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Abstract: The Internet of things (IoT) comprises a huge collection of electronic devices connected
to the Internet to ensure the dependable exchange of sensing information. It involves mobile
workers (MWs) who perform various activities to support enormous online services and applications.
In mobile crowd sensing (MCS), a massive amount of sensing data is also generated by smart
devices. Broadly, in the IoT, verifying the credibility and truthfulness of MWs’ sensing reports is
needed for MWs to expect attractive rewards. MWs are recruited by paying monetary incentives
that must be awarded according to the quality and quantity of the task. The main problem is
that MWs may perform false reporting by sharing low-quality reported data to reduce the effort
required. In the literature, false reporting is improved by hiring enough MWs for a task to evaluate
the trustworthiness and acceptability of information by aggregating the submitted reports. However,
it may not be possible due to budget constraints, or when malicious reporters are not identified
and penalized properly. Recruitment is still not a refined process, which contributes to low sensing
quality. This paper presents Reputation, Quality-aware Recruitment Platform (RQRP) to recruit MWs
based on reputation for quality reporting with the intention of platform profit maximization in the
IoT scenario. RQRP comprises two main phases: filtration in the selection of MWs and verifying the
credibility of reported tasks. The former is focused on the selection of suitable MWs based on different
criteria (e.g., reputation, bid, expected quality, and expected platform utility), while the latter is more
concerned with the verification of sensing quality, evaluation of reputation score, and incentives.
We developed a testbed to evaluate and analyze the datasets, and a simulation was performed for
data collection scenario from smart sensing devices. Results proved the superiority of RQRP against
its counterparts in terms of truthfulness, quality, and platform profit maximization. To the best of our
knowledge, we are the first to study the impact of truthful reporting on platform utility.

Keywords: Internet of Things (IoT); mobile crowd sensing (MCS); individual rationality; truthfulness;
social welfare

1. Introduction

The Internet of things (IoT) is a broad concept involving a huge number of online smart devices
that can communicate with other devices. Mobile phones, body sensors, GPS, gyroscopes, and a
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long list of gadgets are now omnipresent, being the lifeline of the modern world. IoT devices are
greatly increasing in number every year, and 50 million are expected to be connected to the Internet by
2020 [1]. This drastic increase creates many challenges as well as opportunities. Trust in the provided
services is expected to be one of the greatest issues of next-generation networks, where the social,
cyber, and physical worlds of billions of IoT devices and humans will move side-by-side. Among these
devices, the mobile phone may be the most influential and essential. The existence of cell phones has
been exploited in many ways, such as in the paradigm of mobile crowd sensing (MCS) and mobile
cloud computing [2]. Computation and sensing capabilities make it possible to lead MCS from wireless
sensor networks (WSNs), due to their portability. Crowdsourcing is an emerging concept that brings
opportunities by exploiting the abilities of crowd. Mobile crowd sourcing has also been exploited as a
cloud service [2]. For the sensing task in MCS, mobile workers (MWs) have been employed. On the
one hand, this is an advantage, but on the other, they may lack sensing quality. The closest concept to
MCS is participatory sensing [3,4].

With the proliferation of mobile phone technology, mobile crowd sensing (MCS) is now a reality.
The omnipresence of mobile devices presents a cheap way of getting services from the public at a
distance [2]. Participatory sensing can be considered as a predecessor of MCS with unique implicit
and explicit participation features. Data is collected from different sources (e.g., social networks and
mobile sensing) by leveraging the intelligence of humans and machines together [5]. Need for the
study of fusion patterns is identified that can help to integrate human and machine intelligence (HI and
MI). An attractive comparison of wireless sensor networks (WSNs) and emerging MCS in terms of
mobility, cost, and coverage is presented in [6]. This clearly shows the supremacy of MCS over fixed
wireless sensors. Sensors in mobile devices can perform numerous sensing tasks (e.g., temperature,
humidity, noise, etc.) with varying quality [7]. MCS is also extended to mobile crowd sensing as
a Service (MCSaaS) [8]. A few well-known applications of MCS are traffic flow surveillance [9,10],
noise [11], healthcare [12], and environment monitoring (urban monitoring) [13], where experiments
are conducted on noise, air, and even electromagnetic fields as pollutants. A previous study [13]
developed a suitable application to improve quality of life with the potential to help city planning
authorities. Human involvement in MCS is beneficial, but also presents challenges such as ensuring
the quality of sensing reports, privacy breaches, and maintaining consistent performance. Furthermore,
attractive incentives are desired by participants. The sensing domain is categorized into participatory
(conscious) and opportunistic (unconscious) sensing classes [14–16]. Hysense is a framework for
MCS to compensate the uneven distribution of incentives by exploiting calibration, where MWs
are instructed to move from areas with high population density to those that are less-densely
populated [17]. A survey on the applications of MCS in industry and in the personal lives of common
people was conducted by Shu et al. [18].

Several approaches to ensuring the quality of sensing in MCS have been proposed. Some of them
are presented in the following. A skilled crowd with cheap services is a great advantage of MCS,
but it can become a big drawback as well (e.g., when tasks can be submitted with false or undesirable
quality). Selfish and strategic participants can act maliciously by delaying or manipulating the task
completion properties to increase utility. Sensing reports can be malicious, or may be submitted to enjoy
“free-riding”. Whatever the case may be, it costs platforms money to get reports from MWs [19]. To deal
with the varying quality demands from task to task, Jiang et al. in [20] proposed a scheme known
as the quality-aware incentive mechanism (QAIM), which should be efficient enough to correctly
measure the report quality. Trust in the cloud environment is evaluated from the perspective of leaders
influence based on different parameters in [21], and from requesters and crowd contributors in [22].

The main problem in MCS is that it is difficult to verify reported task quality due to the
unavailability of ground truth in most cases. Even for situations where ground truth is available,
the quality of current reporting cannot be fully judged based on previous records, as the current
reporting may vary. Thus, platforms can be exploited easily and remain vulnerable to threats.
There are three main entities in MCS: requesters, who are the consumers of collected data; the platform,
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which acts as a service provider; and MWs, who perform the sensing tasks. The selection of suitable
MWs in MCS is one of the most important phases, which indeed is the first milestone. This can be a
prior measure to ensure quality to some extent.

In the literature, data are collected and aggregated to get approximately correct results. In some
approaches, aggregation was simply the average of the reported tasks, without the credibility of
reporters and participation level, and rewards were paid irrespective of the contribution. Then,
a weighted reputation approach was proposed in [23]. It also considered the issue of MW privacy,
which is not the concern of the present work. Data perturbation is done by differential privacy-based
crowd participation. With the intension to determine the quality of reported tasks from MWs,
some approaches in the literature have used reputation-aware recruitment mechanisms. The IoT
is an emerging paradigm, where reputation-based approaches [1] have been presented on the concept
of collaboration. Game theoretic-based approaches have also been presented by considering the
previously mentioned entities in MCS as game players, who are considered rational most of the
time. The identification and correction of errors in reporting have gained the attention of researchers.
Approaches which did not rely on history to inspect the credibility of sensing have also been put
forward [24]. In contrast, we considered history as a helping hand for educated selection in order
to achieve quality. Reporting quality remains a considerable issue, and several approaches have
been proposed, but very few have considered reputation in this perspective. Some approaches have
considered weight- and vote-based mechanisms, but are criticized for providing the right-of-vote to
a few dominating entities and for not penalizing the malicious MWs. Cross-validation is proposed,
which may require extra monetary incentives, and may not be suitable for budget-limited tasks.
This raised the need to propose this work, so the existing gap may be filled.

In this paper, we present Reputation, Quality aware Recruitment for Platform (RQRP) to provide
high-quality reporting in MCS. Reputation is one factor, and the inspection of credible reports is another.
To achieve the desired quality, we divided our scheme into pre- and post-quality measures. For the
pre-quality measure, we mainly considered reputation score and bids, and a few other task completion
requirements such as time and lowest required quality are also considered. For the post-measure,
we evaluated the quality after the sensing task was done and reported. We also considered feedback
on the task from the requesters. To the best of our knowledge, we are the first to investigate the effect
of un-trustable reporting on the platform profit in MCS. The main contributions of this paper are
as follows:

(1) We designed a novel mechanism for mobile worker recruitment based on reputation level and
expected quality of task. We present a recruitment mechanism to hire skilled MWs while mainly
considering feasible budget, quality, platform utility, and individual rationality. In the similar
vein, we propose a selection algorithm and reputation-updating system that considers the weight
and score for both reporters and requesters.

(2) Next, we present a credibility inspection and incentive mechanism to reward or penalize MWs.
We also present a novel algorithm for ensuring credible sensing. Additionally, our approach
verifies the outcomes of MWs by considering sensing data from smart devices in that region
for the IoT scenario. This helps to guard against false reporting from MWs and in taking strict
actions in terms of penalties. For quality reporting, MWs are awarded. We are the first to analyze
truthful reporting for platform maximization. The proposed mechanism is expected to ensure
platform profitability with other task completion constraints while paying necessary incentives
to the MWs.

(3) Finally, we developed a testbed using Windows Communication Foundation (WCF) services on
Windows Azure cloud to evaluate and analyze the datasets containing MW reporting details.
Moreover, we simulated the scenarios for collecting sensing data from smart devices and
transmitting aggregated data at sink nodes via collectors. Sensing data are further saved in
a database for analysis in combination with reporting data to identify false reporting by MWs.
Results proved the dominance of our work as compared to its counterparts in the literature.
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The rest of the paper is organized as follows: Section 2 presents related work in two
sub-sections—incentive mechanisms and quality-centered approaches in MCS. Section 3 is devoted
to the system model and problem statement. The proposed RQRP’s workflow and two phases are
presented Section 4. Phase-A aims at the selection of suitable MWs in MCS by exploiting and enhancing
the beta reputation system, which is also described as being the preliminary to the selection process.
Phase-B is dedicated to evaluation of sensing reports for credibility along with updating reputation
scores. Section 5 provides the theoretical analysis, and analysis of the results is presented in Section 6.
In Section 7, we conclude our work and provide future work directions.

2. Related Work

The term “Mobile Crowd Sensing” (MCS) was coined in [4], and it has outstanding potential to
exploit the power of crowds. Crowd Contributors (CCs) expect attractive reward for the contribution
of their services. An efficient incentive mechanism is required to keep participants motivated to
contribute remarkable sensing. MWs are selfish, so considerable efforts have been made in the
literature to develop incentive mechanisms. We present some of these approaches to incentive
mechanisms in this work. Due to the contribution from possibly untrustworthy participants, report
quality is questionable. To come up with a solution, several approaches are presented in the domain
of MCS. Various aspects have been considered on the behalf of the researchers by defining quality
in different manners (e.g., low latency, small difference between ground truth and sensing reports).
Reputation-based approaches also remain a point of consideration as a milestone toward the goal
of quality sensing. There is clear evidence in the literature on the effectiveness of reputation-based
approaches. Our proposed mechanism is concentric on reputation- and vote-based approaches.
We explored state-of-the-art schemes, and critically analyzed these schemes to point out challenges
and possible research directions.

