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Abstract: The Internet of Things (IoT) paradigm envisions a world where everyday things interchange
information between each other in a way that allows users to make smarter decisions in a given
context. Even though IoT has many advantages, its characteristics make it very vulnerable to security
attacks. Ciphers are a security primitive that can prevent some of the attacks; however, the constrained
computing and energy resources of IoT devices impede them from implementing current ciphers.
This article presents the stream cipher Generador de Bits Pseudo Aleatorios (GBPA) based on Salsa20
cipher, which is part of the eSTREAM project, but designed for resource-constrained IoT devices
of Class 0. GBPA has lower program and data memory requirements compared with Salsa20 and
lightweight ciphers. These properties allow low-cost resource-constrained IoT devices, 29.5% of the
embedded systems in the market, to be able to implement a security service that they are currently
incapable of, to preserve the user’s data privacy and protect the system from attacks that could
damage it. For the evaluation of its output, three statistical test suites were used: NIST Statistical Test
Suite (STS), DIEHARD and EACirc, with good results. The GBPA cipher provides security without
having a negative impact on the computing resources of IoT devices.
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1. Introduction

Society is moving towards a more connected world. The Internet of Things (IoT) is a
technology whose goal is that everyday objects interact and exchange information with each other to
accomplish a particular objective. With this simple idea, a wide range of applications is conceivable,
which include: smart cities, smart houses, smart farming, industrial automation, security, medical
services, entertainment, etc. IoT devices are physically composed of sensors, actuators, microcontrollers
and transceivers, to accomplish their mission; and are capable of communicating and identifying each
other through the Internet. Ideally, they are everywhere and always on; therefore, when notifying
about the data perceived by their sensors and the state of their actuators, better knowledge of the
current context can be achieved [1,2]. Cloud services are used by them to provide contextual data to
users and to retrieve petitions to modify them; connectivity to the Internet makes them accessible from
everywhere, and all the time; however, this empowerment also makes them very vulnerable because
from anywhere in the world, they can be reached and attacked. If successful, an attacker could access
private information such as personal, medical, financial or location data, and can also use actuators
to bring severe damage to the system and even the user welfare [3]. An analysis of vulnerabilities
and possible attacks is presented in [4–6]. Another concern is that, towards being ubiquitous, they
are implemented as low-power devices with constrained resources, which creates a challenge in the
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implementation of security services. Due to constrained computing and energy resources, traditional
security systems are not viable on them [7,8].

There are some proposals in the literature of ciphers for IoT, such as the block cipher ANU [9]
and its modification, ANU-II [10]. In their articles, comparisons were presented of the computing
requirements of the ANU ciphers against the ones of some well-known ciphers, such as PRESENT,
KLEIN, PICCOLO, TWINE, KATAN, SIMON, AES, CLEFIA, LED, RECTANGLE, ZORRO and LiCi;
showing that ANU ciphers have fewer requirements. However, the proposed algorithm in this article
has even fewer: it requires less program memory (32.04% less than ANU and 15.01% less than ANU-II)
and less data memory (98.47% less than ANU and 98.43% less than ANU-II).

There are also some proposed schemes based on public key encryption, such as [11,12]; however,
the long key size and required computation of this type of cryptography makes it difficult to use on
resource-constrained devices, because of their limited memory, power supply and network bandwidth.

A security primitive to prevent some of the attacks on IoT devices is encryption, which allows
parties to communicate with confidentiality. An encryption algorithm, or cipher, takes a message,
performs some transformations on it using a secret key and returns a ciphertext. The ciphertext can be
sent through an insecure channel without worrying about unauthorized access to its content, because
if an adversary captures the message, without the secret key, he/she would not be able to decrypt it to
obtain the original data. This article presents the GBPA cipher, an acronym in Spanish for “Generador
de Bits Pseudo Aleatorios” (“Pseudo-Random Bits Generator”). It is designed to provide confidentiality
for the communication of resource-constrained IoT devices of Class 0 [13], corresponding to 29.5% of
the embedded systems in the market (study conducted in 2017) [14], incapable of using current cipher
algorithms. The proposal is based on the Salsa20 cipher, which is part of the portfolio of the eSTREAM
project [15,16]. The purpose of this project was the identification of secure stream ciphers, and to be
accepted in it, Salsa20 was under evaluation for four years by the international community. The GBPA
cipher uses the Salsa20 core function, but to have a good performance on devices with constrained
resources, it has fewer parameters, has a smaller memory footprint and requires fewer execution cycles.
When comparing it with lightweight ciphers, lower program and data memory usage are shown.
This allows low-cost resource-constrained IoT devices to be able to implement a security service to
protect the user’s data privacy, the user’s welfare and the system from attacks that could damage or
disrupt its functionality. GBPA has an output size of 128 bits and a key size of 96 bits and consists
of 10 rounds of a lightweight add-rotate-xor function. Considering that the information sent by IoT
devices is usually contextual data in the form of short length packets, the small output size of the
GBPA cipher is appropriate for them because no unnecessary processor and memory usage is needed.
The properties of GBPA makes it suitable to the restrictions of IoT devices, such as limited memory,
processing and energy resources and low bandwidth. Analysis of the computing requirements of the
algorithm along with the evaluation of the security of its output is presented in this document.

