h1, named the first component:

h1 = x(t)−m1. (27)

• In general, we can not guarantee that h1 is a stationary data sequence, so we should repeat the
above operation. Now, h1 is taken as a new signal h10 and its envelope mean is m11. Thus, the
data sequence after removing the low-frequency components represented by m11 is h11:

h11 = h1 −m11. (28)

Repeating the above operation up to k times, we can obtain the signal and the first IMF as follows:{
h1k = h1(k−1) −m1k,
im f1 = h1k.

(29)
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• Finally, the residual is a new signal that removed the high frequency component from the
original signal:

r1 = x(t)− im f1. (30)

• Then, we can deal with the residual iteratively to get the other IMFs. The stop iterating
condition is that when the residue rn becomes a monotonic function or a function with only
one extremum. It means that no more IMF can be extracted from the residual signal rn. Thus, after
the decomposition, x(t) is decomposed into several IMFs and a residual:

x(t) =
n

∑
i=1

im fi + rn. (31)

3.1.2. Improved EMD Denoising Method Based on ELM and Shannon Entropy

Due to the uncertainty of the basis function, the EMD method has the endpoint effect when
decomposing the limited signal sequence, which will seriously affect the reliability of the EMD method.
Instead of training the parameters, the ELM method uses the minimum-norm least-squares solution
as the output weight of the network by solving the linear equations [30]. Thus, the ELM method has
faster speed and better performance. Therefore, in order to solve the endpoint effect of the traditional
EMD denoising method, the ELM method is utilized to predict and extend the inertial sensor data in
this paper.

According to the basic properties of the EMD decomposition, the active ingredient concentration
of signal increases with the index of IMF. The first few IMFs, especially the first IMF component,
consist almost entirely of high-frequency noise. As a result, there should be a sudden change in the
ratio of the high-frequency noise and the effective signal in the IMF components, resulting in a sudden
change in the probability distribution of the IMF component. The effective signal can be separated by
determining this mutation point.

The Shannon entropy is a method to quantify the information. Suppose that the probability
distribution of a discrete variable is (p1, p2, . . . , pn) and its Shannon entropy is defined as

S = −
n

∑
i=1

pi log(pi). (32)

Suppose that x(t) is the sampled signal and it is expressed as

x(t) = y(t) + z(t), (33)

where y(t) is the original signal and z(t) is the noise signal.
The original signal has been decomposed into n IMFs and a residual by utilizing the EMD method.

In order to reduce the mixing of noise, only a few IMFs and residuals are superimposed in the process
of signal restoring by using the IMFs:

x(t) =
n

∑
j=k

im f j(t) + rn(t), k = 2, . . . , n. (34)

A noise separation method based on the Shannon entropy is proposed in this paper. Suppose
that the entropy of each IMF is Si(i = 1, 2, . . . , n) and the entropy variation between adjacent IMFs is
expressed as:

∆Si = Si+1 − Si(i = 1, 2, . . . , n− 1). (35)

Thus, the corresponding index js can be expressed as

js = arg max
1≤i≤n−1

(∆|Si|). (36)
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Therefore, an improved EMD denoising method based on the ELM method and the Shannon
entropy is proposed in this paper. In this novel algorithm, the IMU signal is decomposed by using
the ELMEMD method to obtain a series of IMFs firstly; then, after calculating the Shannon entropy of
each IMF, the index corresponding to the maximum adjacent Shannon entropy variation is determined;
on this basis, the inertial sensor signal is reconstructed so as to effectively suppress the influence on
the signal quality of the inertial sensor.

The process of this novel denoising method is shown as Figure 2.

Original data 
sequence

Data extension by ELM

Interpolation based on B-spline 
interpolation function

Calculation of the mean curve

Record IMFs

IMFs and residual satisfy
 the stop condition?

Output IMFs and residual

Calculate the Shannon entropy and 
variation of each IMF 




h
t

t




            is IMF? h t

Calculation of the envelope curve
     h t t m t 

Yes

Yes

No

No

Determine js based on the entropy 
variation 

Signal reconstruction

Figure 2. The process of IMU signal denoising based on ELMEMD.