2.1. Incentive Mechanisms in MCS

Crowdsourcing (CS) is based on outsourcing, which emerged with great potential in past two
decades [25]. In any form, it provides the opportunity to deal with problems more effectively
and efficiently. Two of the major divisions in mobile crowdsourcing are mobile crowd sensing
(MCS) and mobile cloud computing (MCC) [2]. The emergence of wireless technologies was the
foundation of MCS. Requesters, service providers, and workers are the key entities in MCS. Two mobile
crowdsourcing architectures for MCS based on local- and Internet-level schemes are presented in [2].
Incentive mechanisms have been proposed in [19,26–28] to retain the interest of workers. Incentives
can be paid by using: (1) auction and payment rules; (2) a lottery, where no perfect discrimination for
the selection of winners is considered; or (3) trust and reputation, in which rewards are not monetary
but can be a kind of social recognition or self-satisfaction [29]. In this work, we deal with monetary
rewards only, which is more practical for study.

The mechanism designed in [24] did not utilize history for MW recruitment, opportunities in the
MCS domain were explored and exploited efficiently. Control of MW selection was especially enhanced
when crucial and important tasks were to be performed within budget constraints. The limitation of
the work is that only homogeneous tasks were considered. The scheme in [30] presents two models:
incentive mechanisms for crowdsensing systems under zero and general cases (IMC-Z and IMC-G).
The zero model was designed when arrival and departure times were not considered. In contrast,
the general model was presented where in–out time can be reported by MW. Observations were
taken to set the benchmark for future recruitments, the scheme is focused on the cheap costs only,
and truthfulness is considered. Another approach for truthfulness on the announced bids with the
constraint of feasible budget is presented in [28]. In contrast to both of these approaches, we considered
reputation as a quality insurance measure in the selection of MWs rather than least-bid criteria.
The literature is also clear regarding the effectiveness of reputation-based approaches.
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Lack of trust and quality on the work done by recruits have always existed in MCS. To ensure a
trust level for accomplished tasks, platforms need to pay extra for the strategic and selfish agents in
the form of more recruitments. MWs can perform maliciously, submitting false reports or inconsistent
work, or it may be the case that an honest but curious worker delays the task for benefits. In this
scenario, cross-validation can ensure quality but can be costly, so it is difficult for platforms to ensure a
feasible budget [28,31]. A cross-validation scheme is presented in [32]. A unique feature of this scheme
is that if a MW is not able to complete a task after being selected, another MW can be recommended by
him. False reporting is one of the main issues causing lack of trust, so quality-aware truth estimation
schemes are required [10,11].

Game theory-based approaches also remained a hot research area in MCS. The approach
in [31] presented the problem of determining a budget with the assumption of perfect information.
They proposed two incentive mechanisms for the CS environment: (1) frugal auction mechanism,
which stimulates workers to report truthfully; (2) Stackelberg-game-based mechanism, where requester
fixes the reward at the beginning and let the MWs to compete. Literature urge for robust evaluation
scheme to guarantee the quality and creditability of aggregated task reports by avoiding MWs’
malicious behavior. Due to the threat of false and inconsistent task completion, the requester
need to pay more than it deserves, which leads to the problem of budget feasibility [31]. Another
prominent approach in the MCS paradigm that exploited Stackelberg-game and in which platform-
and user-centric models are developed is presented in [33]. The objective of the platform model is
to maximize the profit, whereas user model is aimed for the selection of time at which their utility
can be maximized. A unique Nash Equilibrium (NE) is developed, and sensing time determination
is handled in the user-centric model. A double-auction-based incentive mechanism for the case of
multiple requesters which aggregates the collected data from users known as CENTURION was
proposed in [34]. The mechanism also ensures various desirable properties of an efficient incentive
mechanism. “Theseus” is proposed in [35], with the motivation of providing quality in MCS by
stimulating workers to contribute accurate data to their best ability, and then data aggregation
is done to ensure the quality, as in [33]. NE in a Bayesian setting is ensured in the proposed
non-cooperative game in [36], while having individual rationality and feasible budget constraints
fulfilled. Dynamic behavior is presented with evolutionary games, and competition among CSs is
depicted by a non-cooperative game.

2.2. Quality-Centered Reputation-Based Approaches

The approaches in [37–39] present mechanisms which consider the quality of a task and the
reputation of nodes in order to pay incentives. Gao et al. in [40] presented an approach which considers
dynamic trust, wherein, direct and feedback trust are combined to hire well-suited MWs. Quality
in sensing is a desirable property, which may require sufficient reporting to be ensured. This can be
difficult with strict budget constraints. To deal with the problem of determining a feasible budget,
the approaches in [28,31] are proposed. In [31], study is conducted on the extra payments which are just
spent to introduce incentives upon job completion. Dynamic budget and quality in the MCS domain are
presented in [41]. Restuccia et al. proposed FIDES in [42], which is an incentive mechanism framework
designed to provide secure participatory sensing based on trust. They identified some threats for
the incentive- and reputation-based approaches, and proposed threat models. To address collusion
attack and to ensure credibility, FIDC is proposed in [43], which considers the correlation between
spatial and sensing data with prior knowledge to avoid group-organized attacks (i.e., the injection of
false data). By considering similar task requirements and users’ heterogeneous abilities, a three-layer
approach is proposed with the aim of reusing similar data items. Task selection and user scheduling are
jointly done with the purpose of increasing social welfare up to a certain level. Considering humans’
rating factors in mind, an approach is presented in [21], where requesters’ assigned quality is the
benchmark of reward amount to the contributors. It presents a probabilistic model to quantify the
error in assigning ratings, and ultimately its impact on incentives.
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Pieces of art are proposed in [12–15] to obtain trustworthy work from employees. In [19], a scheme
based on unsupervised learning for quality assurance on truthfulness is presented, where surplus is
shared using the Shapley value as a cooperative game model. A reputation-based reward mechanism
is used to obtain high-quality data in their approach for mobile crowdsensing. The use of the Shapley
value provides a means of avoiding the free riding problem. To handle “free-riding”, a quality
certificate was issued to the participants in [27]. This certificate can be used to monopolize the platform.
In contrast to this, we used reputation to avoid free-riding that is also a kind of certification which
provides the platform with expected contribution of MW, just we did not make it public to avoid
the monopoly. This is useful, as it may be the case that constraints cannot be fulfilled without the
contribution of some of the MWs, and thus those MWs can influence the recruitment.

Smart cities often have sensing activities to provide better services, for which they mostly rely
on wireless communication. Smart mobile devices are used to contribute data at a large scale for the
sensing of the smart city by dedicated or non-dedicated measures [44]. A recent approach aimed at
green collaborative edge computing is presented in [45], where edge devices are installed to reduce the
backhaul bandwidth. Another considerable effort was made in the development of an edge computing
architecture for MCS application in [46]. A survey of the trust computation models for IoT systems
and smart cities is conducted in [47]. Several aspects, such as trust composition, its aggregation,
and its formation are calculated for privately owned devices (rented devices provide services only
temporarily, and so can be used to act maliciously). Trust updation is done on event- and time-driven
bases. The maintenance of trust for IoT devices can be centralized or distributed. The approach in [48]
presented a research work by conducting a survey to achieve the quality of information (QoI) in
the MCS paradigm. Several aspects have been pointed out as research challenges in validating the
trustworthiness of QoI. A different approach is presented in [49] to ensure quality based on a contract.
Crowdsourcing includes two kind of tasks: microtasks and macrotasks. A microtask does not require
much expertise or time, and can be performed easily, but rewards are also low, whereas macrotasks are
reciprocal of this. We considered microtasks in this work, which can be more challenging in ensuring
the quality constraint in the presence of crowd participants. Microtasks in MCS have low MW utility
most of the time, so it can be difficult to engage CCs in a contract. It can be useful for MWs’ and for the
platform when MWs have fixed mobility patterns.

In [21], reliability is defined as the ratio of tasks completed globally and locally with defined
weights given in Equation (1), where ωg + ωl = 1:

RE = ωg ∗
Jobs Completed Globally
Jobs Accepted Globally

+ ωl ∗
Jobs Completed Locally
Jobs Accepted Locally

. (1)

The reputation of individuals is calculated based on the number of accepted and completed
jobs, and submitted tasks, and data integration, identity, and capability, as given in Equation (2),
where ω1 + ω2 + ω3 + ω4 + ω5 = 1 are the weighting factors:

RT = ω1 ∗ Accepted Jobs
Submitted Jobs + ω2 ∗ Completed Jobs

Accepted Jobs + ω3 ∗ Data Integration
Completed Jobs + ω4 ∗ Identity + ω5 ∗ Capability. (2)

Another way to get quality-oriented reporting is done by considering a collaborative approach
rather than simple voting- or statistical-based trustworthiness, as in [50]. A similar approach presented
collaborative trust in IoT based systems for the analysis of visitors’ behavior at a cultural event [1].
The proposed approach is attractive, as no single metric can influence at large scale, and it simply
does not rely on the willingness of participants. A quality-oriented approach is presented in [51] for
opportunistic networks, which may not be suitable for time-sensitive tasks.