The rest of this document is organized as follows: Section 2 contains the background. In Section 3,
the GBPA cipher is described. The evaluation of the security of the output of the algorithm and
analysis of its computing requirements are in Section 4. A discussion is presented in Section 5. Finally,
conclusions are given in Section 6.

2. Background

2.1. Symmetric Cipher Algorithms

A symmetric cipher consists of a set of encryption transformations
{

Ek : k ∈ K
}

and a set of
decryption transformations

{
Dk : k ∈ K

}
, where k is the encryption and decryption key. The encryption

function takes as input a message and a key and returns as output a ciphertext, which is the message
after doing some transformations on it with the key. To recover the original message, the ciphertext and
the key are input to the decryption function, which usually consists of the encryption transformations
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performed backward. The original message cannot be recovered from a ciphertext without knowing
the key; therefore, the key must be kept secret from unauthorized parties [17].

Symmetric ciphers can be classified into two types: block ciphers and stream ciphers. A block
cipher divides the message or ciphertext into blocks of a fixed size and encrypts or decrypts it one
block at a time. A stream cipher encrypts or decrypts one bit at a time. A stream cipher can be seen as a
block cipher where the block size is one [17]. Stream ciphers usually require less computing resources
than block ciphers; therefore, they are more convenient to provide security on resource-constrained
devices. The proposed algorithm in this article is a stream cipher.

On a stream cipher, the encryption transformation consists of: ci = Eki
(mi) = mi + ki, and the

decryption of: mi = Dki
(ci) = ci + ki; where mi is the i bit of the message, ci is the i bit of the ciphertext

and ki is the i bit of the keystream. The symbol + represents an addition module two, which is
equivalent to the Boolean operation xor, and the keystream consists of a random or pseudo-random
number generated by the algorithm from the key. Even though the xor is a simple operation, its use in
encryption has been proven secure [18].

As seen in Table 1, the output of the xor is balanced, that is there is a 50% probability of obtaining
as output a zero or a one. When encrypting, no assumption can be made about the content of a message,
so the value of ci depends on the value of ki. If ki is random and unpredictable (50% probability of
being zero or one), then ci is also random and unpredictable.

Table 1. xor truth table.

mi ki ci

0 0 0
0 1 1
1 0 1
1 1 0

Accordingly, the security of a stream cipher relies on the randomness and unpredictability of the
keystream [18]. Randomness can be characterized as a probabilistic property, and statistical tests can
be used to evaluate if a sequence has the properties that a truly random sequence has. The statistical
tests evaluate the uniformity of the output and determine the presence of patterns that would reveal
its non-randomness. Each test examines the sequence for a different type of pattern or property, so a
single test cannot be considered enough [19]. To be certain that the results obtained with the statistical
tests when evaluating a sequence will be reproducible for any other sequence produced with the same
generator, the evaluating sequence has to be very long, such that any pattern or non-random property
that the generator produces is revealed in it.

For cryptography, random or pseudo-random sequences [20,21] have to be unpredictable to be
considered secure. This means that given an output ki, ki+1, ..., kn−1, there does not exist a polynomial
time algorithm that can predict the next bit kn nor the preceding bit ki−1 with a probability greater
than 50% [18].

