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Abstract: This paper presents a real-time, robust and low-drift depth-only SLAM (simultaneous
localization and mapping) method for depth cameras by utilizing both dense range flow and sparse
geometry features from sequential depth images. The proposed method is mainly composed of three
optimization layers, namely Direct Depth layer, ICP (Iterative closest point) Refined layer and Graph
Optimization layer. The Direct Depth layer uses a range flow constraint equation to solve the fast
6-DOF (six degrees of freedom) frame-to-frame pose estimation problem. Then, the ICP Refined layer
is used to reduce the local drift by applying local map based motion estimation strategy. After that,
we propose a loop closure detection algorithm by extracting and matching sparse geometric features
and construct a pose graph for the purpose of global pose optimization. We evaluate the performance
of our method using benchmark datasets and real scene data. Experiment results show that our
front-end algorithm clearly over performs the classic methods and our back-end algorithm is robust
to find loop closures and reduce the global drift.

Keywords: SLAM; depth vision; sparse geometric features; pose graph

1. Introduction

Visual odometry is gaining importance in the field of robotics and computer vision. Recently,
a number of promising results from different visual simultaneous localization and mapping (SLAM)
algorithms have been presented, which provides many good solutions for six degrees of freedom (DOF)
state estimation, mapping and obstacle avoidance of mobile robots. However, most of these methods
mainly rely on visual features. One of its severe drawbacks is that it cannot work properly when there
is not sufficient illumination or texture information such as visually degraded environments which
is dark or full of fog, smoke, etc. In contrast, depth vision may overcome pose estimation failure in
low-texture environments since it mainly relies on the geometric information rather than the texture
information in the environment.

In recent years, with the rapid development of depth vision sensor, the perception rate and
resolution of depth images have been greatly improved, which makes the depth-based visual odometry
gradually attract many researchers” attention. Several depth odometry or mapping methods have
been proposed in recent years—for example, Sparse Depth Odometry (SDO) [1], SDF Tracker [2],
DIFferential ODOmetry(DIFODO) [3] and Kinect Fushion [4], etc. However, since those methods
are only odometry and mapping methods, which lack global map optimization, they are therefore
unable to obtain global consistency trajectory in large-scale scene. Until now, the amount of research
on complete depth-image based SLAM methods is relatively small. Compared with RGB images, the
depth images from current depth vision sensors still have low resolution, low frame rates as well as a
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small field of view, and the data is still very noisy. Therefore, with current SLAM methods based on
RGB [5] or 3D laser [6-8], it is difficult to obtain good results when directly applying on depth images.

In this paper, we introduce a novel SLAM method, namely Direct Depth SLAM (DDS),
which exploits full advantages of depth information and is able to get global consistent pose estimation
in rich geometric feature environments only using 2D depth images. Since our method dosen’t rely on
any RGB information, our method can estimate the motion of the camera robustly in the textureless
environment. It should be noted that the definition of “textureless” here only refers to RGB images.
As for depth images, we directly use the “geometric information” to describe the quality of depth
images. The method has a three-layer optimization scheme, namely Direct Depth layer, ICP Refined
layer and Graph Optimization layer as shown in Figure 1. This method can accurately estimate 6-DOF
ego-motion in real time as well as eliminate global drift in rich geometric environments with small
computation cost. Since our front-end algorithm only takes about 14 ms to estimate the ego motion
between two consecutive frames ( more detail in Section 6.1.1), it can run more than 50 Hz on a normal
laptop without GPU. In addition, our back-end algorithm can robustly find loop closures to reduce
global drift. In order to evaluate the performance of our method, extensive experiments have been
carried out. The main contributions of this paper are as follows:

e A novel depth-only SLAM scheme that utilizes both dense range flow and sparse geometry
features from depth images.

e A fast direct depth odometry which runs at a high frequency to estimate frame to frame motion
together with an efficient keyframe-based ICP to reduce local drift.

e  An efficient geometry feature extracting and matching method to find loop closures together with
a pose graph optimization to eliminate global drift.
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Figure 1. Overview of the Direct Depth SLAM (simultaneous localization and mapping) System,
composed of three staggered layers, namely Direct Depth layer, ICP (iterative closet point) refined layer
and Graph Optimization layer. The red arrows represent the frame to frame pose estimation of the
Direct Depth layer. The transform integration module accumulates consecutive frames to construct a
local map (orange ellipse in image). The green arrows represent the keyframes and their associated
point clouds are denoted as yellow ellipses. The keyframes will be aligned to the constructed local map
to reduce the local drift of direct depth odometry. The refined pose is stored as vertex X; (pink circle) in
the pose graph of the Graph layer.

The rest of the paper is organized as follows: Section 2 reviews various pose estimation algorithms
related to the RGB-D camera. The algorithm overview will be presented in Section 3. Section 4 describes
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the details of the front-end algorithm. The back-end algorithm is explained in Section 5. Quantitative
and qualitative evaluation of our method from front-end to back-end on publicly available datasets
and the real scene are presented in Section 6. Section 7 concludes the paper.

2. Related Work

In this section, we first would like to introduce the current framework followed by most of
the Visual SLAM algorithms since late 2010s. According to the survey papers in robotics [9,10], the
relationship between Visual SLAM (VSLAM) and Visual Odometry (VO) can be represented as follows:

Visual Odometry = Initialization + Tracking + Localmapping, (1)

Visual SLAM = Visual Odometry + Global map Optimization. 2)

The main difference between these two techniques is whether global map optimization is used in
the mapping. In the VO, the geometric consistency of a map is considered only in a small portion of a
map or only relative camera motion is computed without mapping [10]. In contrast, in the VSLAM,
the global geometric consistency of a map is normally considered. Therefore, to build a geometrically
consistent map, the global optimization is added in the recent VSLAM algorithms. According to the
definition of VSLAM, our method is mainly composed of three modules as follows:

e  Odometry method (including initialization and tracking),
e  Mapping method,
e  Global map optimization (including loop detection, pose graph, etc.).