Based on functional reputation, an approach in [52] considered the reliable aggregation and
transmission of collected data by sensors in the WSN domain. It exploits “beta reputation” [53] to
evaluate the trustworthiness of the node. In contrast, we utilized it in the MCS domain to ensure the
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trustworthiness of MWs. According to [53], a Bayesian estimation matrix can model mean based on a
probability density function (PDF), and the prediction of credible contributions in the future from an
MW can be made as presented in Equations (3) and (4). In our proposed RQRP, sensing reports can
be accepted or rejected, as the nature of the beta system is binary. To differentiate between excellent,
average, and normal contributors, we assigned ratings based on the individual and collective feedback
from the requesters. Thus, the outcomes are partially binary in RQRP. From previous observations,
the expected outcome for a new task can be expressed using ω = P + 1 and γ = N + 1, where P and
N are positive and negative outcomes from total interactions, and estimation is given in Equation (4).
In our approach, we took this concept and modelled it to estimate the reputation of the task at present
using the history of previous tasks performed by the same MW.

f (p|ω, γ) =
Γ(ω + γ)

Γ(ω)Γ(γ)
pω−1(1− p)γ−1 (3)

E(p) =
ω

ω + γ + 2
(4)

The scheme in [39] covers various aspects, such as the availability and capability of a device,
to analyze the trust in mobile phone sensing. Emphasis is made on the important role of
reputation-based systems for MCS, as gadgets in this domain are owned by common people.
Candidates’ reputation and weights are calculated as presented in Equations (5) and (6), respectively:

R = ∑
iεs

weights ∗ Ri,k−1, (5)

where
weights =

Ri,k−1

∑iεs Ri,k−1
. (6)

In [39], the critique is given that beta reputation systems are not capable of penalizing malicious
MWs for bad contributions. On the contrary, we adopted it by including penalty in terms of decrease in
reputation and also by not selecting them as crowd participants. Furthermore, we employed a blacklist
to punish malicious MWs. In our proposed work (RQRP), the trust mechanism based on a reputation
system is installed in the platform as a central authority to maintain trust and sensing quality by
assigning a trust score known as the R_Score. We also present a novel mechanism for rewarding
MWs on the basis of task completion and score calculation. To the best of our knowledge, we are
the first to study the impact of truthful reporting on platform utility with both parameters. Results
showed that voting-based approaches were more prone to collusion attack. For approaches utilizing a
majority voting concept, error propagates at a high rate. Most works which consider reputation-aware
recruitments have counted on the probability of only those MWs with higher reputation. This means
that experienced MWs will always have a greater chance of being selected, which may lead to
monopolies based on reputation score. Voting-based approaches give the right-of-vote to only
well-known entities, as in [54]. Whereas in our proposed approach, feedback on quality is not confined
to fixed or predefined entities, and the credibility of the reports is also simultaneously considered.

Social aware crowdsourcing with reputation management (SACRM) [55] is presented with the idea
of using social attributes for participants’ selection to perform sensing tasks. It measures the quality of
the reported tasks in terms of expected and actual delay of sensing reports. Participation reputation is
also maintained at the platform. Bonuses are paid to stimulate quality reporting. A limitation of the
paper is that the platform is assumed to store the history of all the performed tasks and CCs, which can
be impractical at large scale. A greedy approach was adopted in [56] to ensure quality while decreasing
the sensing cost. Incremental reward is also considered by paying bonuses to the participants. Quality
is measured by approximation ratio, but reputation is not considered. A unique approach with the
aim of including quality in MCS by combining cyber-physical perspectives for geographic sensing is
presented in [57]. For the selection of participants, simple aggregation of reports is exploited rather
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than reputation, and weightage is not considered, which is important for credible reporting. Recent
work on the idea of profit maximization for MCS is proposed in [58]. Their main focus was same as
ours, but they did not consider reputation as a benchmark for selection.

Our proposed work generates credible reports while being beneficial to the platform and fair to
MWs. It is more generic than [31], as we considered mobile crowdsourcing which includes mobile
cloud computing and sensing. We do not allow the MWs to compete for limited budget, and instead
we involve multiple other parameters for MW selection. Moreover, RQRP can be applied on temporary
bases at local mobile crowdsourcing infrastructures, as in [2]. We exploit reputation, whereas [28,30,32]
did not consider it at all. The approach is also feasible for the online environment. Quality of sensing
does not simply rely on the aggregation of reports, and for the sake of quality, no extra payments are
made, which may occur in [32]. Budget was taken into consideration with dynamic properties, and the
profit of the platform is given priority. On the other hand, the Designed Mechanism (DM) is expected
to be IR (individual rational). In contrast to various approaches, we included two quality assurance
checks: scrutiny of MWs and validation of reports. In contrast to the approaches which have used
beta reputation, we also exploited an ageing factor, which may support the applicability of the DM at
large scale.

Budget was divided into lower and upper limits for task completion, which can never be
over-ruled. One of the reasons for setting a dynamic budget is to find and exploit the opportunistically
available resources. Truthfulness is expected to exist, as there will be no benefit of false reporting.
Payoff of the MWs is delivered depending upon the agreed-upon total value per task, contribution in
big task, number of units performed (subtasks), and cost per unit, where quality of reported results is
not neglected. The reputation updation system will influence MWs to work honestly, as this effects
future hiring. This is in contrast to previous approaches, which utilized large crowds to take aggregate
reports without making differences in weightage and thus needed more incentives, which may make
it impossible to complete tasks with strict budget constraints. A unique feature that can help the
platform to save storage is the concept of the ageing of history. Our scheme is efficient in this respect,
as it requires less storage space and may have less running time for participant selection.

3. System Model and Problem Statement

The proposed MCS incentive mechanism RQRP model is presented in the following sub-section.
The research problem, which is focused on achieving high quality of sensing while considering the
social welfare of the participating entities, is also defined.

3.1. MCS Model

RQRP is defined as M( f , g), where f represents filtration and selection, and g stands for payments
after the validation and reputation updation processes. The type of a MW is represented as f (θ) = θ̂,
where θ is the set of true types of MWs, and θ̂ is the declared type of MW as a function of f (θ). For the
platform, θ is generated as function f (RT , Q, Sk). In RQRP, T = {τ1, τ2, τ3 . . . τn} is the set of tasks,
U = {u1, u2, u3 . . . un} is the set consisting of users, where n ε N = {1, 2, 3 . . . N}. After announcement
of the task by the platform, MWs can bid on their cost. We assumed MWs to be the game-theoretic,
so we considered c′ = f (c), where c is true cost and c′ is the declared cost. A MW’s bid is set as a
triplet in our mechanism bi = (c′, qi, ti), where i ε U, c′ is the announced task completion cost, qi is the
quality (which can be a function of skill and reputation), and ti represents the time in which ui can
perform the task. In every case ti ≤ dt, which is the time deadline. Time can be a function of distance
between sensing and the MW’s current location. All of these are important considerations for the
constrained aware selection of MWs. Collectively, for multiple tasks, cost cannot increase the budget,
and reported quality less than the threshold is not acceptable.

The types of mobile workers can be categorized as: (1) honest MWs, which is the best
case; (2) malicious MWs, who may deceive for incentives; (3) those who are not malicious but
accidentally/infrequently report below expected quality; (4) those MWs who at first strategically



Sensors 2018, 18, 3305 9 of 32

contribute high-quality and then submit false reports and continue this to maintain trust above a
certain level (known as an ON–OFF attack). Most of the literature ignores this kind of MW, whereas
ON–OFF attacks can be handled by RQRP, as it is able to analyze the past behavior because history
is maintained.

Skill level correlates with the ability to perform a task with desired quality. MWs with better skill
level and lower bid are favorable to be the bid winners, and are more considerable if they are capable
of performing multiple tasks. When a task is submitted, the DM ensures that the indifference between
prior knowledge or instantly generated ground truth is not higher than expected. If so, then the
task must be rejected. Ground truth is one of the important task quality factor. The objective is to
validate the accuracy of the submitted task, especially when ground truth is generated from history.
It is described as: if

[
True knowledge – Ti,j

]
≥ α; then reject the submitted task, where α is a threshold

parameter to investigate the quality, and in Ti,j j is the submitted task by the user i. RQRP imposes a
kind of filter to ensure the careful selection of MWs and the quality of reported tasks. The reputation
score of an MW is one of the very important filters, alongside cost, expected quality, and MW skill.

Budget
∫ B+i

B−i
B is set to be dynamic between lower and upper limits. The lower limit of budget

is initialized with the rough estimate of the true cost from history, which can vary from task to task
and is initialized by the platform. Different from most of the previous approaches, we considered that
every bundle of tasks can have different sets of tasks with different budgets, which is a more realistic
scenario. Two reasons to set a dynamic budget are as follows:

(1) Imperfect information about true cost of task completion of MWs.
(2) A variety of task completion requirements encourage dynamic budgets, as cost may vary from

task to task with worker skill level, required quality, and with time sensitivity.

It is important to maintain the interest of MWs to get the task completed within the required
constraints. Every MW expects attractive incentives, so an efficient incentive mechanism is most
important for any efficient crowdsourcing platform—especially when decisions on the participation of
workers cannot be reverted (e.g., online). Some important attributes that a good incentive mechanism
should have are: truthfulness, if truth telling is a dominant strategy for MWs then the DM is truthful;
individual rationality, meaning that at the least costs are paid to MWs; profitability, meaning that
the DM should be profitable for the platform; feasibility—that is, if the task can be completed in
polynomial time then the DM is computationally feasible; and fairness, which may hold if incentives
are being paid according to contribution.

We assumed that MWs were aware about the presence of other MWs, who could also be the winner
of the announced task, thus forming competition. The incentive of the upcoming task can be lower
than already declared, and it may not be desirable for an MW to wait for the next task. All these factors
motivate the MWs to bid on their true values, so we can expect that bidding based on the true cost
will be the dominant strategy of MWs. This idea will lead MWs to perform at their best, irrespective
of what other MWs’ bids are. As there will be no benefit of deviating individually, providing the
best response will be desirable for the MWs. This concept is also known as the diminishing return in
literature. The workflow of the proposed model is presented next. The most frequently used notations
in this work are presented in Table 1.

Figure 1 presents the designed RQRP architecture for MCS. It consists of two parts. In the
first part, requesters declare tasks with required quality, budget, and time constraints. The second
part is the most important part of the designed mechanism, and deals with the reputation-aware
selection of the participants and the updation of reputation. Online and offline participants can both
be handled, and worker selection based on reputation of task completion is the first milestone on the
way to achieving high-quality sensing. To select suitable participants, the platform announces the task
with constraints and waits for the MWs to bid, as handled by Algorithm 1 in Phase-A. We assumed
the availability of enough MWs willing to participate in sensing tasks. When analyzing bids for
the expected quality and platform utility that a particular applicant can provide, the mechanism
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selects one or up to the required number. After this, the platform announces the number of winners.
From this point forward, Algorithm 2 (described in Phase-B) has a kind of interplay with Algorithm 1.
Bid winners perform sensing tasks and submit the reports. The platform verifies the sensing reports
with the task completion constraints and with the expectations from participants. Upon successful
verification, payments are made to those winners whose tasks fulfilled the minimum criteria, otherwise
the task is rejected. Rejection at this stage may encourage the worker to do their best for the next
task. The platform delivers final report to the requester. On reply of requester for the contributed
quality, reputation updation is performed. If the same task was required by multiple requesters,
then reputation is updated by considering feedback collectively. Collective knowledge based on
feedback is also useful to avoid the bias of requester opinions. Power to benchmark the quality is
distributed and a final check is done at the platform. Reputation-aware recruitment allows us to
conduct the selection of MWs to achieve the quality objective. Feedback from the requester can help
the platform to predict recruitment. In contrast to some approaches which announce the reputation
score, we did not do so, so that MWs cannot monopolize based on reputation score.

Algorithm 1: Selection of Suitable Mobile worker.