2.2. Salsa20 Cipher

The GBPA algorithm is based on the Salsa20 cipher designed by Daniel J. Bernstein. Salsa20
consists of a hash function executed ten times in counter mode over an input of 64 bytes and
returns an output of the same size. The hash function receives as input a key of 16 or 32 bytes,
a nonce of 8 bytes, a counter of 8 bytes and 16 bytes of constant values. Salsa20 is comprised
of four functions: quarterround, rowround, columnround and doubleround. The core function is
quarterround; doubleround includes all the functions and is executed ten times [22–24].
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Given y = (y0, y1, y2, y3), where each element of y is 32 bit long,
then quarterround(y) = (z0, z1, z2, z3), where:

z1 = y1 ⊕ ((y0 + y3) <<< 7)

z2 = y2 ⊕ ((z1 + y0) <<< 9)

z3 = y3 ⊕ ((z2 + z1) <<< 13)

z0 = y0 ⊕ ((z3 + z2) <<< 18)

(1)

where symbol a <<< b represents the rotation of value a by b positions to the left, a + b is arithmetic
addition of a and b and a⊕ b represents a bitwise xor between values a and b.

Function rowround is defined as rowround(y) = (z0, z1, z2, z3, ..., z15).
Given y = (y0, y1, y2, y3, ..., y15) where y is a sequence of 16 elements of 32 bits each, then
rowround(y) is also a sequence of 16 elements of 32 bits each.

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14)

(2)

Arranging the input (y0, y1, y2, y3, ..., y15) as the square matrix in (3), the function rowround
modifies one row on each invocation of quarterround.

y0 y1 y2 y3

y4 y5 y6 y7

y8 y9 y10 y11

y12 y13 y14 y15

 (3)

Given x = (x0, x1, x2, x3, ..., x15), columnround(x) = (y0, y1, y2, y3, ..., y15), where x is a sequence
of 16 elements of 32 bits each, then columnround(x) is also a sequence of 16 elements of 32 bits each.

(y0, y4, y8, y12) = quarterround(x0, x4, x8, x12)

(y5, y9, y13, y1) = quarterround(x5, x9, x13, x1)

(y10, y14, y2, y6) = quarterround(x10, x14, x2, x6)

(y15, y3, y7, y11) = quarterround(x15, x3, x7, x11)

(4)

Arranging the input (x0, x1, x2, x3, ..., x15) as the square matrix in (5), the function columnround
modifies one column on each invocation of quarterround.

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 (5)

Function doubleround consists of executing over the input columnround and then rowround:

doubleround(x) = rowround(columnround(x)) (6)

The Salsa20 algorithm is defined as Salsa20(x) = x + doubleround10(x).



Sensors 2018, 18, 3326 5 of 15

3. GBPA Cipher

The proposed algorithm consists of the function GBPA. It receives an input of 19 bytes
corresponding to the key, nonce and counter and returns an output of 16 bytes. It comprises two
phases: initialization and generation. On initialization, the input parameters plus some constant values
are combined and reduced to 16 bytes long and arranged in an appropriate order for the next phase.
The generation phase consists first of saving a copy of the init state returned by the previous phase,
then executing the quarterround function ten times over the input and finally adding to it the saved
init state. The output of this phase is the keystream used to perform the xor with the message.

The function GBPA is defined as GBPA(k, v, c, T0, T1), where:
k =

{
0, 1
}96 is the key,

v =
{

0, 1
}32 is the nonce,

c =
{

0, 1
}24 is the counter and

T0 and T1 are the constant values: T0 = (84, 48) and T1 = (116, 49), corresponding to ASCII values
T0 and t1, respectively.

Each execution of the GBPA functions produces a pseudo-random sequence of 16 bytes. A longer
sequence can be generated by executing the function in counter mode, which consist of attaching to
the nonce a counter that is incremented for each 16-byte block generated, as seen below:

GBPAk(v, 0)||GBPAk(v, 1)||...||GBPAk(v, i)||...||GBPAk(v, 224 − 1) (7)

As shown above, the counter is three bytes long; therefore, the GBPA can generate a sequence of a
maximum of 128x224 bits per nonce.