The specific steps of the denoising method are as follows:

Step 1: Extend the time series to the right and seven adjacent samples are used as the input of the
ELM method. Use the adjacent right (or left) samples as a training sample.

Step 2: Add the previous prediction value into each new learning before each step of learning.
Repeatedly training and learning, obtain all the required extension sequence according to
the required extension of the extreme points.

Step 3: Decompose the inertial sensor signal into several IMFs and residuals by using the
EMD method.

Step 4: Calculate the Shannon entropy of each IMF Si.
Step 5: Calculate the adjacent Shannon entropy variation ∆Si.
Step 6: Determine the value of js based on Step 5.
Step 7: Reconstruct the signal based on the value of js.

3.2. Improved Robust Filter based on the RHCKF Method for Fine Alignment

The filtering performance directly affects the estimation accuracy of the system state vector.
Compared with the commonly used filters, such as KF, EKF, and UKF, CKF can not only be used in
nonlinear systems but also obtain better filtering accuracy. However, as we all know, the CKF is based
on Bayesian estimation. When the system model is known exactly in advance and the external noise
signal is a Gaussian noise, the CKF can obtain the optimal estimations; otherwise, the State estimation
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may be suboptimal. Because of vehicle’s maneuvering and external airflow impact, the condition
of optimal estimation is difficult to ensure in practical applications, resulting in filtering accuracy
decreasing or even filtering divergence.

From the perspective of the approximate Bayesian estimation, the essence of the Huber filter is
adding a weight matrix before the innovation, to truncate the average of filter innovations, thereby
suppressing the effect of interference noise or outliers in system observation information and enhancing
its robustness [22,31,32].

Assumed in a nonlinear system, the transformation innovation probability density based on the
Huber cost function can be used to calculate the transformation innovation ηk

ηk=P−1/2
zz,k|k−1

(
zk − ẑk|k−1

)
, (37)

wherein Pzz is the autocorrelation covariance matrix of the observation, zk and ẑk|k−1 are the actual
observation and the predicted observation.

Calculating the transformation innovation function ϕ(ηk,i)

ϕ (ηk,i) =

{
ζi,
∣∣ηk,i

∣∣ < γ,
sgn (ηk,i) γζi

/
ηk,i − 0.5γ2,

∣∣ηk,i
∣∣ > γ,

(38)

wherein γ is the adjustment factor of the cost function in the Huber filter, and the intermediate variable
ζi can be calculated by the following equation:

ζ2
i =

√
2πer f

(
γ
/√

2
)
+ 4 exp

(
−γ2/2

) (
γ−1 + γ−3)

√
2πer f

(
γ
/√

2
)
+ 2 exp

(
−γ2

/
2
)

γ−1
. (39)

In Equation (39), er f (x) is the error function and:

er f (x) =
2√
π

∫ x

0
e−t2

dt. (40)

Then, the innovation weight matrix Θk and ρ(k) can be obtained:{
Θk = diag [ϕ (ηk,i)] ,
ρ (k) = (1− ε) (1− 2Φ (−k)) ,

(41)

wherein 0 ≤ ε ≤ 1 and is a standard Gaussian distribution function.
The state vector and the state covariance matrix can be estimated by Equation (42), suppressing

the effect of outliers and accomplishing the high-precision robust estimation: x̂k|k = x̂k|k−1 + Pk|k−1 P−1
zz,k|k−1 Θk

(
zk − ẑk|k−1

)
,

Pk|k = Pk|k−1 − Pxz,k|k−1 P−1
zz,k|k−1 PT

xz,k|k−1 ρ (k) .
(42)

Therefore, the Huber filter is introduced into the CKF method and an improved robust Huber-CKF
(RHCKF for short) algorithm is constructed in this manuscript. The flow chart of this improved
algorithm is shown in Figure 3.
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Figure 3. The flow chart of the RHCKF method.