INPUT: Attributes of task (T, Sk, Q, Dt), l(location), p ε P, Assumption: Every MW has maximum task
completion capacity Nttc[i]
OUTPUT: Nw,E(Q),E(ci), E(Pu)

1. Initialize: {Nw,E(Q), E(Pu), Ncc, Ntc} ← {∅, Q,∅,∅,∅} ; B−i, B+i

2. MWs(N) bids on their private value: NCC[i]← b[i] ;
3. For (i = 1; i ≤ (Ncc[i]) && Nw && Dt ≤ T

2 log T
2

); i++)

4. If NCC[i] ≥ (Sk) then
5. If E(Q) ≥ Q then
6. If (B−i ≤ b[i] ≤ B+i) then
7. If (Ntc ≤ Nttc[i]) then
8. NRC[i][i] //considered as real candidate
9. Else
10. Reject[i]← NCC[i]
11. End If
12. End For
13. Sort list of NRC[i] in descending order w.r.t low bids b[i] and high E(Pu)

14. For any task If NRC[i], b[i] && E(Pu) are same then
15. Select NRC[i] with higher R_Score or RT

16. Select the Nw from the set of NRC[i] w.r.t Max E(Pu), Ntc ++

17. End For
18. Return Nw,E(Q), E(Pu),E(ci)

In Figure 1, the large dotted rectangle on the right side represents the methodology of our
proposed RQRP as a whole. The dotted red arrows show the communication for mobile workers’
selection (Phase-A). This communication may contain the announcement of tasks, transmission of
bids, reputation score, skill of the worker, or other requirements that must be ensured before the MW
selection is made. These are the prior measures which set the ground for obtaining the desired sensing
task quality, performed by Algorithm 1: selection of the suitable mobile worker. Blue arrows represent
the credibility investigation, incentive assignments, updation of reputation into the database, and reply
to the requester, which are mostly the objectives of credible sensing Algorithm 2 (Phase-B) of RQRP.



Sensors 2018, 18, 3305 11 of 32

Sensors 2018, 18, x FOR PEER REVIEW  10 of 31 

 

to predict recruitment. In contrast to some approaches which announce the reputation score, we did not 
do so, so that MWs cannot monopolize based on reputation score. 

Algorithm 1: Selection of Suitable Mobile worker. 
INPUT: Attributes of task (𝑇, 𝑆௞, 𝑄, 𝐷௧), 𝑙(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑝 𝜀 𝑃, Assumption: Every MW has maximum 
task completion capacity 𝑁௧௧௖[𝑖] 
OUTPUT:  𝑁௪, 𝔼(𝑄), 𝔼(𝑐௜), 𝔼(𝑃௨)   
 

1. Initialize: {𝑁௪, 𝔼(𝑄), 𝔼(𝑃௨), 𝑁௖௖, 𝑁௧௖} ← {∅, 𝑄, ∅, ∅, ∅}; 𝐵ି௜, 𝐵ା௜ 
2. MWs(N) bids on their private value: 𝑁஼஼[𝑖] ← 𝑏[𝑖]; 
3. For (i = 1 ; i ≤ (𝑁௖௖[𝑖]) && 𝑁௪ && 𝐷௧ ≤ ்ቔଶ ೗೚೒మ೅ቕ) ; i++)  

4. If 𝑁஼஼[𝑖] ≥ (𝑆௞) then 
5. If 𝔼(𝑄) ≥ 𝑄 then 
6. If (𝐵ି௜ ≤ 𝑏[𝑖] ≤  𝐵ା௜) then 
7. If (𝑁௧௖ ≤ 𝑁௧௧௖[𝑖]) then 
8.  𝑁ோ஼[𝑖][𝑖] //considered as real candidate 
9. Else 
10.  𝑅𝑒𝑗𝑒𝑐𝑡[𝑖] ←  𝑁஼஼[𝑖] 
11. End If 
12. End For 
13. Sort list of 𝑁ோ஼[𝑖] in descending order w.r.t low bids b[𝑖] and high 𝔼(𝑃௨) 
14. For any task If 𝑁ோ஼[𝑖], 𝑏[𝑖] && 𝔼(𝑃௨) are same then 
15. Select 𝑁ோ஼[𝑖] with higher 𝑅_𝑆𝑐𝑜𝑟𝑒 or 𝑅்   
16. Select the N୵ from the set of 𝑁ோ஼[𝑖] w.r.t Max 𝔼(𝑃௨), 𝑁௧௖ + +  
17. End For 
18. Return 𝑁௪, 𝔼(𝑄), 𝔼(𝑃௨), 𝔼(𝑐௜)  

In Figure 1, the large dotted rectangle on the right side represents the methodology of our 
proposed RQRP as a whole. The dotted red arrows show the communication for mobile workers’ 
selection (Phase-A). This communication may contain the announcement of tasks, transmission of 
bids, reputation score, skill of the worker, or other requirements that must be ensured before the MW 
selection is made. These are the prior measures which set the ground for obtaining the desired sensing 
task quality, performed by Algorithm 1: selection of the suitable mobile worker. Blue arrows 
represent the credibility investigation, incentive assignments, updation of reputation into the 
database, and reply to the requester, which are mostly the objectives of credible sensing Algorithm 2 
(Phase-B) of RQRP.  

Task and 
Requirements

...

Task 
details

(Q, T, B)

Online and offline 
MWs

Sensing, Position 
Details of MW

Bids
(ci,qi,ti)

Selection/
Rejection

Winners

Verify on task 
requirements

Accept

Deliver task PaymentsReputation updation

Urban sensing
Yes

No

Reject task

Requester

Database / Storage

Announce
Winners

Worker Selection 
criteria

CC1 CCnCC2

 
Figure 1. Proposed architecture of the Reputation, Quality-aware Recruitment for Platform (RQRP) 
method for task allocation and reward management. MW: mobile worker. 
Figure 1. Proposed architecture of the Reputation, Quality-aware Recruitment for Platform (RQRP)
method for task allocation and reward management. MW: mobile worker.

Table 1. Most frequently used notations in this work.

Notations Description

R_Score Reputation score

Pu, Wu Utility of platform and mobile worker

E(Q), E(Pu)
E(Q)> is expected quality from bidding mobile worker and E(Pu) is the expected
platform utility

T, ti or τiεT Task, Subtasks

Dt, Gt Deadline of task completion, and ground truth

Q, Rq[ti], Q_Score Desired quality of task, Rq[ti] is the real reported quality of any task according to
(Gt, R_Score), and Q_Score is quality score after task completion

α, β, b[i], bij
α, β are threshold parameters, b[i] is the bid of any mobile worker MWi, and bij is
the bid of any MWi for task j

Sk Expected skill level

N, Nc, NRC, Nw, Ntc, Nttc

N is the total number of mobile workers, Nc is the set of candidates who have
submitted bids, NRC is set of candidates who are considered as real candidates,
Nw is the number of winning MWs, Ntc is the total task assigned, Nttc is total task
completion capacity of MW

Sr, Gt, li ε L Sr is sensing report, Gt is ground truth, li ε L is a sensing location from a set
of locations

B+i, B−i Upper and lower upper limits budget

ci, Ci ci is the unit cost paid to the MW whereas Ci is the total cost paid to one MWε Nw

3.2. Problem Definition

Based on the contributed quality of MWs from history, we created a skill matrix which is assumed
to be the private knowledge of the platform. For every newly registered MW, the skill value in this
matrix will be 0.5 by default but can vary depending upon the reported sensing quality. Skill level
is defined as: Sk = [τi,j] ε [0, 1]M∗N , where τ is task, and i ε U, j ε T, and M ∗ N represent the
columns and rows of the skill matrix. The reputation RT of any MW can be deduced from Q matrix,
which is the contributed quality in history, whereas the Q matrix is the function of skill level SK matrix
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expectations before selection. Below, we present how the reputation is built from quality (feedback)
and skill matrices:

RT =

 Ri,j Ri,j . . . Rn,m

Ri,j Ri,j . . . Rn,m

Ri,j Ri,j . . . Rn,m

⇐ Q

 Qi,j Qi,j . . . Qn,m

Qi,j Qi,j . . . Qn,m

Qi,j Qi,j . . . Qn,m

⇐ SK

 Si,j Si,j . . . Sn,m

Si,j Si,j . . . Sn,m

Si,j Si,j . . . Sn,m

.

We defined our research problem in the following ways, presented in Equations (7) and (8):

max Qt≤ T
b2 logT

2 c
f or liεL

Nw

∑
iεRC

E(Pu), (7)

min t ≤ T⌊
2 logT

2
⌋ f or liεL

Nw

∑
iεRC

E(ci) as
Nw

∑
iεRC

E(ci) ≤ B+i. (8)

On receiving a bid from a crowd participant, the platform searches the matrices from the database
to make a well-educated decision on the selection of mobile workers.

The objective of Equation (7) is to maximize the quality Q and expected platform utility E(Pu) for
any desired sensing location liεL until the t ≤ T

b2 logT
2 c

, where T represents the deadline of performing

the task, which is divided into slots. This is also the case with the budget b ≤ B
b2 log B

2 c
, which is also

dynamic as the time deadline varies accordingly, where B is the budget of all the tasks in one bundle.
This division is the same as in [30]. Total task completion time is divided into slots and budget is set
to be dynamic accordingly, which varies to meet the temporary deadline until Equations (7) and (8)
are valid for NRC. NRC is the list of those MWs who are considered to be the real candidates because
their trust scores are at least as high as the required quality for the sensing task. Selection of winning
MWs Nw is made until the time deadline reaches T

b2 logT
2 c

Nw is a set of winning candidates from the

list of real candidates NRC, who qualified in the first phase. For any declared sensing location liεL,
the objective is to maximize the expected platform utility E(Pu) while ensuring the quality Q constraint
until the deadline is reached. On the other hand, Equation (8) is aimed to minimize the cost of winning
Nw MWs which the platform is supposed to pay. It includes the sum of total costs of all the services
offered by the set Nw. This must be done under the constraint that the sum of total expected costs E(ci)

of every Nw must not exceed the upper limit of budget B+i, where B+i is the maximum cost that the
platform can pay for the announced bundle of tasks.