Given that T0 = (T01, T00), T1 = (T11, T10), k = k11, k10, ..., k0, v = v3, v2, v1, v0, c = c2, c1, c0 and
r = r2, r1, r0, where the symbology a >>> b represents the rotation of value a by b positions to the
right and a <<< b the rotation of value a by b positions to the left. The function GBPA is defined as:

r3 = v3 + c0 + T11

r2 = v2 + c1 + T10

r1 = v1 + c2 + T01

r0 = v0 + k11 + T00

r = r + (r >>> 8)

(8)

Given that y = (y0, y1, y2, y3), where yn =
{

0, 1
}32; and z = (z0, z1, z2, z3), where zn =

{
0, 1
}32:

y0 = (k2, k1, k0, r0)

y1 = (r2, k5, k4, k3)

y2 = (k8, k7, k6, r1)

y3 = (r3, k11, k10, k9)

(9)

The initial state of y is saved and denominated x. The quarterround function of Salsa20 is then
executed 10 times. In the first nine rounds, y is updated by y = z. Finally, to make the function
non-invertible, the initial state x is added to z:

z = x + (z <<< 8) (10)

The output of GBPA is z of Equation (10), which is the keystream generated from the key.
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4. Results

4.1. Statistical Test

Three statistical test suites were used to evaluate the output of the GBPA cipher: the Statistical
Test Suite from NIST (STS) [19], DIEHARD from G. Marsaglia [25] and EACirc from the Centre for
Research on Cryptography and Security [26]. The first one contains 15 tests and the second one
19, where each test inspects either the distribution of ones and zeroes, harmonics or patterns in
the sequence. The EACirc suite, different from the others, does not have a fixed number of tests,
but it builds the tests empirically based on the sequence to be evaluated and a truly random sequence.
EACirc is an open-source project available at [27]. The STS and DIEHARD test batteries are well known
and have been used by many articles to assess randomness; however, there exists a documented case
where these batteries were not able to detect non-randomness on a sequence, while EACirc did [26].
Considering this limitation of STS and DIEHARD, the EACirc framework was also used to evaluate
the randomness of GBPA. When performing the evaluation, the three test suites returned a p-value
that represents the evidence against the null hypothesis that the sequence is random.

As mentioned before, Salsa20 is considered a secure stream cipher by eSTREAM; therefore,
the evaluations of the randomness and unpredictability of the GBPA output was done to ensure that
the modifications did not make it insecure. The order of presentation of the results of the tests was STS,
DIEHARD and finally EACirc.

An implementation in C language of the algorithm was made to obtain the bitstream for the
statistical evaluation. Each execution of the algorithm produced a 128-bit output, and after eight
million executions, a sequence of 1.024× 109 bits long was obtained, which conforms with the required
input size of the test batteries. This output was obtained from feeding the algorithm with “weak
parameters”, that is parameters with a very close relationship between them. The purpose of this
was to be sure that the algorithm was capable of producing pseudo-random sequences even when its
inputs were not random. The pseudo code to generate the bitstream is given in Algorithm 1.

Algorithm 1: Generate binary sequence.

1 k← 0;
2 nonce← 0;
3 counter← 0;
4 i, j, k← 0;
5 while i < 200 do
6 while j < 200 do
7 while k < 200 do
8 z← GBPA(key, nonce, counter);
9 output z;

10 nonce← nonce + 1;
11 k← k + 1;
12 end
13 counter ← counter + 1;
14 key← key + 1;
15 j← j + 1;
16 end
17 i← i + 1;
18 end
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4.1.1. STS

According to [19], the evaluation has to be done for at least 1000 binary sequences, and each
statistical test requires a minimum bit size per sequence, where one million bits per sequence is
appropriated for all of the tests. Thus, the 1.024× 109 generated bits were fed to STS as 1024 sequences
of one million bits each.

The default parameters were used on each test, including the significance level α of 0.01. If the
returned p-value ≥ α, then there was no evidence to reject the null hypothesis, that is the sequence
was accepted as random; if the p-value < α, then the null hypothesis was rejected, considering the
sequence as non-random.

Table 2 shows a typical output after evaluating one sequence. Table 3 shows the proportion of the
1024 sequences that passed each statistical test.

Table 2. Typical results when evaluating one sequence generated by Generador de Bits Pseudo
Aleatorios (GBPA) using STS .