Currently, most pose estimation methods based on RGB-D cameras can be classified into three
categories shown in Figure 2: first, RGB-based methods that usually depend on a lot of information
from RGB images; second, RGB-D based methods that depend on both RGB and depth information;
third, depth-based methods that only use depth data for 6-DOF motion estimation.

Poes Estimation
(using RGB-D camera)

| }

RGB based RGB-D based Depth based
Methods Methods Methods

Odometry SLAM Odometry SLAM Odometry SLAM
DSO LSD SLAM Fovis Kintinous DIFODO Direct Depth
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Figure 2. General classification of pose estimation methods based on an RGB-D camera (A RGB camera
combined with a depth camera).

2.1. RGB-Based Methods

RGB-based methods mainly depend on RGB information, which can be divided into two
sub-groups, namely RGB odometry, RGB SLAM. The first category is RGB odometry [11-14].
Those methods usually extract sparse visual features and then find features’ correspondence by
matching the descriptor of visual features. After this, the Random Sample Consensus (RANSAC-based)
strategies [15] are usually used to reject outliers. Then, the 3D information of visual features
is calculated through triangulation. Finally, the pose estimation is calculated by minimizing the
re-projection errors. There are also so-called dense visual odometry methods [16] which are
different from sparse visual feature-based methods because they use the whole image to estimate the



Sensors 2018, 18, 3339 4 of 21

transformation. This kind of method assumes a world point observed by two cameras that is assumed
to yield the same brightness in both images. The goal of these methods is to find the camera motion that
best satisfies the photo-consistency constraint over all pixels. Since odometry methods only estimate
the ego motion from two consecutive frames, these methods will inevitably accumulate drift. Hence,
loop closure detection and back-end optimization (Pose-graph [17,18] and Bundle Adjustment [19,20])
are usually used to form a complete RGB SLAM system.

For RGB SLAM, Davison [21] presents MonoSLAM, a famous real-time algorithm which can
recover the 3D trajectory of a monocular camera using an extended Kalman filter (EKF). Jakob [22]
proposes a direct (feature-less) monocular SLAM algorithm that allows for building large-scale,
consistent maps. Raul Mur-Artal [5] presents ORB(Oriented FAST and Rotated BRIEF)-SLAM,
a feature-based monocular SLAM system that can operate in versatile environments. However,
all of these methods are very sensitive to illumination and cannot robustly estimate the pose of camera
in low texture scenes such as in dark environments. In contrast, since our method only depends on
depth image, the texture variation of environment will not affect the accuracy of pose estimation.
Qin [23] proposes a great robust and versatile monocular visual-inertial slam system. If we block the
RGB input of this system for a while, its front-end algorithm can overcome low-texture environments
and recover the motion of camera because of tightly-coupled IMU. However, if we block the RGB
input of this system for a long time, the visual-inertial estimator can only trust the pose estimation
of IMU which will produce large drift over time and its back-end optimization could also not work
properly because of insufficient illumination. However, our system can still work properly because of
using geometric information in the environment.

2.2. RGB-D Based Methods

RGB-D based methods depend on both RGB and depth information, which can be divided into
two sub-groups, namely RGB-D odometry and RGB-D SLAM. Unlike the RGB odometry methods,
RGB-D odometry methods [24-27] do not need triangulation but use the depth information directly
from depth images. Since these odometry methods are only a kind of relative pose estimation
lacking global map optimization, these methods will inevitably accumulate drift. Hence, loop closure
detection and back-end optimization are also needed to form a complete RGB-D SLAM system.
For RGB-D SLAM, Whelan [28] presents a real-time dense SLAM system named Kintinous which
produces impressive results. However, since this approach mainly uses volumetric fusion for dense
RGB-D-based tracking and mapping, the performance of this approach is deeply dependent on GPU.
In addition, the loop detection of this system mainly uses RGB information to build up constraints
of estimated poses. Therefore, when there is not enough texture information in the environment,
the global map optimization will not work properly and the system will produce global drift over time.
Endres [29] presents a 3D SLAM system that extracts visual keypoints from the color images and uses
the depth images to localize them in a 3D environment. Ming [30] presents a novel keyframe-based
dense planar SLAM system, which fuses depth measurements from small baseline images. However,
since those methods mainly depend on visual features to achieve front-end tracking and back-end
optimization, they could not work properly in a visually degraded environment. Martin [31] presents
Co-Fusion, a real-time RGB-D SLAM system capable of segmenting a scene into multiple objects using
motion or semantic cues. However, since this method needs to track the 6-DOF rigid pose of each
active object in the current frame, its computation cost is relatively high, which leads its real-time
performance to not being very good. Scona [32] proposes a method for robust dense RGB-D SLAM in
dynamic environments that detect moving objects and simultaneously reconstruct the background
structure. However, since this method is mainly based on GPU, its application scenarios will be limited.
Compared with most RGB-D SLAM methods, since our method does not need feature matching and
triangulation processes, its computation expense is relatively low, which can maintain the real-time
performance even on computation limited Micro Arie Vehicles (MAVs).