In this improved algorithm, the Huber filter is used to preprocess observations based on CKF
framework, and a CKF measurement update is used to complete the nonlinear system estimation,
avoided the linearized approximation of nonlinear equations and implemented the robustness of
the algorithm.

3.3. Improved Initial Alignment Algorithm Based on ELMEMD-Shannon and RHCKF Methods

The initial alignment is a prerequisite for the normal operation of the unmanned vehicle’s SINS
and the alignment accuracy and convergence speed are two important performance indicators. Due to
the limitation of installation space and weight in unmanned vehicles, the inertial sensor is generally
smaller and low accurate, which are easily interfered by external factors, especially under dynamic
conditions. In order to improve the alignment performance of unmanned vehicles in dynamic base,
this paper presents a novel initial alignment algorithm. Firstly, the signal of inertial sensors is denoised
by the ELMEMD-Shannon method, and, on this basis, a coarse alignment based on the solidification
coordinate frame is used, suppressing the alignment error caused by dynamic noises; secondly,
nonlinear system equations of the SINS/GNSS integrated fine alignment are established; meanwhile,
the RHCKF filter is used to complete the state estimation, inhibited the impact of system nonlinearity
and uncertainty, and ultimately improved the alignment accuracy and robustness of unmanned
vehicles under dynamic conditions. The relative pseudo-code is illustrated as Algorithm 2.

Algorithm 2 Improved Initial Alignment Algorithm

Require: k = 0; Coarse alignment time Tcoarse; Total alignment time T
1: if k ≥ 1 then
2: if k < Tcoarse then
3: Denoise the inertial sensors’ information with the ELMEMD-Shannon method;
4: Coarse alignment based on solidification coordinate frame;
5: else Tcoarse < k < T
6: Fine alignment with the RHCKF filter;
7: end if
8: end if
9: return Output the alignment results
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4. Test Result and Analysis

4.1. Static Test in the Laboratory

4.1.1. Test Environment Establishment

In order to verify the performance of the denoising method proposed in this paper, the static test
in the lab has been done firstly. A fiber optic gyro (FOG) IMU, developed by the Navigation Instrument
Institute, Harbin Institute of Technology, was used in this test, as shown in Figure 4a. In order to
isolate the interference from external environment, the IMU was installed on a metal plate and placed
on a vibration isolation platform. The source data was collected by a laptop, shown as Figure 4b.
The sampling frequency was 100 Hz and the test lasted 90 min. The source data was processed offline
to verify the effectiveness of the proposed algorithm.

(a) (b)

Figure 4. Static test in the laboratory. In this test, a FOG IMU, developed by the Navigation Instrument
Institute, Harbin Institute of Technology, is used as shown in (a). This FOG IMU is placed on a stable
and leveled marble platform to isolate the influence from external disturbance; In (b), a rugged laptop
is used to collected the source date.

4.1.2. Static Test Results and Analysis

In this part, three different denoising methods, including the wavelet denoising method,
traditional EMD denoising method and the improved ELMEMD-Shannon denoising method, are used
to process the static data, verifying the performance of the proposed denoising method. In addition,
the denoising results are shown in Figures 5 and 6. In these figures, the blue solid line indicates the
original signal, the red-brown dashed line represents the signal with the wavelet denoising method,
and the green dot-dashed line represents the signal with the traditional EMD denoising method while
the red dotted line denotes the signal with the proposed ELMEMD-Shannon (improved EMD for
short) denoising method. In order to analyze the noise reduction effect of the signal more intuitively,
the result was locally amplified from 2018 s to 2019 s shown in the corresponding right subfigures of
Figures 5 and 6.

It is obviously known from Figures 5 and 6 that amplitudes of inertial sensor signals are decreased
with these three denoising methods while the ones of three axes are all much smaller with the improved
ELMEMD-Shannon denoising method than the ones with the other two methods.