Test p-Value Result

1. Frequency 0.480188 SUCCESS
2. Frequency within a Block 0.979526 SUCCESS
3. The Runs 0.133743 SUCCESS
4. Longest-Run-of-Ones in a Block 0.816729 SUCCESS
5. Binary Matrix Rank 0.845216 SUCCESS
6. Discrete Fourier Transform 0.378341 SUCCESS
7. Non-overlapping Template Matching 0.516262 SUCCESS
8. Overlapping Template Matching 0.697754 SUCCESS
9. Maurer’s “Universal Statistical” 0.953444 SUCCESS
10. Linear Complexity 0.671206 SUCCESS
11. Serial 0.697067 SUCCESS
12. Approximate Entropy 0.677134 SUCCESS
13. Cusums 0.604715 SUCCESS
14. Random Excursions 0.57388 SUCCESS
15. Random Excursions Variant 0.382226 SUCCESS

Table 3. Proportion of the 1024 sequences generated by GBPA that passed each STS test.

Test Proportion

1. Frequency 0.991211
2. Frequency within a Block 0.990234
3. The Runs 0.991211
4. Longest-Run-of-Ones in a Block 0.992188
5. Binary Matrix Rank 0.989258
6. Discrete Fourier Transform 0.992188
7. Non-overlapping Template Matching 0.989522
8 Overlapping Template Matching 0.985352
9. Maurer’s “Universal Statistical” 0.981445
10. Linear Complexity 0.992188
11. Serial 0.985352
12. Approximate Entropy 0.989258
13. Cusums 0.9917
14. Random Excursions 0.986736
15. Random Excursions Variant 0.989193

A confidence interval was calculated to determine if the proportion of sequences that passed the
statistical tests was within the acceptable range, defined as [19]:

CI = p± zc
√
(p(1− p)/n) (11)
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where:
p = 1− α,
zc = 3,
n = 1024.
CI = 0.99± 0.009328007
Figure 1 shows the proportion of sequences that passed each test; the proportions were within the

inferior confidence interval of 0.980671993 and the superior one of 0.999328007.

0.980671993

0.999328007

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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p
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rt
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n
s

Tests

Confidence interval

Figure 1. Confidence interval of the STS statistical tests.

For reference, the tests were also performed on a bitstream obtained with the algorithm Salsa20,
using the same criteria to generate it as with the GBPA cipher. The implementation in C language of
Salsa20 is the one in [15]. Table 4 shows the evaluation results.

Table 4. Proportion of the 1024 sequences generated by Salsa20 that passed each STS test.

Test Proportion

1. Frequency 0.991211
2. Frequency within a Block 0.995117
3. The Runs 0.988281
4. Longest-Run-of-Ones in a Block 0.981445
5. Binary Matrix Rank 0.988281
6. Discrete Fourier Transform 0.988281
7. Non-overlapping Template Matching 0.990228
8. Overlapping Template Matching 0.992188
9. Maurer’s “Universal Statistical” 0.992188
10. Linear Complexity 0.992188
11. Serial 0.990234
12. Approximate Entropy 0.989258
13. Cusums 0.990234
14. Random Excursions 0.986388
15. Random Excursions Variant 0.989008

Of the 1024 sequences of Salsa20, 98.9635% passed the STS statistical tests. Of the 1024 sequences
of GBPA, 98.9136% passed the tests. The GBPA cipher has a diminution of 0.0499 compared with the
results of Salsa20.

4.1.2. DIEHARD

For DIEHARD, the recommended input size of the battery is a sequence at least 80 million bits
long; the generated bitstream conforms with this recommendation.
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Results of the evaluation are presented in Table 5. When more than one p-value was returned
by a test, a final p-value was obtained through the Kolmogorov–Smirnov test, which determines the
uniformity of multiple p-values.

Table 5. p-values returned by DIEHARD tests when evaluating a sequence of 1.024× 109 bits generated
by GBPA.

Test p-Value Result

1. Birthday spacings 0.432844 SUCCESS
2. Overlapping 5-permutation 0.402562 SUCCESS
3. Binary rank for 31 × 31 matrices 0.622226 SUCCESS
4. Binary rank for 32 × 32 matrices 0.573546 SUCCESS
5. Binary rank for 6 × 8 matrices 0.437927 SUCCESS
6. Bitstream 0.584245 SUCCESS
7. OPSO 0.964164 SUCCESS
8. OQSO 0.645856 SUCCESS
9. DNA 0.332053 SUCCESS
10. Count-the-1’s on a stream of bytes 0.246727 SUCCESS
11. Count-the-1’s for specific bytes 0.754247 SUCCESS
12. Parking lot 0.17368 SUCCESS
13. Minimum distance 0.656646 SUCCESS
14. 3D spheres 0.803322 SUCCESS
15. Squeeze 0.363291 SUCCESS
16. Overlapping sums 0.327737 SUCCESS
17. Runs up 0.448923 SUCCESS
18. Runs down 0.636782 SUCCESS
19. Craps 0.881032 SUCCESS

A Kolmogorov–Smirnov test was used again to determine the uniformity of all the p-values
returned by the tests shown in Table 5. The result was a p-value of 0.262431.