Sensors 2018, 18, 3339 5of 21

2.3. Depth-Based Methods

For methods only using depth data from RGB-D cameras, Iterative Closest Point (ICP) [33],
Generalized ICP (GICP) [34] and Normal Distribution Transform (NDT) [35] algorithms are the most
classic techniques for point cloud registration. ICP and GICP are iterative algorithms that refine the
initial estimate until it converges. Therefore, those methods are sensitive to initial guess and cannot
cope with point clouds with large displacement. NDT models the scene with sets of small Gaussian
distributions computed from the neighborhood of each point. However, the accuracy of this method
depends on the size of grid. There are also some methods that apply truncated signed distance function
(TSDF) [36] to describe the structure of scene and estimate the ego-motion. A famous example is
KinectFusion [4], which introduces TSDF to represent structure of the scene and uses ICP to align
current point cloud to the reconstructed scene model to obtain the ego-motion of camera. However,
one of its limitations is that it can only be used in a small workspace. In addition, since there is no
global map optimization, the KinectFusion will have drift after running for a while. Furthermore, the
implementation of these methods depends on GPU.

There are also some new methods proposed in recent years working with depth cameras.
Yousif [37] presents a real-time 3D registration and mapping method for texture-less scenes only
using the depth information provided by a low cost RGB-D sensor. The proposed registration method
is based on a novel informative sampling scheme that is able to extract the points carrying the most
useful information from two consecutive frames. Taguchi [38] presents a real-time SLAM system for
hand-held 3D sensors that uses both point and plane primitives for registration. Renato [39] presents a
Dense Planar SLAM algorithm that identifies, merges and compresses the arbitrary planar regions.
DIFferential Odometry (DIFODO) [3] derives from the concept on spatial and temporal linearization
of a range function, which is similar to our front-end algorithm. Although the above methods can
obtain promising results for pose estimation, those methods lack a loop detection module and can
not reduce global drift in large scenes. Sparse Depth Odometry (SDO) [1] obtains the ego-motion
by extracting features on depth data and matching the features to calculate the relative transform of
consecutive frames. Nevertheless, since the depth image of common RGB-D camera is very noisy,
sometimes it is difficult to extract reliable geometric-distinctive features when the geometric features
of the scene are very sparse. Apart from this, this method is also a kind of relative pose estimation.
Therefore, it lacks the ability to reduce overall drift of trajectory in large scene. SungYeon [40] proposes
a keyframe-based featureless light-weight SLAM utilizing a single depth image stream. However,
since the loop detection of this method is only based on a direct method, it is difficult to build loop
closure constraints when there is big front-end drift. In summary, it is relatively difficult to find a
complete depth only SLAM system (including odometry and global map optimization) with good
performance in the literature. This paper exactly aims to achieve a complete depth only SLAM system
to solve the pose estimation problem in low texture environments.

3. Algorithm Overview

In this section, we introduce the pipeline of the direct depth SLAM System as shown in Figure 3,
which can be divided into four modules: depth image pre-processing module, direct depth odometry
module, local drift optimization module and global drift optimization module.

3.1. Depth Image Pre-Processing Module

Compared with RGB images, range data of the depth image from an RGB-D camera is usually
very noisy. Since we use a range change constraint equation [41,42] (detailed in Section 4.2) to solve
the motion estimation problem, we need to carefully clean up the depth data for accurate estimation.
There are three kinds of noise that we must remove: isolated sparse pixels, pixels with depth value out
of range, and pixels on the edge of an object. The reason is that those pixels have very unstable depth
value, which will break the “local planar” assumption of range change constraint equation.
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Figure 3. The pipeline of the proposed Depth SLAM System.

3.2. Direct Depth Odometry Module

After depth image pre-processing, only pixels with good depth value will be remained.
Then, we use range flow constraints equation to solve the ego-motion estimation problem. The method
could be divided into three steps:

o  Compute the gradient of consecutive frames and calculate the depth residuals,
e  Construct the least squares based on depth residuals,
e  Calculate the incremental pose estimation using SVD methods.

3.3. Local Drift Optimization Module

Since our direct depth odometry only estimates the relative motion of camera, it will accumulate
drift. In addition, the direct depth odometry assumes “small motion” assumption [41,42]. If the motion
between consecutive frames is large, it will break this assumption. As a result, the accuracy of pose
estimation will degenerate dramatically. For these reasons, we use a localmap based ICP method
to reduce the local drift of our direct depth odometry. We first accumulate several frames of point
cloud using direct depth odometry. Then, we calculate a refined pose estimation by aligning the
current keyframe to the local map using ICP with a initial guess calculated from direct depth odometry.
Finally, we update the odometry estimation by integrating the direct odometry with the refined pose.
By doing so, our method can greatly reduce the local drift of direct depth odometry while keeping
high estimation frequency.

3.4. Global Drift Optimization Module

Since the accumulative drift of the front-end algorithm is inevitable after a long time of running,
we add a Global Drift Optimization Module to reduce global drift to get a consistent global trajectory.
We first propose a very fast loop closure detection algorithm based on sparse geometric feature
extracting and matching using an NDT map [35,43]. Then, we construct a pose graph to reduce the
global drift by using pose graph optimization.
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4. Front-End Algorithm

In this section, we will describe how to estimate the relative transform between two consecutive
frames by using the range flow constraint equation. Then, the whole principle of direct depth odometry
will be described. After that, we describe the ICP refined method for reducing local drift.