The social welfare of the system is also considered in our DM. Social welfare is a term borrowed
from microeconomics, and has the goal of participants’ satisfaction. The DM for MCS is the interplay
of three common entities: MW, platform, and requester. In some studies, the platform and requester
are considered as one entity, but we considered them as two separate agents. The DM in our proposed
work is a system that ensures the satisfaction of all three parties. Social satisfaction can be defined as
the net profit for all entities. In our scenario, we defined the social welfare as in Equation (9):

Sw =
Nw

∑
i=1

Pu +
Nw

∑
i=1

(
pi − c′i

)
+

Req

∑
i=1

Qi. (9)

In Equation (9), Max ∑Nw
i=1 Pu ≥ C, where C represents the total cost borne by the platform, and its

utility will be greater than or equal to C. This is ensured by the selection filter in RQRP, where no
combination of MWs will be selected in which C will be greater than the upper limit of the budget B+i.
The DM is also profitable for the MWs, as pi − c′i will be at least greater than or equal to ci, which is
the true cost of the MW. This property can also be satisfied by the individual rationality attribute of
DM, which means that in general scenarios, MWs must be paid their declared cost c′i. On the other
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hand, we defined the satisfaction of the requester in terms of achieving the quality Sr ≥ qi, where Sr

represents the sensing report and qi is the threshold value of task acceptance.

Algorithm 2: Credible Sensing.

INPUT: Gt, li ε L, , Sr[i], Q[i], p ε P
OUTPUT: Wu, Nw QScore/RT , p

1. Initialize : Nw(Sr)← Accept(1)/Reject(0), Q_Score← 0
2. For (i = 0; i ≤ T; i++)
3. If Sr[i] o f h(li) ε H(li)] then
4. If (Sr[i]− h(li) ≤ β && E(Q) ≥ α && Sr[dt] ≤ Dt) then
5. If Q_Score =

∣∣ E(Q)− Rq[ti]
∣∣ > Q[i] then

6. Accept Sr[i]← Nw[i]
7. RT = RT−1 + βRT−1 // increase in reputation
8. Else
9. RejectSr[i]← Nw[i] // add the MW’s task in rejected array of RejectSr

10. RT = RT−1 − βRT−1 // decrease in reputation as penalty
11. End If
12. End If
13. End For
14. For any Sr[i] /∈ h(li) but Q ≥ α
15. Wu = p
16. h(li)← Sr[i]
17. RT = RT−1 + βRT−1

18. Assign weight Sr[i] according to R_Score;
19. If Sr[i] is reported by newly recruited MW then
20. R_Score is initialized by 0.5;
21. End If
22. End For
23. Return Nw, Nw(RT) // winnersandtheir quality scores
24. β = ∑(Sr[i]− h(li))/Total Sr) // β is updated for upcoming task to set benchmark

4. Proposed Reputation Quality Aware Recruitment for Platform (RQRP)

The DM is distributed into two phases, as shown in Figure 2. Phase-A has two sub phases:
filtration and the recruitment of suitable MW(s). Phase-B also has two stages: credibility inspection
of reports and assignments of incentives to the platform and MWs. To design a mechanism that can
maximize the platform utility while ensuring the quality of reporting requires that different challenging
tasks be confronted, enumerated as follows:

(1) Selection of suitable MWs by fulfilling the task’s constraints.
(2) Validation of task quality is necessary, as MWs can submit low-quality reports and may want to

enjoy a free ride. They can also be selfish, strategic, and may intentionally manipulate results to
misguide the platform. To avoid all this, quite a strict check and balance should be maintained
on submitted reports. The challenge lies in how to ensure the quality of reports.

(3) Enforcement of work quality. The development of an efficient system which can hire trustworthy
CCs is necessary. Furthermore, there should be a method to avoid the monopoly of MWs, which is
also a necessary step to maintain quality by keeping their interest.

(4) Ensuring that budget and time constraints are operated within.
(5) Stimulation of MWs with a proper incentive mechanism, which can handle online mobile

crowdsensing task distribution.
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Sensing in MCS may include images, videos, temperature measurement, environment monitoring,
and much more. The proposed RQRP aims to achieve quality of sensing based on reputation,
where incentives are paid on the contribution. Its application is not limited to one scenario, and can
be utilized for any of the previously mentioned application examples, where CCs/MWs need to be
recruited, quality of reporting should be ensured, and incentives are given in reward of services. Due to
its foundation in the “beta reputation system”, it is also presented after necessary enhancement to
adapt to the MCS environment. Different from the available literature, our designed approach is more
suitable for the following reasons: (1) It can manage offline and online scenarios at the same time,
where users dynamically join and leave. In this situation, decisions are made in real time; (2) RQRP
creates competition among MWs to have continuous effort, whereas most approaches in the literature
only emphasize reducing the cost of hiring; (3) Reputation-aware recruitment provides the chance
for the selection of suitable MWs with enhanced trustable quality reporting. It also discourages false
reporting, which was totally ignored in [30,36,59]. (4) The feasible budget constraint is considered
while being profitable to the platform. Necessary payments are made to keep the interest of MWs.
(5) Truthfulness is expected to be achieved, as it is the dominant strategy for the players to bid on the
true value. We assumed that platform would have some prior knowledge about the true costs of MWs.
This estimate can be obtained from previously completed tasks. To ease the reader’s flow, we present
the sequence diagram of RQRP in Figure 3.

On task generation from the requester with the details of task requirements, platform take some
necessary steps, it may consists of multiple servers as shown in Figure 3. The platform checks whether
the task can be accomplished or not. The server at the platform can be a certificate server which
maintains authentication services, or it can be a database server that can store the history of task
completion for the participants at large scale. Our proposed scheme is a bit more flexible than some of
the approaches in the literature, as it does not simply deny the task request due to constraints on it.
Rather, based on history, it can negotiate with the requester on quality with the declared budget before
announcing the task to the MWs. After the task announcement, MWs submit bids. If the task cannot be
completed within required quality and budget limits, then the platform can inform the requester with
the changing state in step 9. This kind of situation can occur as an assumption is made on imperfect
information, so states can vary, even after consultation of history. Otherwise, the platform selects
winners based on bi ≤ Bi and qi ≤ Qi . After task completion, the MW submits their report then
the platform analyzes the task and delivers it as shown in step 15(a), only if basic constraints on the
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task are fulfilled. At the same time, a reward based on contribution quality is assigned in step 15(b).
Participants’ reputation is also updated to enable well-informed recruitment decisions in the future
based on the feedback of requester/requesters as shown in step 17.
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In RQRP, we assumed that MWs are game-theoretic. Thus, the probability of false reporting or
selfish behavior by MWs does exist. We considered the malicious responses, whereas for the MWs with
long-term history of job completion with the platform are less expected to be malicious. One of the
novel features of our approach is that we maintain a blacklist of MWs. This list contains the malicious
MWs, but it needs to be made carefully, as it can be the case that a mobile worker is not malicious but
submitted a low-quality task while having a good prior reputation of job completion. Situations like
this can sometimes happen, for a number of reasons (e.g., environmental factors). If a mobile worker
is consistently submitting poor-quality reports and their R_Score (reputation score) drops beyond a
certain level, then this MW can be considered as malicious, and should not be recruited.

4.1. Phase-A: MW Selection

Phase-A of RQRP involves the selection of MWs who can maximize the utility of platform
while ensuring the required quality standard is met. Careful selection of CCs can ensure budget
feasibility, with no extra money to validate the sensing reports. In the next sub-section, we present our
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reputation-based selection, which is actually a filtration process. This stage is important for the goal
of quality.

4.1.1. Reputation-Based Selection (RBS)—Filtration

Reputation-based selection (RBS) consists of initial filtration and selection. In general, we assumed
that the platform had a history of previous tasks, and on the arrival of any new task, the platform
announces it with all the details except for budget in order to create competition. Until response from
MWs, the DM finds the list of matching MWs with the required skill for the announced task. After that,
upon receiving bids, the DM compares the attributes sent by the MWs with those MWs who had
completed tasks successfully in the past and who are also currently in a position to perform the recently
announced task. After this, the DM can select the most suitable MWs to fulfil the task completion
requirements. This is the initial filtration process. We dedicated Algorithm 1 to the selection of suitable
MWs and explain the process hereafter. In contrast to the available literature, we assumed that there
is a maximum task completion capacity. For the MW selection, we consider the trade-off between
service quality and true MW cost. However, the true cost of the MW is unknown in most cases, and so
it is considered as incomplete information as mentioned previously. Rough initial information of task
completion can be derived by the platform’s previous recruitments for the same kind of task with
reported quality. This is done by beta reputation [53], described in the following.

4.1.2. Effective Reputation

We considered effective reputation in two aspects. The first is the direct feedback from
single/multiple requesters on the MW’s sensing task. Reputation from multiple requesters should
be considered if the MW was recruited and completed multiple tasks. The second is the platform’s
own trust calculation for the MW based on historic observations. We considered this because remarks
from requesters can be biased due to human factor (liking or disliking) or the requester’s own skill in
evaluation. Thus, it is logical that we should consider the platform’s own opinion for the reputation
score (R_Score) of the MW as a whole. The “beta reputation system” is an effective approach used for
the calculation of trust level. For effective reputation, we also considered an ageing factor. The purpose
of using this factor is to reduce the impact of prior reputation scores on the current MW selection.
It seems to be realistic that previous R_Scores should not be considered forever, as the performance
of CCs may vary from time-to-time depending on the situation. Even though the performance of a
specific MW does not change in their local scenario, there can be other new employees who can do
a better job, so the ageing factor is useful. On the other hand, the ageing concept ultimately reduces
the impact of history to zero after a certain time. Two other aspects are worthy of consideration:
the first one is that real-time response can be obtained by reducing the recruitment selection time.
The second is that storage space can be saved, allowing more records to be maintained. We used the
term of “weightage” for requester and “reputation” for the MW. We discuss the reputation of the MW,
the weightage of requesting, and updating records in the following.

(1) Reputation of Mobile Worker

Reputation calculation and updation involves various aspects, and some important equations and
their description are presented. Requester feedback is key to the reputation procedure. Other than this,
we do not just give the right-of-vote to a single requester, especially when there are multiple requesters
who have requested same task. Equation (10) explores RT, which is the reputation of an MW based on
the ratings assigned by the requesters. Wi represents the weightage of the requester’s feedback and RT

k
is the reputation score as a whole.

RT = W1RT
1 + W2RT

2 + . . . WN RT
N =

N

∑
K=1

WKRT
K (10)



Sensors 2018, 18, 3305 17 of 32

(2) Weighting of Requester Rating

The proposed RQRP is unique from other reputation-based approaches, as we do not maintain the
reputation of only MWs. We also tried to analyze the ratings given by the requesters on sensing tasks,
so that human bias can be removed and an efficient reputation-based mechanism can be designed
for MCS. W1, W2, . . . WN are the weightage of the requesters for the case of multiple tasks, if the
requester is assigning ratings honestly and it is not drastically different from the ratings assigned by
other requesters on collective bases. The weighting capability of that requester’s given rating will
increase, and otherwise decrease in the same fashion. Weight is calculated from the given weights in
history, and is simply the average of n previous weights as WT = ∑n

K=1
Wn−k

n .