As was done previously, DIEHARD tests were also performed on the binary sequence generated
with Salsa20. Table 6 presents the results. The p-value returned by the Kolmogorov–Smirnov test
comprised of all the p-values in Table 6 was 0.184669.

Table 6. p-values returned by DIEHARD tests when evaluating a sequence of 1.024× 109 bits generated
by Salsa20.

Test p-Value Result

1. Birthday spacings 0.194329 SUCCESS
2. Overlapping 5-permutation 0.526502 SUCCESS
3. Binary rank for 31 × 31 matrices 0.320943 SUCCESS
4. Binary rank for 32 × 32 matrices 0.348652 SUCCESS
5. Binary rank for 6 × 8 matrices 0.646051 SUCCESS
6. Bitstream 0.855505 SUCCESS
7. OPSO 0.647555 SUCCESS
8. OQSO 0.193828 SUCCESS
9. DNA 0.450855 SUCCESS
10. Count-the-1’s on a stream of bytes 0.480096 SUCCESS
11. Count-the-1’s for specific bytes 0.669009 SUCCESS
12. Parking lot 0.386253 SUCCESS
13. Minimum distance 0.705886 SUCCESS
14. 3D spheres 0.670799 SUCCESS
15. Squeeze 0.420715 SUCCESS
16. Overlapping sums 0.505699 SUCCESS
17. Runs up 0.606394 SUCCESS
18. Runs down 0.393157 SUCCESS
19. Craps 0.362921 SUCCESS
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4.1.3. EACirc

One of the advantages of EACirc is that it requires a lower amount of bits to detect
non-randomness compared with the previous test suites, being able to work with even 1000 bits [26].
The parameters used during the evaluation of GBPA and Salsa20 sequences were the default ones
presented in [27], which can be summarized as follows:

α: 0.01,
Number of epochs: 300,
Test vector size: 16,
Test vector count: 1000,
Function set: NOP, CONS, NOT, AND, NAND, OR, XOR, NOR, SHIL, SHIR, ROTL, ROTR, MASK.
The function set parameter included all the operations supported by EACirc, and these were used

to construct the test stochastically using a genetic algorithm [26].
In Table 7, the results of GBPA and Salsa20 are presented. The shown p-values corresponded to

the Kolmogorov–Smirnov test performed by EACirc comprised of the p-values returned by it. As can
be seen in Table 7, the bitstreams generated by GBPA and Salsa20 were considered random by the
EACirc suite.

Table 7. p-values returned by the EACirc framework when evaluating sequences generated by Salsa20
and GBPA.

Algorithm p-Value Result

Salsa20 0.375193 SUCCESS
GBPA 0.515966 SUCCESS

4.2. Computing Requirements

The GBPA and Salsa20 ciphers were implemented on the 8-bit AVR microcontroller
Atmega644p [28] using the Integrated Development Environment (IDE) Atmel Studio 7 [29] of
Microchip, with the compiler and linker AVR/GNU Version 5.4.0. With this IDE, the memory
requirements and executing cycles of both algorithms were retrieved.

In Figure 2, a comparison of the usage of data and program memory of the algorithms is presented.
The information was returned by the compiler and linker AVR/GNU, and no dynamic memory
allocation was done in the implementations.

6402

1574

186 20
0

2,000

4,000

6,000

Salsa20 GBPA

B
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Algorithms

Memory usage

Program memory

Data Memory

Figure 2. Memory footprint comparison between GBPA and Salsa20.