4.1. Depth Image Pre-Processing

Nowadays, commodity-level RGB-D cameras have a very limited measurement range and their
data are also very noisy compared to laser scanners. For example, when the measurement distance is
less than 3 m, usually the measurement error is less than 2.5 cm. However, when the measurement
distance is at 5 m, the measurement error could be around 7 cm. In order to get accurate estimates,
we first only use pixels with depth value range from 0.5 m to 4.5 m. Then, all the edge pixels and
isolated sparse pixels are removed. Finally, we apply a Gaussian Filter [44] with a 7 x 7 kernel to
smooth the depth image before calculating the depth gradients. Those steps are particularly important
for our direct depth odometry algorithm to get accurate pose estimation.

4.2. Direct Depth Odometry Algorithm

Leta 3D point P = (X,Y,Z)T (measured in the depth camera’s coordinate system) be projected
on depth image Z; at pixel position p = (x,y)T. We assume the 3D point undergoes 3D motion
AP = (AX,AY,AZ )T between the ty frame and t; frame, which results in a depth image motion Ap.
Given that the depth value of 3D point will have moved by AZ, the depth value obtained at this new
position p + Ap on image plane will have consequently varied by this amount:

Zi1 (p+Ap) =Zi (p) + AZ. 3)

This equation is called a range flow constraint equation [45,46]. Taking the first-order Taylor
expansion of the term Z; 1 (p + Ap) in Equation (3), we can obtain

Zir1 (p+8p) = Ziga (p) + VZiia (p) Bp
_ @)
where VZ,,1 (p) is the gradient of depth image VZ; 11 (p) = (Zx, Zy).

In the case of the pinhole camera model, any small 2D displacement Ap on an image plane can
be related directly to the 3D displacement AP. We can build the relation between them through
differentiating the perspective projection function in Equation (5):

9p _ Ap _ ffx 0 _X% (5)
oP ~ AP o L v |

where f; and f, are the normalized focal lengths.

Under a small rotation assumption, if the the sensor moves with instantaneous translational
velocity v = (v1,v2,v3)T and instantaneous rotational velocity w = (w1, wy, w3)T with respect to the
environment, then the 3D point P = (X, Y, Z)T appears to move with a velocity in Equation (6):

d—P =AP=—-v—wxP
dt
o -z Y -1 0 0 6)
=\ Z 0O -X 0 -1 o0/|¢
-y X 0 0 0 -1

with respect to the sensor, where ¢ = (wx, Wy, Wz, Vx, Vy, vz) T Substituting Equations (5) and (6) into
Equation (4), we can obtain
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f f:
Z 0 -X51[0o-zY -10 0
(ZeZy,=1) | fl_yi Z 0 -X0-10]|¢
Z 22l |l-y X 0 0 0 -1 ?)
00 1
A
=2t (p) — Zt+a (p),
which can be rewritten as:
AL =Zi(p) — Zt11 (p)- ®)

This equation generates a pixel-based constraint relating the gradient of the depth image VZ; 4
and the temporal depth difference to the unknown camera motion {. For the whole depth image,
every single pixel satisfies the above equation. We can obtain the relative transformation matrix of
pose estimation through building up the least squares between the frame Z; and Z; ;. After that,
we can recover the full trajectory of the depth camera.

4.3. Local Drift Optimization

One of the biggest advantages of our direct depth odometry is that it can calculate the pose
estimation directly from the range flow constraint equation. It does not need to iterate to converge;
therefore, the computation cost is very low. However, this method assumes “small motion”,
which means the motion between consecutive frames should be small or the sampling frequency
of the camera should be fast enough. Therefore, if the motion between consecutive frames is large,
the accuracy of the pose estimation will decrease and the accumulative error will increase.

To solve this problem, we use the classical ICP method to refine the pose estimation calculated
from the direct depth odometry method. As shown in Figure 1, the red arrows represent the frame
of pose estimation from direct depth odometry and its associated point cloud in camera coordinate.
We accumulate the point cloud of every a few frames using the pose estimation from direct depth
odometry to form a local map in world coordinate, depicted as an orange ellipse in Figure 1. The ICP
refined layer is to align keyframes (green arrow) associated with point cloud (yellow ellipse) to the local
map (orange ellipse). We accumulate the transformation estimated from direct depth odometry for the
last four frames as the initial guess of the ICP registration process. Since ICP are only computed for
every a few frames, we combine it with the high frequency frame to frame estimation from direct depth
odometry to form the final pose estimation. As illustrated in Figure 4, the result is a high frequency
integrated pose outputting at the depth image frame rate. By doing so, we keep the high frequency
pose estimation of direct depth odometry as well as reduce the local drift using keyframe-based ICP.

A

World

ICP Refined Odometry
(low frequency)

Direct Depth Odometry
(high frequency)

.
»

Figure 4. Illustration of transform integration. The green segment represents transforms published by
the ICP refined odometry at a low frequency, regarding sensor poses in the world coordinate system.
The red segment represents transforms published by the direct depth odometry at a high frequency.
The two transforms are integrated to generate high frequency sensor pose outputs at the depth image
frame rate.



Sensors 2018, 18, 3339 9 of 21

5. Back-End Algorithm

The method described in Section 4.3 can only reduce local drift, and it is unable to eliminate global
drift after a long time of running. In order to eliminate the global drift, we try to find loop closures
and use a pose graph optimization method to remove the global drift. To achieve this aim, we need to
create two kinds of constraints for the pose graph:

e  Odometry edges: the constraint between two neighbor vertexes obtained from the ICP layer, the
so-called odometry edge. In Figure 1, the pink circles in the Graph Layer represent the vertex and
the black arrows represent the odometry edge built by two neighbor vertexes.

o Loop edges: when a loop closure is detected, a loop closure edge (dashed blue arrows) will be
established, as shown in Figure 1.