In order to quantitatively analyze the performance of the proposed denoising method, the Allan
variance of gyro signals is calculated and corresponding errors, including the quantizing noise (QN),
Random angle walk (RAW), Bias instability (BI), Angular rate walk (ARW) and Rate Ramp (RR),
are shown in Tables 1–3.
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(a) x-axis gyroscope

(b) y-axis gyroscope

(c) z-axis gyroscope

Figure 5. Gyroscope denoising result by utilizing multiple denoising methods. The left subfigures are
the denoising results of the x-axis, y-axis and z-axis gyroscopes and the right subfigures are the local
magnifications of the purple elliptical regions.

From Tables 1–3, errors of original signals are the largest while ones with these three denoising
methods are reduced to some extent and errors with ELMEMD-Shannon denoising method is the
smallest. Thus, it is clear that gyroscopes’ noise can be eliminated with these three denoising methods,
and, moreover, the ELMEMD-Shannon denoising method has better performance.



Sensors 2018, 18, 3297 15 of 20

(a) x-axis gyroscope

(b) y-axis gyroscope

(c) z-axis gyroscope

Figure 6. Accelerometers’ denoising result by utilizing multiple denoising methods. The left subfigures
are the denoising results of the x-axis, y-axis and z-axis accelerometers and the right subfigures are the
local magnifications of the purple elliptical regions.
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Table 1. Errors of the x-axis gyro signal.

Orignal Wavelet EMD ELMEMD-Shannon

QN (deg/h) 0.00827 0.00202 0.00599 0.00012
RAW (deg/h1/2) 0.00277 0.00056 0.00182 0.00010
BI (deg/h) 0.28702 0.13535 0.09335 0.07795
ARW (deg/h/h1/2) 0.58961 1.24727 0.40130 0.33749
RR (deg/h/h) 1.53834 0.72803 0.49311 0.41639

Table 2. Errors of the y-axis gyro signal.

Orignal Wavelet EMD ELMEMD-Shannon

QN (deg/h) 0.00785 0.00209 0.00663 0.00020
RAW (deg/h1/2) 0.00245 0.00058 0.00198 0.00012
BI (deg/h) 0.20602 0.13690 0.09408 0.09006
ARW (deg/h/h1/2) 0.59640 0.89345 0.40294 0.39058
RR (deg/h/h) 1.10144 0.73614 0.49505 0.48154

Table 3. Errors of the z-axis gyro signal.

Orignal Wavelet EMD ELMEMD-Shannon

QN (deg/h) 0.00743 0.00170 0.00617 0.00037
RAW (deg/h1/2) 0.00226 0.00046 0.00185 0.00016
BI (deg/h) 0.19115 0.13484 0.09195 0.08868
ARW (deg/h/h1/2) 0.58718 0.82919 0.39492 0.42828
RR (deg/h/h) 1.02223 0.72478 0.48544 0.52824

4.2. Dynamic Test in Vehicle

4.2.1. Test Environment Establishment

In order to test the performance of the novel initial alignment algorithm, a dynamic test platform
with a test vehicle has been established to simulate the unmanned vehicle dynamic environment,
shown as Figure 7. Besides the Global Positioning System (GPS), two FOG IMUs developed by our
own lab were used in this test. As shown in Figure 7, a high-precision FOG SINS was used as a
reference to provide the attitude reference while a low-accuracy FOG IMU was used to be tested.
In this experiment, the initial latitude is 45.7347◦ N, the total time and the sampling frequency are 1 h
and 100 Hz, respectively.