The number of processor cycles required to execute the algorithms was obtained using the
Microchip AVR MCU Simulator. This tool is considered accurate because it uses models based on the
register-transfer level (RTL) code used in the making of the actual microcontroller [30]. As indicated
in Sections 2 and 3, the output size of Salsa20 was 512 bits, and the output of GBPA was 128 bits.
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Both algorithms had to produce the same output size to compare their number of cycles, so GBPA was
executed four times. Figure 3 presents the comparison of cycles necessary to generate an output of
512 bits.
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es

Algorithms

CPU cycles

Figure 3. Processor cycle comparison between Salsa20 and GBPA, when generating an output
512 bits long.

When measuring the required processor cycles of an algorithm, the amount of consumed energy
by it can be calculated with (12). Table 8 shows the power consumption of the ciphers in a system
operating at 2 V, 0.5 mA, low-power mode running at 1 MHz. As can be seen, GBPA consumed
48.4819% less power than Salsa20.

CE =
W

fCPU
× PC (12)

where:
CE = consumed energy,
W = Watts,
fCPU = frequency of the processor clock,
PC = processor cycles used by the algorithm.

Table 8. Power consumption comparison between Salsa20 and GBPA.

Algorithm Power Consumption (mJ)

Salsa20 0.089584
GBPA 0.046152

GBPA algorithm required 75.4139% less program memory, 89.2473% less data memory,
48.4819% fewer executing cycles and 48.4819% less power than Salsa20.

A comparison of the computing requirements of GBPA against lightweight block ciphers is
presented in Table 9. The requirements were from implementations of the algorithms on 8-bit AVR
microcontrollers in C language. The memory footprint and processor cycles of the HIGHT, RC5
and Skipjack ciphers were obtained from [31] and of the PRESENT cipher from [32].

As shown in Table 9, the GBPA cipher had lower program and data memory requirements than
all the ciphers and used fewer executing cycles than HIGHT, RC5 and Skipjack. PRESENT used
48.5699% fewer executing cycles than GBPA; however, it used 58.7526% more program memory and
92.1875% more data memory. Fewer executing cycles means a higher-throughput; however, this was
being achieved at the cost of a higher requirement of memory, a limited resource on IoT devices. A low
memory requirement allows a device to be implemented as small and low-cost, both of them essential
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characteristics of IoT because it enables ubiquitous computing. GBPA had lower program and data
memory requirements and a proper throughput when comparing it with Salsa20 and the rest of the
lightweight ciphers, making it appropriate for the restrictions and characteristics of IoT devices.

Table 9. Computing requirement comparison between lightweight block ciphers and GBPA.

Algorithm Program Memory (Bytes) Data Memory (Bytes) CPU Cycles for a 512-bit Output

HIGHT 3906 584 514,840
PRESENT 3816 256 23,736

RC5 3188 72 565,600
Skipjack 5020 328 139,120

GBPA 1574 20 46,152

5. Discussion

As mentioned above, to be part of the eSTREAM portfolio, Salsa20 was under evaluation for four
years (2004 through 2008), and no possible attack on it was detected [15]; weaknesses were found only
when using a reduced number of rounds [33–35]; an analysis of the security of the cipher can be seen
in [36]. The GBPA cipher uses Salsa20’s core function quarterround, but with fewer parameters to make
its use possible on resource-constrained devices. Evaluation of the randomness and unpredictability
was performed on its output to evaluate that the modifications were secure. As explained in [18],
the xor operation returns a random output when at least one of its inputs is random, and the random
part in a stream cipher is the keystream generated by the algorithm. Three statistical test suites were
used to evaluate the keystream: the first one was STS, which was designed to evaluate bitstreams for
cryptographic applications; the second one was DIEHARD, a well-known test battery; and EACirc
was the third one. As mentioned before, there is a documented case were the STS and DIEHARD test
batteries were not able to detect non-randomness in a sequence, while EACirc was capable of such;
consequently, the EACirc suite of empirical tests was also used.