(3) Weight Updation

Weightage given to the MWs must be updated to analyze their contribution with the passage of
time. It should also be updated because the platform should not reply on all of the past contributions
for every selection. Thus, if the rating given by the requester/requesters is within the standard
deviation of the ratings given by multiple requesters, it means that a particular requester is assigning a
true rating in correspondence with other requesters, so their rating weightage weight will increase
accordingly as shown in Equation (11) where UR − σR < R < UR + σR. Here, C is a constant factor
and N is the number of tasks in records to be stored in history. Factor N can be adjusted by the
platform, where a large value of N means more history has to be traversed in order to calculate the
rating weightage. Similarly, if the rating assigned by a requester is not within the standard deviation,
then the rating weightage decreases when UR − σR > R > UR + σR.

WT =
N

∑
K=1

WT−k
N

+ C
N

∑
K=1

WT−k
N

(11)

WT =
N

∑
K=1

WT−k
N
− C

N

∑
K=1

WT−k
N

(12)

(4) Task Rating

We measured the rating for single and multiple tasks. The rating for a single task is given
in Equation (10), where WN represents the weights of rating given by the requester and RT

N is the
rating given by the requester for any task T. Thus, the rating for a single task done by the MW is
R = ∑n

K=1 WN RT
N . The average rating of M tasks is taken as R = 1

M [R1, R2 + . . . + RM]. By combining
rating of multiple tasks, we get Equation (13):

R ==
1
M

[
N

∑
k=1

WN RT1
N +

N

∑
k=1

WN RT2
N + . . . +

N

∑
k=1

WMRTM
M

]
=

1
M

[
N

∑
k=1

M

∑
j=1

WJ RTk
J

]
, (13)

where R is the rating calculated for the tasks that are currently performed. Overall reputation depends
on the current rating and the rating from history, which may have different weights in Equation (14)
where h1, h2 . . . hN are the weightages of previous task ratings stored in the history such that h1 >

h2 > h3 . . . > hN . Rating weights decrease while moving back in history and eventually become zero.
From that point on there is no need to store the history, which also saves storage space for the platform.
On the other hand, it brings a decrease in the computation time, because less history needs to be
traversed and RT−k is the corresponding rating. Equation (14) represents the reputation for a single
task, whereas Equation (15) represents reputation by combing multiple tasks:

R = h1RT + h2RT−2 + . . . + hN RT−N =
N

∑
L=1

hkRT−k, (14)
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R = h1

n

∑
K=1

W1RT−n
1 + h2

N

∑
K=1

W2RT−k
2 + . . . + hm

n

∑
K=1

WnRT−k
n =

m

∑
K=1

n

∑
L=1

hk WLRT
L . (15)

To eliminate/reduce the requester’s feedback bias, we considered collective feedback, especially
when similar tasks are requested by a number of requesters. For such a scenario, we used the standard
deviation by setting it to the aggregate of the feedbacks from different requesters. For the filtration
phase, we developed some criteria to select a set of winners from candidates as below. Reputation is
not the only parameter of selection, whereas budget on the collective bases should also not be violated
along the many others mentioned prior.

i f any ∏n
i=1 Ci o f

(
RNC

)
> B+i; then Reject candidates

i f any ∏n
i=1 Ci o f

(
RNC

)
= B−i; then Accept (pre f erred)

i f any ∏n
i=1 Ci o f

(
RNC

)
> (B−i) but ≤ B+i; then Accept

The second combination is the most preferred situation. If it comes true then there is no need to go
for a third possible combination of participant selection. These criteria simply check the combination of
costs that need to be paid in order to recruit MWs. Before selecting any one or a set of MWs, the system
quantifies the expectations (quality, cost, etc.) of the platform for any MW who is bidding against any
task (Ti or subtasks = {t1, t2,t3 . . . tn}) that could possibly be assigned to the winner. Expectations in
view of previous performance records are defined as:

(1) For any MWi, if her R_Score is highest among Ncc (crowd contributor), it ensures the task
completion requirements will be met, and no other currently available online MW with a better
offer than this MW is likely to be selected.

(2) The DM computes the probability of expected quality based on R_Score of NRC (real candidate).
Any candidate with higher probability has a higher chance of selection.

4.1.3. Selection of Suitable MW

For Algorithm 1, we assumed that every MW has maximum task completion capacity Nttc[i],
and there are enough MWs willing to perform the task. Now, we describe its worker selection procedure
whenever a task and its details are announced and MWs make bids in response. We assumed that
MWs bid on their private value (dominant strategy) while being aware of the presence of other mobile
workers and the strong quality evaluation procedure at the platform. Inputs to the algorithm are
(T, Sk, Q, Dt, ), l(location), p ε P, where T is the task, Sk is the required skill level, Q represents the
required quality, Dt is the deadline to perform the task, l is the sensing spot, and p stands for the
maximum payment as reward for task completion. We assumed that every new worker who is willing
to be assigned the tasks must be registered with the platform first. By doing so, a history of recruitments
can be maintained. This does not mean that the DM just handles the offline working environment.
Any new worker is welcomed to perform task and gets incentives as reward after finishing sensing task
successfully. By giving the opportunity of selection to the new MWs, we can remove the monopoly
of old MWs who are already registered and have high R_Score. An important assumption is that the
platform maintains a history of workers. The value of the expected quality can be E(Q) = [0− 1],
which is measured before the recruitment of a MW. If history does not exist then we set it as (0.5) by
default, similar to the case with Sk. If a bidder has history at the platform, then expected quality and
expected platform utility are measured as:

E(Q) =
Quality o f Reported Tasks

No. o f Tasks Per f ormed ,

E(Pu) =
h(Pu−R(NW ))

Total Tasks o f Similar Nature .

These two are two important attributes in the selection of MWs. A higher value of expected
quality for task completion with optimum profit is the desired situation for the platform.
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The DM sorts the R_Scores of the bidding MWs in descending order. As is clear from Figure 3,
upon receiving a task from the requester, the platform searches for any available MWs who can perform
the sensing task by satisfying the task completion constraints. After completion of this search, the DM
compares recently found candidate MWs with the list of MWs in historical recruitments who are
capable of performing tasks similar to the announced task. For any candidate MWs (Ncc) matching
with the historical recruits, their R_Score can play a role in the selection. The point to be considered here
is that if the DM only relies on the R_Score, then the MWs can influence the selection procedure. In this
case, we can say that the DM is biased in some way. To mitigate this bias, we add sensing capabilities
as a prominent feature, which means that much better quality can be obtained with better-skilled MWs.
Due to this, a newly registered MW can take part in sensing tasks. The objective of these efforts is to
get truthful and authentic sensing reports from MWs by denying the possibility of monopoly. Thus,
there is always a competitive environment for MWs, which can be help to maximize the platform utility
and obtain good quality reporting as well. The R_Score can vary between [0–1]. This parameter is a
kind of task completion probability for a worker with given constraints. The selection of well-reputed
MWs is the key to get better-quality sensing tasks. A parameter (alpha) is set to make a threshold for
the selection of MWs.

Step 3 of Algorithm 1 is the iteration criteria until online candidates are available to be selected
and the deadline is not yet reached. Steps 4–7 verify the fulfilment of task constraints with respect to
different parameters. For any NCC crowd contributor, E(Q) is the expected quality based on previous
reputation from that CC, b[i] is the bid of the MW and B+i is the upper budget limit that should not be
crossed accumulatively. Total task completion capacity is presented by Nttc[i], where Ntc is the number
of currently assigned tasks to a MW. If a bid is not based on a true valuation of the MW or is beyond
the task’s expected value to the platform (higher than the upper budget bound), the DM will reject the
MW’s bid. Especially, when the platform has a history of task assignment available as a benchmark,
as well as reward and quality scores of reported tasks, then the selection decision can be much more
educated. The set of candidates who are able to complete announced task from the list of CCs are
presented are presented as NRC, NCC respectively. Step 13 sorts bids with respect to platform utility
and expected quality. For the MWs whose bids and platform utility are the same, then selection will
be decided based on the greater expected quality value by iteration of the “FOR” loop in steps 14–17.
R_Score and RT are used interchangeably, and so should be considered as the same until mentioned
otherwise. In step 16, the selection of the winner is done based on platform profitability from the array
of real candidates. Finally, step 18 returns the number of winners, expected platform utility, expected
quality, and expected cost to be paid to the MW in reward of service.

4.2. Phase-B: Evaluation of Validation and Incentives

Phase-B of our proposed work is designed to evaluate the credibility of the reported sensing tasks
by the participants. The criteria of acceptance or rejection at the platform for the MW’s report are based
on the minimum acceptable quality of submitted tasks. If a task is rejected, there may be reasons other
than the required quality. During the evaluation, one possible cause of rejection can be late submission.
The platform validates/verifies task completion quality with the available ground truth from history.
In case ground truth is not available, then currently submitted results can serve on its behalf by taking
an average, so an acceptance/rejection decision can still be made. Later, this initial ground truth can be
analyzed and updated to provide a better benchmark of quality. In this way, the platform can deal with
any task requested for the first time by the requesters which has not been sensed before. New ground
truth can be considered and refined. After validation is done, an incentives mechanism is presented to
assign the utilities of MWs and the platform.

4.2.1. Credibility Inspection

Sensing credibility is very important in MCS, as the participants are from the crowd and thus can
be unreliable. Our work is different from some of the approaches in literature who rejected the task and
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did not pay any incentive to MWs. In our approach, once an MW is short-listed for task completion,
it means that at least the initial criteria are fulfilled. For that particular MW, even if the sensing report is
rejected, the platform can still pay only to those MWs who meet the minimum reputation qualification.
This payment can be made as some ratio of the bid. However, at the same time, reputation will be
degraded as a penalty and if there is a gradual decrease the DM will automatically move that MW to
the blacklist. On one hand, it looks like a loss for the platform, but it is necessary as a selected MW
should not be discouraged because bad sensing reports can be generated even from well-reputed MWs.
This is also necessary due to the importance of incentive mechanisms in MCS.

Now, we can move further to elaborate the working of Algorithm 2, which aims to evaluate the
credibility of submitted sensing reports. The DM calculates but does not announce the R_Score to
the workers, as the MWs may exploit it to emphasize their selection. In our DM, the R_Score is a
private value of the platform for any MW who bids on an announced task. The R_Score is of key
importance, as it can create a competitive environment among MWs and can also stimulate them to
produce high-quality work to the best of their abilities and resources. A better R_Score means a greater
chance of selection as a winner for the tasks to be announced in future. Algorithm 1: “Selection of
suitable mobile worker” is designed to select the suitable MW based on various constraints, such as
task completion quality and budget constraints. In making the selection decision, reputation is also
taken into consideration as mentioned in Equations (10)–(15) as per requirements. Once recruitment is
completed and sensing reports are submitted to the platform, Algorithm 2: “Credible sensing” inspects
the quality of sensing reports based on task completion criteria. Other than this, participant reputation
is also updated and incentives are paid. Thus, we can say that the output of Algorithm 1 is the input of
Algorithm 2. Next, we explain the working of Algorithm 2.