Test IMU

Reference 

IMU

Figure 7. Dynamic test in a car. In this test, a high-precision FOG SINS was used as a reference to
provide the attitude reference while a low-accuracy FOG IMU was used to be tested. The sampling
frequency is 100 Hz and the testing time is about 1 h.
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4.2.2. Result and Analysis

In this part, three denoising methods, the Wavelet denoising method, the EMD denoising
method, and the ELMEMD-Shannon denoising method, were used to preprocess original signals
firstly. In addition, the power spectrum of gyroscope and accelerometer signals is given, shown
in Figures 8 and 9. From them, we can see that the power spectrum at high frequency with the
ELMEMD-Shannon denoising method is smaller than the ones with other methods. This means that
the high frequency noise can be eliminated with the proposed denoising method in this experiment.
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(a) x-axis gyroscope
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(b) y-axis gyroscope
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(c) z-axis gyroscope

Figure 8. Power spectrum of gyroscope by uitilizing muliple denoising methods.
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(a) x-axis accelerometer
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(b) y-axis accelerometer
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(c) z-axis accelerometer

Figure 9. Power spectrum of accelerometers by utilizing multiple denoising methods.

In order to verify the robustness of the proposed initial alignment algorithm, different
measurement noise is added to the system measurements, simulating the measurement uncertainty
as follows:

R(t) =

{
10R0; 850 s < t < 1600 s,
0.4R0; 2000 s < t < 2600 s,

(43)

where R0 is the initial measurement noise matrix.
To verify the performance of the proposed initial alignment algorithm, the initial alignment results

were analyzed. Firstly, the analytical coarse alignment method based on the solidification coordinate
frame is carried out by utilizing the denoised inertial information; and then two fine alignment
algorithms are compared. One algorithm is the fine alignment based on the CKF method while the
other is the fine alignment based on the RHCKF method, called ‘Algorithm 1’ and ‘Algorithm 2’,
respectively. The time of the coarse alignment was set as two minutes and the fine alignment is carried
out for the rest of the time.

The initial alignment errors are shown in Figure 10, and the error curves of the pitch, roll and yaw
angle are shown in Figure 10a–c, respectively. In these subfigures, the red solid line denotes the angle
error curve with the CKF fine alignment algorithm while the blue dashed line denotes the angle error
curve with the RHCKF fine alignment algorithm. From Figure 10, it is obvious that the errors with
Algorithm 1 is larger than the ones with Algorithm 2, and, especially, the yaw error with Algorithm 1 is
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more volatile. In order to further analyze the accuracy of the alignment algorithm, means and standard
deviations of the errors from 1000 s to the end in each axis were calculated as shown in Figure 11.
Considered the mean and standard deviation of the horizontal attitude angles, although Algorithm 1
and Algorithm 2 have little difference, the errors are smaller with Algorithm 2. Focused on the azimuth
angle, the mean and standard deviation are −0.215◦ and 0.042◦ with Algorithm 1 while the mean and
standard deviation are −0.196◦ and 0.033◦, respectively. Thus, we can see that the initial alignment
algorithm based on the robust RHCKF method can achieve better performance.
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Figure 10. Attitude error curves with different initial alignment algorithms. (a,b) are the error
comparisons of the horizontal attitude angles and (c) is the error comparison of the azimuth angles.
The red solid line denotes the angle error curve with the CKF fine alignment algorithm while the blue
dashed line denotes the angle error curve with the RHCKF fine alignment algorithm.
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Figure 11. Attitude error statistical property with different initial alignment algorithms. (a) is the mean
of the pitch, roll and yaw angle errors and (b) is the standard deviation of the the pitch, roll and yaw
angle errors. The red bar denote the errors obtained by utilizing Algorithm 1 while the blue bar denotes
the errors obtained by utilizing Algorithm 2.
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5. Conclusions

In order to enhance the accuracy of SINS initial alignment for the unmanned vehicle, a novel
initial alignment algorithm is proposed in this manuscript. Considering the influence of high frequency
noise from inertial sensors on the coarse alignment accuracy, a signal denoising algorithm based on the
ELMEMD method and Shannon entropy for inertial sensors is proposed firstly to reduce the impact
of high frequency noises. Considering the influence of the system model uncertainty caused by the
maneuvering on the fine alignment accuracy, a novel fine alignment based on the robust RHCKF
method to enhance the accuracy and robustness of the fine alignment. The test results showed that the
proposed initial alignment algorithm is significantly superior to original algorithms.
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