The mentioned test batteries were used to evaluate a 1.024× 109 bitstream. When dividing the
bitstream into 1024 sequences and inputting them into STS, 98.9136% passed the tests; some sequences
did not pass some them, but the proportion that passed was within the confidence interval. There are
expected to be generated random sequences that do not pass some tests because if they do, this means
that its generator is not capable of generating any sequence and its output is not uniform. As shown
in Table 10, compared with Salsa20, there was a decrease of 0.0499% of sequences that passed the
tests, which does not seem significant. When evaluating the bitstream with DIEHARD, a p-value
of 0.262431 was obtained, which shows that there is no evidence of the bitstream not being random,
that is the test battery could not distinguish it from a truly random sequence. the EACirc suite was
also used for the evaluation of the output of GBPA, and a p-value of 0.515966 was returned by it,
showing the acceptance of the null hypothesis. Both Salsa20 and GBPA sequences were accepted as
random by DIEHARD and EACirc, but GBPA obtained a higher p-value, which means lower evidence
against the null hypothesis that the sequence is random; the difference in p-values is presented in
Table 10. The results of STS, DIEHARD and EACirc show that the keystream generated by GBPA is
indistinguishable from random, so after performing the xor with a message to cipher, the output will
also be indistinguishable from random.

Table 10. Comparison of the results of STS and DIEHARD between Salsa20 and GBPA.

Tests Salsa20 GBPA Difference

STS (percentage of approved sequences) 98.9635% 98.9136% −0.0499
DIEHARD (p-value) 0.184669 0.262431 0.077762

EACirc (p-value) 0.375193 0.515966 0.140773
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Regarding its computing requirements, GBPA uses little more than 1.5 KB of program memory
and only 20 bytes of data memory; therefore, it would not have an impact on memory usage on the
system. Table 11 shows how many more resources the algorithms Salsa20, HIGHT, PRESENT, RC5 and
Skipjack use compared to GBPA. As can be seen, GBPA uses less memory and processor cycles than
the compared algorithms, except for the PRESENT cipher, which uses fewer processor cycles. As can
also be seen, this is achieved at the cost of more memory usage. Considering that IoT devices have
limited memory and that it has to be divided between the application and network services, besides
the security services, the higher memory requirement by the cipher can have a high impact on the
device, or its use might not be feasible. GBPA has lower memory usage and proper processor time
usage when comparing it with Salsa20 and lightweight ciphers.

Table 11. Difference in the percentage of computing resource utilization of the algorithms against GBPA.

Parameter Salsa20 HIGHT PRESENT RC5 Skipjack

Program memory −75.4139% −59.7030% −58.7526% −50.6274% −68.6454%
Data memory −89.2473% −96.5753% −92.1875% −72.2220% −93.9024%

CPU cycles −48.4819% −91.0357% +48.5699% −91.8402% −66.8258%

The proposed algorithm is not intended to replace Salsa20 or traditional ciphers; it is
recommended to use them when the device’s resources allow it. Instead, a security solution is
being provided to the many devices that could not afford those algorithms, such as small smart sensors
and other low-cost IoT devices.

6. Conclusions

IoT is a promising technology that could bring a significant improvement to our daily lives,
from making our lives more comfortable to having a better response to emergency situations.
Even though it has many advantages, its characteristics make it not only very vulnerable to attacks,
but also, such attacks can have severe consequences in the system and even for the user. Encryption is
a security primitive that could prevent some of the attacks, but because of the limited resources in IoT
devices of Class 0, the use of traditional security algorithms is not viable. In this document, the stream
cipher GBPA designed for IoT has been presented. The algorithm is based on the Salsa20 cipher,
which was under evaluation by the international community, who decided that it was secure enough to
be part of the eSTREAM project. GBPA uses Salsa20’s core function, but with fewer input parameters,
a smaller memory footprint and lower processor-time usage. The GBPA cipher has a small output size;
this is appropriate for IoT devices because the information sent by them is usually contextual data
in the form of short-length packets; thus, no unnecessary memory and processor usage is performed.
When comparing the computing requirements of GBPA against lightweight ciphers, GBPA resulted
in lower program and data memory usage. The low program and data memory and processor-time
usage allow low-cost resource-constrained IoT devices of Class 0 to be able to implement a security
service that they are not currently capable of, to protect the user’s data privacy, the user’s welfare and
the system from attacks that could damage or disrupt its functionality.

The randomness of the output of the cipher was evaluated using three statistical test suites: STS,
which was designed to assess pseudo-random numbers for cryptographic applications, the well-known
DIEHARD test battery and EACirc, an empirical test suite, which in some cases can provide better
results than the previous two. With the three of them, good results were obtained. The tests were also
applied to Salsa20 for reference, and no significant difference between the results of the two algorithms
was found.

As future work, a modification of the algorithm is planned to make it support two key sizes,
the current 96-bit key and also a 128-bit key; the latter for devices with more computing resources and
security requirements.
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