Steps 1–13: Initialization is done from the database when the ground truth for the announced
sensing locations is available. If the ground truth cannot be deduced from currently available history,
then it is considered as a new sensing location. Other inputs of the algorithm are: Sr[i]—sensing report
from MW[i], Q[i]—the required quality for any task T[i], and p ε P—the payment that is expected to be
paid taken from Algorithm 1. For the received report of a task, if the history for that sensing location
does exist, then a comparison can be performed and the decision of acceptance or rejection can be
made easily. If the difference of the reported task is less than or equal to the β threshold parameter
(the minimum acceptance criteria deduced from history), the expected quality is greater than the
α (a range of expected quality for a MW) and the task submission deadline is not already passed,
then task is acceptable. Otherwise, it is rejected in steps 4 and 5. If the task is acceptable, then the
algorithm checks for a quality score as well, Rq[ti] is the real reported quality of a report, Nw[i] is added
to the array AcceptSr[i] (the array of accepted sensing reports) and RT is reputation, which is updated
(increased) in step 7. If Sr[i] is rejected, reputation updation still must be performed accordingly by
decreasing the reputation score for that MW as presented in step 10. If an MW’s sensing task is rejected
again and again and their reputation is dropped below a certain level, then that MW can be moved
to the blacklist. This is a unique feature of RQRP which can save platform assets from malicious
MWs based on repetitive rejection. This process is done repeatedly until all the sensing reports are
benchmarked for which history is available and incentives are also assigned accordingly.

Steps 14–22 deal with the case where history is not available to set the ground truth for the reported
task. In such cases, in order to quantify the sensing reports for task quality factor, we assign the weights
according to the R_Score of the reporter to set the ground truth for future reporting. Meanwhile,
payment is made and reputation is updated according to RT . In this perspective, our designed
approach is different from most in the literature which simply set the ground truth by taking the
average of reported tasks. Finally, the algorithm returns the updated R_Score of the MW and updates
the list of Nw[i]. By this mechanism, any advertised sensing task can be performed which was never
sensed before by setting the reputation and enhancing the trust level. Parameter β is updated in step
24 for well-predicted future recruitments.



Sensors 2018, 18, 3305 21 of 32

To avoid the complexity of handling reputation from multiple requesters, the algorithm is
presented for the simple case of single-task reputation updation. More general scenarios can be
handled in accordance with Section 4.1.2, which discusses reputation-based selection. For example,
when multiple task scores from history are taken, feedback from the requesters can be the aggregation
of all of the positive and negative feedback against the reported task.

The total cost paid to the MW is a function of unit cost, which can also vary from task to task,
depending upon the constraints. These constraints can be on quality, skill level, deadline of task
completion, and the number of successfully completed tasks by all the winners. We assumed that cost
is paid on the base of each bundle so can vary and also by considering the number of tasks performed
with respect to the unit cost of each task. Cost paid on the all the tasks collectively is presented as
Cn = [(τi)

(
c′i
)
], where c′iε C. τi is the task and c′i is the cost to be paid on completion of any task.

4.2.2. Incentive Mechanism

Once the output of the selection algorithm is produced, winners are announced, and tasks are
reported and validated for contributed quality. Now, we present how the payments should be made
upon the successful completion of tasks. Those MWs whose bids are not accepted are not incentivized.
The incentive of MW may vary from time to time, even for the same task, depending upon task
completion constraints like quality, total number of tasks, units performed, and cost.

4.2.3. Utility of Platform

The utility of the platform can be calculated by subtracting all the payments made to the MWs
from the total gained profit. Payments are calculated as below by Equation (16), where Nw ε N and
n ε Nw which stands only for those MWs who are going to be paid by the platform. As the main
objective of this work is to fetch the quality of sensing reported from common people who can be more
uncertain, we paid attention to this point and payments are also made depending on the quality of
contribution. That is why P represents the payment as a function of Q, which is the quality of the
reported task.

Pu =
Nw

∑
i=1

P f (Q)−
Nw

∑
n=1

Cn (16)

4.2.4. Utility of MW

The utility of a MW n where n ε Nw is calculated by Equation (17), where pi ε P is the total
payment made to the MW on successful completion of task/tasks, and the second part represents the
total true cost of the MW, which is a private value.

Wu =
n

∑
i=0

pi −
n

∑
i=1

ci (17)

5. Theoretical Analysis

Analyses of desirable DM properties are presented here, such as truthfulness, platform
profitability, individual rationality, polynomial time computation, social welfare, feasible budget
achievement, and fair dealing.

5.1. Truthfulness

MWs are selfish and strategic, and so want to maximize their reward. Meanwhile, truthfulness is
the best-case scenario. The designed mechanism is truthful if truth telling is the best response strategy
of a CC and users have no benefit from unilateral deviation—any bid beyond the upper limit of the
platform budget will definitely be rejected. In this way, the feasible budget constraint is also fulfilled.
If participants decide to take part in the sensing task, then it will be beneficial for them. For example,
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when MWs have defined mobility patterns, it will aid them in obtaining some revenue. Equation (18)
indicates that the first derivative gives the positive maximum reward and the second derivative is
negative. This proves that it will be the dominant strategy for a MW to bid on the true cost, as the
reward cannot be increased further. Truth telling will also be the dominant strategy, because the
platform will not pay beyond the budget limit and the reward for upcoming tasks may be less than the
currently announced one. This is also known as “diminishing return” in [31]. Worker utility Wu is a
strictly concave function. It will increase with the sensing time and growth rate (i.e., first derivative is
positive whereas second derivative is negative, which means the maximum achievable utility from the
given function and cannot be raised further by manipulating the strategy.)

dWu

dτij
≥ 0 and

d2Wu

dτ2
ij
≤ 0 (18)

5.2. Platform Profitability

The designed approach is profitable, especially in the sense that the same kind of multiple
task completion requests may be requested for sensing. An application scenario for this could be a
grand gathering of a crowd for an event, which may require the sensing of road traffic, air pollution
(PM2.5), noise pollution, etc. On the other hand, as the selection criteria are also based on various
parameters, the extra incentives paid elsewhere in the literature can be saved, especially for the random
selection-based mechanisms.

5.3. Individual Rationality

Payment to an MW is at least as great as her bid for successful completion of the task, and it
must be made based on the true cost or on the type of MW. The agreed value must be paid by the
platform after evaluation of the reported task in light of the feedback from the requester, individually
or collectively. Payment is made based on contributions like the number of units performed, cost per
unit, and quality. MW’s reward at the least should not be less than the rough estimate of his true cost.
The MW’s utility can be calculated as Wu = ∑n

i=0 pi −∑n
i=1 ci ≥ MWtc. If this condition is satisfied,

then it means that the utility of the MW greater than or equal to her total true cost MWtc. Then, we can
say that the DM is individually rational, as at least the true cost will be paid. Furthermore, when an
MW is selected based on bid and the required quality of task completion, he will be paid by some
ratio of the bid, even if the sensing report is rejected. In this special case, individual rationality will be
redefined such that the incentive will not be paid as the full bid. A decrease in reputation will also be
made as a penalty, which will boost the dedication to quality sensing for the next task.

5.4. Time Computation

Even after including the traverse of reputations from history at the platform, the DM is
computationally feasible, as indicated by the results in Figure 4. Algorithm 1 is devoted to the
selection of suitable mobile workers, and Algorithm 2 is responsible for the credibility inspection and
reputation updation. In Algorithm 1, step 3–12 perform MW selection, which is dependent on the
number of users, and compares their n bids. Thus, time complexity is O(n2). Step 13 is the sorting
process, and so has the time complexity O(n * (log n)). Steps 14–17 have the time complexity n. Thus,
the overall time complexity of Algorithm 1 is O(n2). In Algorithm 2, the first step is the evaluation of
submitted sensing reports, which has constant time complexity as per the number of reports. Step 2–13,
step 14 and step 22 assign updated reputation values and so have constant time. The overall time
complexity of Algorithm 2 is constant (C) according to the submitted reports to inspect the credibility.
Figure 4 shows that the running time was almost similar to contemporary approaches.
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6. Results and Analysis

In this section, we present the results to evaluate the performance of our proposed RQRP in
comparison with the based schemes. We set up a testbed by implementing WCF services using C#
and ASP.net to deploy on the Windows Azure cloud. We adopted responsive design to enforce the
provision for visibility of our application on mobiles, tablets, and laptops regarding screen scaling.
We maintained records in the SQL Server database for evaluating the recruitment and credibility of
reporters by calling ADO.net APIs along with Language Integrated Queries (LINQs) using Lambda
expressions. Moreover, we evaluated the Gawalla and T-drive data sets, which contain check-ins
performed by users in different locations in California, USA and taxi GPS traces in Beijing, China,
respectively. In California state, every check-in user willingly declared his location information
including latitude and longitude, resulting in better tracking and analysis. Additionally, we also
simulated the proposed RQRP using NS 2.35 to perform the data collection mechanism from sensors
on smart devices in the IoT scenario. We have developed separate C files to differentiate the sent,
received functionalities of low power sensing devices and high power data collectors Sink nodes.
Next, we extracted the data from the sink and incorporated it in a separate table of a SQL Server
database to evaluate it in conjunction with MWs’ reporting data to identify false reporting scenarios.
Whenever a task is announced and winners are selected through Algorithm 1 to perform the sensing
task, the selection procedure exploits the R_Score, skill level, bid, expected quality, and utility of the
platform. The platform’s utility and sensing task quality are the two most important concerns of
our work.

Evaluation parameters are provided in Table 2, along with the range of values utilized in the
results and analysis. Initially, the R_Score of a participant was 0.5. The minimum expected R_Score
was based on the task quality factor α as 0.3, 0.4, 0.5 for the selection of MWs. Later, based on the
contribution of MWs, the reputation score varied (increases or decreases), representing the contributed
quality. An increase in R_Score value is a kind of guarantee of quality sensing. The values of α can be
viewed as the required submission quality for a task that must be fulfilled by the bidding MW to be
selected for task accomplishment and to get incentives. Expected reward and availability of competent
crowd contributors are inversely proportional, and vice versa. We consider the user’s check-in as the
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completion of the sensing task. We dealt with a more realistic scenario by considering the probability of
successful task completion after getting bids and making the selection of suitable MWs. Commitment
level of task completion can also be computed for a selected MW who was recruited in the past.
Its value can indicate current task completion probability. This can lead to well-guided selection,
especially when MW availability is not an issue. Cb = (TNw − Ttask)/TNw can be used to calculate
the intactness (commitment) of an MW to task completion. TNw is the number of selected winners,
which can be considered up to a specific time from history. Ttask stands for total task announced,
and it can be calculated for MWs individually. Results proved that our proposed reputation-based
approach outperformed its counterparts. Results on running time, platform utility, truthfulness, impact
of reputation, and quality of reporting are presented next.