In general, the establishment of odometry edge from depth images is relatively easy while
loop-closure edge is much harder. There are several reasons that make the loop closure detection
difficult. First, our loop-closure detection is only based on depth data. Up to now, many 3D laser
SLAM systems use ICP, GICP or the NDT method to create loop edge. However, those methods are
not robust on depth images since the depth cameras have a very small field of view and measurement
range is very limited compared to 3D laser scanners. Therefore, when a potential loop closure occurs,
usually the overlapping region of the current frame and previous frame is small, which will make
those methods fail. In addition, GICP, ICP and NDT methods are sensitive to initial guess. If the drift
of front-end algorithm is big, usually those methods could not find a correct transform. Therefore, it is
hard to create correct a loop edge by applying those methods with depth images.

For example, there are two frames of point clouds with large displacement in Figure 5 (top left).
If we use the ICP method, usually it is difficult to find correct estimation as shown in Figure 5 (top
right). To solve the problem, we use a sparse geometric feature matching method based on the NDT
map [47] to achieve real-time and robust loop closure detection [48]. The main idea is to detect local
regions of salient surface curvature in the NDT map and characterize those areas with high distinction.
Once all keypoints and their corresponding descriptors have been created separately for each map,
they will be matched to calculate the transform. Figure 5 (bottom) shows the result of paired cloud
after using sparse geometric feature matching method. We can clearly find that the pointcloud with
large displacement can match correctly.

5.1. Feature Extraction

To extract features from the NDT-map, the following five steps are repeated for every NDT-cell N;
within the NDT-map. Here, N; is the currently processed NDT-cell, called a base cell.

e  Step 1: Create a matrix A with m rows and n columns, and initialize every element to zero.

e  Step 2: Find all neighbors N of base cell N; within radius J using a KD-Tree.

e  Step 3: For each neighbor cell N, calculate d and J, where d is the Euclidean distance between
base cell N; and neighbor cells Ny, d = ||py — ;ti||2, i and i are the mean vectors of N; and N,
d is the smallest angle among the normal vectors of N; and Ny, as shown in Figure 6.

e Step 4: In order to use the matrix A to describe the geometric relationship of N; and N,
we divide the largest distance d and angle § into four equal divisions for different distance
or angle ranges, which associates with row number () and column number (1) of matrix A,
respectively. Each element a;; of matrix A represents the number of neighbor cells Ny that both
satisfy the distance range and angle range. Then, we normalize the matrix A.

e  Step 5: For each NDT cell, calculate its entropy as defined in Equation (9) [47] to decide if the
NDT cell can be classified into a feature category. We can compute the entropy H with every
element in matrix A. If the entropy H excesses a threshold, N; base cell will be considered as a
geometric feature:
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Figure 5. The Paired cloud before the ICP process (top left), the Paired cloud after ICP process
(top right), and the Paired cloud after using sparse geometric feature matching method (bottom).

N

Figure 6. Computation of an d and § between NDT(Normal Distribution Transform)-cell and base cell
for matrix A (right) and matrix S (left).

5.2. Feature Descriptor

)

After extracting the geometric features form the NDT-map, we need to create a descriptor to
describe the geometric feature for the matching process. We build up the descriptoras D = {K, U, A, S},
where K represents the number of the neighbor cells within the radius é of base cell N;. U is the mean
vector of base cell N;. Matrix A is the the histogram of d and ¢ described in last section. Similarly,
Matrix S is the histogram of d and the angle between normal vector of base cell and direction vector of
base cell and its neighbor cell shown in Figure 6 (right). The descriptor D is established to represent

geometric characteristics of the current geometric feature and its neighbor cells.

5.3. Pipeline of Loop Closure Detection

The whole pipeline of loop closure detection using the sparse geometric features is as follows:
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e  Step 1: Build an NDT-map of current frame and historical keyframes.

o Step 2: If the distance between current frame and any historic frame is under a threshold,
we consider there is a potential loop closure.

e  Step 3: Extract geometric features from two NDT-maps and build up their descriptor.

e  Step 4: Using a brutal force matching method to find feature correspondences in the two frames.

e  Step 5: Remove outliers by using the RANSAC method [15].

e  Step 6: Compute the pose transformation matrix through the SVD method [49].

Through the above steps, our method can match two point clouds far away from each other as
long as they have enough geometric features, such as the one shown in Figure 5 (bottom). You can see
that this method can align the two frames very well while ICP and NDT methods may fail. However,
since this method only uses a limited number of geometric features to calculate the transformation
between the potential loop closure frames, the accuracy of estimation is limited. In order to improve
the precision of this method, we combine the advantages of a sparse geometric feature matching
method with the ICP method. The reason is that the sparse geometric feature matching method can
provide a good initial guess for the ICP method and make the ICP method avoid falling into the local
optimal. Meanwhile, the ICP method further improves the accuracy of the transformation estimated
by a sparse geometric feature matching method. By combining these two methods, the estimated loop
closure constraints are more accurate and robust, which will be added into the pose graph. For the
pose graph optimization, we use g2o [50] to solve the problem.

6. Experiments and Analysis

To validate the performance of our proposed depth SLAM algorithm, we compared a front-end
algorithm to other classic methods and tested the whole system in practical environments. The SLAM
system is implemented using C++ language in ROS framework. We tested our algorithm on an Intel
i7-3630 QM notebook with eight CPUs running at 2.8 GHz. Our experiment video is available at:
https:/ /youtu.be/u7aPzFORrUc.