Table 2. Parameters for the evaluation criteria of RQRP and its counterparts.

Parameter Value

Target area 1000 m × 1000 m
Number of MWs 100–500
Tasks announced 100, 200, 300

Nttc 1, 5, 10
Least task quality factor (α) 0.3

Effective mobility region 30 m
Reputation score [0–1]

Default reputation value 0.5
Ageing factor 0.3–0.5

The considered datasets include details of MWs and tasks in a large area of 1000 m × 1000 m.
To present the running time, we changed the number of users from 100 to 500 and the number of
tasks from 100 to 300, where the mobility of each user is taken as 30 m, which means MWs are only
considered as CCs when they are in a 30 m radius of the generated sensing task. The task completion
capacity of each user is taken as 1, 5, and 10. To show the effect of ageing factor on the storage capacity,
we changed the ageing factor from 0.3 to 0.5.

6.1. Running Time

The running time of the proposed RQRP is presented in comparison with other approaches in
Figure 4. It showed a linear increase with the increase in the number of MWs. We considered the
reputation of MWs, which requires time to traverse the record for educated selection. Still, the running
time of all of the schemes was almost the same. To decrease the traversing time, we have exploited the
concept of ageing.

This reduced the size of effective history to achieve low latency. Late history is removed with the
passage of time, so that newly updated reputation is considered for selection. This also saves storage
space at the platform and has potential for application at large scale. Typically, RQRP took 11 ms for
200 users, which is 8% better than IMC-Z [30] and IMC-G [30] approaches, which took 12 ms for the
same number of users, whereas OMG [28] and OMZ [28] took 10 ms. Thus, even after considering the
reputation, RQRP was in competition while ensuring quality.

6.2. Platform Utility

Approaches are compared with respect to the platform utility in Figure 5. RQRP showed a
gradual increase as the trust level on the MWs is increased with the passage of time. The reason for
this continuous change is that reputation is only considered in our approach. When the number of
MWs is increased, the platform’s utility showed an increasing trend. Consideration of reputation
created a competitive environment and the platform needed to pay less. If reputation is not considered
more MWs may need to be recruited, which requires monetary incentives. In contrast, RQRP rejected
many candidates based on low reputation, which also saved the platform’s resources. An MW
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whose score was less than 0.3 from the maximum value of 1 was rejected as the general criteria.
The change (increase/decrease) in the score value is dependent on the contribution made. Platform
utility increases directly with the rate of available users, as more options are available. For example,
on the arrival rate of 0.6 users, the platform utility for RQRP was 2900, whereas 700, 1200, 1700, 2000,
2500, 3100, and 3800 were the utility values for random, OMG [28], OMZ [28], OMG (online) [30],
OMZ (online) [30], proportional share, and approximate optimal approaches, respectively. We present
the results in large integral values in order to the meet with the scale in the approaches compared.

We selected the IMC, OMG, and OMZ approaches for the comparison because: (i) these are some
of the well-known state-of-the-art approaches in the MCS paradigm; (ii) these approaches have similar
input/output constraints to ours; (iii) in contrast, these approaches lack the use of a reputation-based
mechanism, which could have played a promising role in increasing the quality of sensing in MCS.
These schemes are based on the idea of taking samples first then making acceptance, which is somewhat
similar to our proposed work. The very basic difference is that we considered reputation when making
a selection decision at first stage, and a lower bid was not the only selection criterion.   
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6.3. Truthfulness

Figure 6a,b represent the truthfulness on the T-drive and Gowalla datasets, respectively.
The figures illustrate the impact of truthful announcement of cost on the utility of MWs. If MWs report
cost untruthfully, they may not get any reward, making it beneficial for crowd contributors to bid on
true cost. The platform will not pay any combination of costs greater than the budget, so truthfulness
can be achieved in RQRP.
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6.4. Platform vs. Mobile Worker Utility

The impact on the utility of the platform and the MW with respect to the online available MWs
was also analyzed. Figure 7a shows that utility of the platform increased with increasing number of
online MWs. This increase was due to the large sample size of mobile participants and the competition
among them. Due to this competitive environment, the platform needed to pay less and its marginal
utility was increased. On the other hand, the utility of the MWs showed a decreasing trend with the
increase in number of participants in Figure 7b. This is because of the declared fixed budget to be
distributed among MWs. Our DM is individually rational (IR), as MWs are paid their costs. Thus,
in the end, the MWs will not regret contributing. An increase in the available online participants had a
gradually increasing impact as far as the utility of the platform was concerned.
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This effect had an inverse impact on the MWs’ utility. The increasing trend is due to the richness
of participants with on-board sensors within mobile gadgets. As the number of MWs increases,
their utility is expected to be decrease, so the ratio is inversely proportional. This effect is the same
as in [27]. In Figure 7b for the simulation, we took the average of 100 values. The reason for having
similar values for both cases could be that users were selected at similar bid values and sometimes
may be at higher or lower values. However, the similarity of values could be attributable to the fact
that we took the average of 100 values.
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6.5. Required Quality vs. Quality Delivered

Figure 8a presents the needed quality in comparison with delivered quality on task completion
by the proposed RQRP. The figure shows that there was slow but gradual increase until the maximum
quality (one) was required. Users were not selected until the reputation constraints were met. If a
user is selected, he most probably contributes the sensing task with similar or higher quality to his
previously contributed quality. Thus, on average, delivered quality always is greater than required
quality. Tasks are not accepted until the constraints are fulfilled, so incentives are not paid. For example,
in Figure 8a for the quality constraint of 0.6, the delivered quality was 0.65, which is higher than the
required quality. In MCS, it is very difficult to achieve doubtless quality due to the presence of various
participating factors (e.g., hardware installed, experience of MW, intention of the MW to participate in
sensing task).

6.6. Required Quality vs. Selected MW

Figure 8b shows the number of selected users in comparison with the required quality. Acquiring
100% quality in the MCS domain is challenging, as the mobile devices are owned by common people
who can be vulnerable, malicious, and may lack in experience. As our DM’s basic objective is to
achieve quality, Figure 8b represents the needed quality of the tasks on the x-axis and the number of
selected users to obtain the desired quality on y-axis. We noticed that with the increase in the required
quality, fewer MWs were selected. For the case when average quality 0.5 from the maximum possible
contribution of 1 was considered, more users could contribute to the sensing task/tasks. A quality of
1 is almost impossible to achieve because this means that there should not be any difference between
ground truth and the sensing report submitted by the MW. With the increase in required quality to the
maximum possible, the figure showed that it was possible for there to be no user able to make any
contribution. For example, for the required quality of 0.7, the number of selected users was 8, whereas
for the quality of 0.8, the number of selected users decreased to 4. This is due to the increase in quality
constraint leading to fewer users qualified the task completion criteria.
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6.7. Impact of Quality on Reputation

Quality of the sensing reports is ensured based on the various measures. At first, we considered
reputation as a prior measure and then inspection of credibility as a second step. Figure 9 shows the
change due to honest and dishonest MWs. For the honest MWs, there was increase in the reputation,
which ultimately recommends them for future selection. Well-reputed MWs can be a symbol of
surety for the better expected quality of tasks. Whereas, reputation decreased for the dishonest MWs,
as shown. If a MW continuously reports low-quality sensing, he will eventually be deregistered,
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and can also be added to the blacklist. Decrease in reputation is a kind of punishment. By penalizing
the MWs for their bad contribution, we also tackled the criticism of reputation-based systems in MCS.
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6.8. User Reputation

For simulation purposes, we used values in percentage for number of attributes and for reputation
[0–100] as presented in Figure 9, which actually may range from [0–1]. This is the analysis of our
proposed approach only. Whereas, when comparison with SACRM was required, we compared it by
using integer values as shown in Figure 10. This represents the effect of reputation with the change in
quality reported by the MWs. The similarity between SACRM [55] and RQRP is that both approaches
consider reputation. An exemplary application scenario may be that when a few MWs are required to
perform a task that is requested by multiple requesters, the platform can deal with this situation on
a whole bundle basis, which can increase the profit of the platform. A limitation of this work is that
although the DM makes expectations of quality based on reputation for task completion, sometimes
expectation can go wrong as the MW’s task completion capabilities may vary from time to time. This is
one of the uncertain situations that can arise even after the careful selection of MWs, and even after the
exploitation of an efficient reputation updating mechanism.

6.9. Error Bars

Error bars are presented below in Figure 11a,b to show the deviation from mean values as the
experimental results may not always be precise. The confidence levels of the simulation are presented
by sampling errors in Figure 11. Estimation of platform utility with their deviation from the mean
is presented in Figure 11a, whereas Figure 11b presents the estimation of mobile workers’ utility
with their deviation from the average value. Average estimated value of utility was considered,
and deviation from the average value over the iterations are presented with error bars. Larger sample
sizes may have small differences, whereas small samples may vary largely.
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7. Conclusions

The IoT brings opportunities and challenges at the same time. Most approaches in the literature
for MCS are lacking as they do not include reputation in their consideration, which can be one of the
reasons for low-quality sensing. This can be a cause of untrusted MW selection without any specific
criterion, and ultimately extra monetary incentives are wasted to increase the approximate quality
of reporting and the utility of the platform is ignored. We proposed the RQRP mechanism for MCS,
which considers reputation as an important aspect in the selection of MWs to ensure the quality of
reports and platform utility in the presence of malicious and selfish MWs. The proposed approach
is broadly divided into two phases: (i) selection (ii) validation and reputation updation. Selection is
made carefully, as we assumed that in most cases ground truth is not available to compare the quality
of reports, which is a more crucial and realistic scenario for task accomplishment. The validation
and reputation updation phase helps to verify the reports and to maintain the reputation of MWs
for future hiring. An ageing factor is used to reduce the impact of past reputation score. RQRP is
suitable for offline and online MCS environments. Simulation results proved the superiority of the
proposed approach. The DM ensured truthfulness, computational efficiency, individual rationality,
and most importantly the profitability of the platform with the required quality constraints. For user
arrival rate of 0.6, our technique provided 30%, 40%, 50%, and 70% more platform utility than OMG
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(online), OMZ, OMG, and random techniques, respectively. For future research direction, a privacy
preservation-based approach shall be proposed to deal with MWs’ security. Moreover, the MCS
framework can be proposed for vehicular networks with a variety of sensors that increase coverage,
which was limited in the case of mobile phone users.
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