6.1. Comparison of the Front-End Algorithm

In order to show the excellent performance of our front-end algorithm, we compared our
method with other classic methods (ICP, GICP, NDT) on a publicly available benchmark TUM RGB-D
dataset [51].

6.1.1. Real-Time Performance of the Front-End Algorithm

We found that all the tested algorithms basically satisfy real-time requirements, as indicated
in Table 1. Obviously, our fronted-end algorithm is the fastest one, consuming around 14 ms for
consecutive registration. The NDT algorithm is the slowest, costing nearly 32 ms. In addition, the
GICP and ICP take 25 ms and 23 ms for sequential frame registration. The reason why our method is
much faster than other methods is that our method can calculate the motion estimation in one single
step while others need to iterate several times or extracting features.

Table 1. Average registration time for each algorithm (ms) (The blue number highlights the best results
for each specific dataset among all of the compared algorithms).

Datasets GICP ICP NDT Ours
fr1_360 25 22 32 15
fr1_desk2 31 27 15 12
frl_room 21 21 27 15
frl_xyz 29 20 38 10
fr2_desk 33 33 44 18

fr2_large_with_loop 24 23 25 16
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Table 1. Cont.

Datasets GICP ICP NDT Ours
fr3_cabinet 27 18 26 17
fr3_large_cabinet 17 19 19 15
fr3_long_office_household 20 18 20 10
fr3_structure_notexture_near 17 21 77 18
fr3_structure_notexture_far 20 18 19 17
fr3_structure_texture_near 20 17 27 17
fr3_structure_texture_far 30 29 48 8
fr3_sitting_xyz 30 23 27 13
Average time 25 23 32 14

6.1.2. Accuracy Performance of the Front-End Algorithm

In this section, we use four TUM RGB-D datasets to test the estimation accuracy of each method.
The dataset contains color and depth images along with ground truth trajectory that is obtained by
a motion capture system. The datasets also come with evaluation routines to measure two error
metrics, namely Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). Although ATE only
considers translational errors, any rotational error during the camera motion automatically presents
as a translation error in later frames. Meanwhile, the ATE provides results that are more intuitive
than those of RPE. Therefore, we use ATE to evaluate the accuracy of each method. Figure 7 shows
the 2D projection of the ground truth and estimated trajectory by direct depth odometry on four
datasets, namely fr3_structure_notexture_near, fr3_structure_notexture_far, fr3_structure_texture_near
and fr3_structure_texture_far. All of these datasets have low-texture information, which may cause
failure in pose estimation for the RGB-based method. From the results, we can see that the trajectory
of the direct depth method is very accurate when the environment has enough geometric features.
We also tested our front-end method on other TUM RGB-D datasets and compared it to other classic
depth registration methods. The experiment results are shown in Table 2. From the results, we can see
that, most of the time, our front-end method could get the best performance.

6.1.3. Robustness Performance of the Front-End Algorithm

To test the robustness, we select clutter office scenes that are fast motion scenarios. We select
fr1_xyz, fr1_desk, fr1_room and fr1_desk2. Those datasets are recorded in a typical cluster office scene
with desks, computer monitors, plants, chairs, etc. In addition, the RGB-D camera in those datasets
moves with fast angular velocity, and the average angular velocity of four datasets reaches 17.12 deg/s.
One of the datasets, fr1_xyz, refers to a sweep motion with hand, which makes point cloud hard to
match. Therefore, this is a great challenge for those geometric based methods. Figure 8 shows the
estimated trajectories projected onto an x—y plane compared with ground truth. From the results, we
find that the estimated trajectories have big drift in fr1_desk2 and fr1_room datasets. The potential
reason is that fr1_desk2 and fr1_room datasets are relatively fast in angular velocity (23.327 deg/s
and 29.88 deg/s). It breaks the small motion assumption of this method. The sampling rate is not
fast enough to ensure a small relative motion between two consecutive frames. Generally, for a direct
method, a fast sampling rate is good for pose estimation. Therefore, comparing with the ATE value
of classic approaches on fr1_desk2 and frl_room datasets as shown in Table 2, the accuracy of our
front-end method is not very good. However, as for fr1_xyz and fr2_desk datasets, the rotation speed
is 8.92 deg/s and 6.338 deg/s, respectively, which is much slower than the rest of datasets. In these
two datasets, our front-end method provides better results than those of classic approaches shown in
Table 2.
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value of ATE (Absolute Trajectory Error). The darker the color is, the smaller the value of ATE.

ATE mapped onto trajectory ATE mapped onto trajectory

0.18 0690
. --- reference —-- reference
)
09 g i 15
:
08 10
B
07 05
P .
\E/ 0.0¢ \E/ 0.350
> o6 =
00
05
-05
04
-1.0
h fr1_desk2
0.00 r —_— es 0010
-10 -05 00 ne 10 15
X(m)
ATE mapped onto trajectory o ATE mapped onto trajectory Lo
=== reference ==~ reference
10
05
—_ 00
E' 0570
>
-05

-15 N L4
-3 \\.’
fr1_room - fr2_desk o
-10 -05 00 05 10 15 -05 00 05 10 15 20 25 30 35
X(m)

Figure 8. Ground truth vs. our trajectory for all kinds of datasets. The darkness of color reflects the

value of ATE. The darker the color is, the smaller the value of ATE.



Sensors 2018, 18, 3339 14 of 21

Table 2. Evaluation of GICP, ICP, NDT and ours on tum datasets (The blue number highlights the best
results for each specific dataset among all of the compared algorithms).

ATE (in m) Transl. RMSE ATE (in m) Transl. MAX

Datasets GICP ICP NDT OURS GICP ICP NDT OURS
fr1_360 0.184 0.186 0.189 0.174 0.336 0.332 0316 0.349
fr1_desk2 0.431 0.27  0.777 0.35 1.252  0.615 1.144 0.69
fr1_room 0299 0.178 0.907 0.376 0.698 0.365 1524  0.693
frl_xyz 0.085 0.106 0.188  0.068 0.152 0.189 0.368 0.188
fr2_desk 1.155 0.632 1.557 0.533 2136 1.356 2284 1.049
fr2_large_with_loop 1.33 1.15 1.22 0.71 2.85 2.02 2.63 1.8
fr3_cabinet 0555 0.458 4.718 0.356 1.208 1.004 8.529 0.856
fr3_large_cabinet 0.788 1577 218 0.46 1993 2787 4487 1.207

fr3_long_office_household 0.786 0.857 1.306 0.95 1.852 2301 2727  2.093
fr3_structure_notexture_near 0.133 0.135 0.633 0.025 0.314 0.299 1413 0.056
fr3_structure_notexture_far 0.134 0.064 0.625 0.04 0.253 0.223 1.504 0.095
fr3_structure_texture_near 0.112 0.162 0.687 0.36 0216 0.348 1.453 0.096
fr3_structure_texture_far 0.203 0.141 2.259 0.07 0414 0237 4.213 0.13

fr3_sitting_xyz 0.287 0288 0.283 0.147 05414 0599 0.568 0.2893

6.2. Performance of the Back-End Algorithm

6.2.1. Loop Closure Detection Methods Comparison

(1) For Potential Loop Closure Frames: We try to find a loop closure when the distance between
current keyframe pose and a historical keyframe pose is within a certain threshold. After that, we try
to match the potential loop closure frames and compare the performance of different loop detection
methods, namely, the ICP method, a sparse geometric feature based method and the sparse geometric
feature combined with the ICP method. Figure 9 shows the results of matched potential loop closure
frames after applying these methods. Since in this case there is a large accumulated error, we can
clearly see large displacement between the two potential loop closure frames as shown in Figure 9a,e.
The traditional ICP method falls into the local optimum easily as shown in Figure 9b,f. In contrast,
the sparse geometric feature matching method can avoid the local optimum well and find the global
optimal matching. However, since this method only uses a limited number of geometric features to
calculate the transformation between the potential loop closure frames, the precision of estimation is
not very high. As you can see from Figure 9¢c, the potential loop closure frames match correctly in the
direction of the z-axis while they misalign a little bit in the x—y-axis (Figure 9g). In contrast, as shown
in Figure 9d,h, a sparse geometric feature combined with an ICP method can match the potential loop
closure frames correctly. This method not only avoids falling into local optimum, but also improves the
matching accuracy.

(2) For Global Map: In order to validate the performance of our loop detection algorithm more
intuitively, we build a global map corresponding to the scene of a long corridor environment in
real time. The results are shown in Figure 10. We mainly compare the accuracy of the global map
after applying the ICP method, sparse geometric feature based method and sparse geometric feature
combined with ICP method, respectively (the yellow dashed circle denotes the main difference in the
global map). Figure 10 presents the overhead and front view of global map in a large indoor scene. We
can clearly see that the global map from the front-end algorithm is inconsistent in all axis directions
(Figure 10a), especially for the direction of the z-axis (Figure 10e). Since the front-end has some
accumulated errors, the overlap between the potential loop closure frames is relative small. Therefore,
for the ICP method, it is easy to fall into local optimal and it is difficult to obtain the global consistency
map. As shown in Figure 10b,f, this ICP method cannot eliminate the map distortion especially in the
direction of the z-axis. In contrast, a sparse geometric feature method can effectively find the global
optimal matching, calculate the transformation between potential loop closure frames and basically
eliminate the point cloud distortion (Figure 10c), especially in the z-direction (Figure 10g). In spite of
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this, the point cloud corresponding to the floor (marked by the yellow dashed circle (Figure 10g) is
thick, indicating that the precision of transformation is limited. In order to improve the precision of this
method, we combine the sparse geometric features with the ICP method, which cannot only eliminate
the distortion of global map, but also make the point cloud correspond to the floor more accurately, as
shown in Figure 10d,h. This indicates that the precision of estimated loop closure constraints is good.

Front View Overhead View

(f) ICP based Method

(¢) Sparse Geometric Feature (d) Sparse Geometric Feature
Based Method Combined with ICP Method

((3) éhane Geometric Feature  (h) Sparse Geometric Feature
Based Method Combined with ICP Method

Figure 9. The performance of matched potential loop closure frames after applying different kinds of
methods shown in the front and overhead view (The green point cloud has floor constraints, while the
red point cloud does not).

Overhead View Front view

(f) ICP Based Method

(g) Sparse Geometric Feature Based Method

(c) Sparse Geometric Feature o (d) Sparse Geometric Feature " n n ;o
Based Method Combined with ICP Method (h) Sparse Geometric Feature Combined with ICP Method R

Figure 10. The accuracy comparison of mapping results after applying different kinds of methods for
loop detection in the overhead and front view (the yellow dashed circle denotes the main difference in
the global map).
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6.2.2. Mapping Accuracy Comparison in a Low-Texture Environment

(1) Mapping Performance of Direct Depth SLAM in a long corridor environment: In order to
validate the performance of our back-end algorithm, we choose a long corridor environment as shown
in Figure 11e to carry out the experiments. In this long corridor, the floors and walls are very smooth.
Therefore, this environment is very challenging for depth-only methods. The main challenges are:

e The walls and floor of long and narrow corridors are relatively smooth, and have less
geometrical-distinctive features.

e The depth camera has a very limited measurement range and field of view; therefore, there
are a number of pixels in the depth image that will have NAN depth value. Given this, it is
difficult to obtain constraints along the forward direction for depth cameras in such long and
narrow corridors.

e  As this corridor environment covers 20 m x 30 m, the accumulated drift of the front-end method
should be small enough. Otherwise, the loop closure constraint at the back-end algorithm will
be hard to establish. Therefore, this requires the pose estimation of the front-end algorithm to be
highly precise.

e  The corridor environment is also very difficult for extracting geometric features since it only
contains smooth walls. Therefore, it is difficult for the back-end algorithm to determine previously
visited places.

The experimental results are presented in Figure 11. The background is the floor plan of the
corridor environment. The camera moved along the arrows in an anti-clockwise direction. The blue
line (Figure 11a) presents the trajectory estimated with our front-end algorithm. We can clearly see
that the global map from the front-end algorithm is inconsistent a little bit in all directions (Figure 11a),
especially in the z-direction (Figure 11c). In contrast, the sparse geometric feature combined with the
ICP method can effectively find the global optimal matching shown as in Figure 11b,d. The red line in
the (Figure 11b) shows the trajectory of pose estimation after global pose graph optimization, which
coincides with the floor plan well. This shows that our depth image-based SLAM system has the
ability to reduce the global drift in a low-texture scene by robust loop-closure detection and global
pose graph optimization.

(2) Mapping Performance of ORB-SLAM in a long corridor environment: To further illustrate the
performance of our algorithm, we compare our experimental results with the ORB-SLAM algorithm
using the same corridor dataset. Since we cannot obtain the ground truth of this dataset, we can
only evaluate the algorithm by comparing the loop closure error and the quality of the global map.
Here, we use the monocular and the RGBD mode of ORB SLAM algorithm to construct the global
map as shown in Figure 12. When only providing RGB information to the ORB-SLAM system,
since the surfaces of the wall and floor have low texture information, the ORB-SLAM system under the
monocular mode is often difficult for extracting the salient features, resulting in the system initialization
and tracking failure, as shown in Figure 12e. Figure 12a,c show the global map results when ORB-SLAM
initializes successfully in monocular mode. We can see that there is failure in loop detection, drift in
its estimated trajectory, and distortion in its reconstructed global map. When providing both RGB
image and depth image to the ORB-SLAM system at the same time, however, this system can complete
the initialization work normally, and the extracted texture features of a single frame are very sparse
as shown in Figure 12f. It makes the pose estimation not very accurate and also leads to the loop
detection failure and distorts the global map as shown in Figure 12b,d. We can see that there is an
accumulated drift in the vertical direction of estimated trajectory (Figure 12d). This experiment result
fully validates the advantages of our Direct Depth Slam System for low-texture environments.
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Corridor2
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} ~ Corridor4
(a) Map without using pose graph __(b) Sparse_Geometric Feature Combined with ICP Method

(¢) Map without using posegraph B (d) Sparse Geometric Feature Combined with ICP Method Y-

Figure 11. The accuracy comparison of mapping results between the front-end algorithm and back-end

algorithm in overhead and front views (the yellow dashed circle denotes the main difference in
global maps).

~
N N

(e) Feature Extraction witn Mono mode

Vi dle e 1

(¢) ORB SLAM Using Mono camera (d) ORB SLAM Using RGBD camera (f) Feature Extraction with RGBD mode

Figure 12. The performance of mapping results after applying the ORB-SLAM algorithm using the
mono and RGB-D camera, respectively.

(3) Mapping Performance Comparison of different methods in a dark environment: In order to
validate the robustness of our method, we choose a cluttered and dark environment to carry out the
experiments. In such scenes, we can hardly obtain any texture information as shown in Figure 13e.
In contrast, the depth images can provide abundant geometric information as shown in Figure 13d.
Since the whole environment is very messy, it is also very challenging for depth-only methods.
Figure 13 shows the performance of mapping results in a dark environment after applying our method
and ORB-SLAM method, respectively. We can clearly see that our method can estimate the motion
of cameras robustly in a dark environment (Figure 13a) and there is almost no drift in the vertical
direction (Figure 13b) while the ORB-SLAM with RGB-D mode can not work properly(Figure 13c).
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The reason is that the ORB-SLAM mainly depends on texture information and does not make the
depth images to form an independent pose estimation module. Therefore, when the environments
lack texture information, the front-end module of ORB-SLAM cannot extract salient features and pose
estimation will fail even though the depth images are available.

(d) Depth Image

(b) Direct Depth SLAM (¢) RGB Image

Figure 13. The performance of mapping results in a dark environment after applying direct depth
SLAM (a) and ORB-SLAM (c) methods, respectively.

7. Conclusions

In this paper, we introduced a novel depth SLAM method that utilizes both dense range flow and
sparse geometry features from sequential depth images. The proposed method is composed of three
optimization layers, namely the Direct Depth layer, ICP refined layer and Graph Optimization layer.
By using the proposed three-layer optimization scheme, our SLAM method can achieve real-time and
low drift pose estimation. Quantitative and qualitative experimental results show that our method
can achieve real-time, low drift and robustness ego-motion estimation. In the future, we will carry
out more experiments to validate the performance of our method and try to extend this method to a
3D laser scanner. Especially for the upcoming solid-state laser scanner, we believe that this method
will have broad application prospects. We also want to fuse our front-end algorithm with an IMU to
improve its robustness.
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