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Abstract: The linear optical-ruler sensor with 1 µm precision mounted in the linear permanent
magnet synchronous machine (LPMSM) is used for measuring the mover position of LPMSM in order
to enhance the precision of a measured mover position. Due to nonlinear friction and uncertainty
effects, linear controllers are very hard to achieve good mover positioning of LPMSM. The proposed
adaptive amended Elman neural network backstepping (AAENNB) control system is adopted for
controlling the LPMSM drive system to bring about the mover positioning precision of LPMSM.
Firstly, a backstepping scheme is posed for controlling the tracing motion of the LPMSM drive system.
The proposed backstepping control system, which is applied in the mover position of the LPMSM
drive system, possesses better dynamic control performance and robustness to uncertainties for the
tracing trajectories. Because of the LPMSM with nonlinear and time-varying dynamic characteristics,
an adaptive amended Elman neural network uncertainty observer (AAENNUO) is posed to estimate
the required lumped uncertainty. According to the Lyapunov stability theorem, on-line parameter
training methodology of the amended Elman neural network (AENN) can be derived by use of
adaptive law. The error estimated law is proposed to compensate for the observed error induced by
the AENN with adaptive law. Furthermore, to help improve convergence and to obtain better learning
performance, the mended particle swarm optimization (PSO) algorithm is utilized for adjusting the
varied learning rate of the weights in the AENN. At last, these experimental results, which show
better performance, are verified by the proposed control system.

Keywords: backstepping control; Elman neural network; linear permanent magnet synchronous
machine; Lyapunov stability

1. Introduction

Compared with other classes of linear actuators, most linear machines have smaller load capacity.
Linear machines have a merit in outdoor or dirty environments because the stator and mover parts need
not contact each other. Moreover, the drive coils can be watertight and sealed against corrosion and
moisture and can thus have a long serving life. The linear permanent magnet synchronous machine
(LPMSM) which is the direct-drive mechanical design, has lots of merits over the indirect-drive
transcript, for instance, no backlash, low friction, high speed, high precision in long distance position,
simple structure, and high thrust force [1]. Therefore, the LPMSM is suitable for high precision servo
applications, and it has been applied for manufacturing systems and machine tools [1–3].

The backstepping design is suitable for a large class of state feedback linearizable systems with
nonlinear properties. Its method [4–6] is to select certain fit functions of state variables, and to set as
pseudo-control inputs in some subsystems of the whole system. Each backstepping section leads to
the novel pseudo-control design, and represents another pseudo-control design from previous design
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steps. When the order is achieved, true control inputs result in the feedback design. By summing up
the Lyapunov functions from a virtue of a final Lyapunov function related with individual design
step, the original design objective was achieved [4–7]. However, some methods use a linear model
of the machine, which may not be suitable for high-performance applications under the occurrence
of uncertainties. On the other hand, the related control methods with a focus on some nonlinear and
linear controllers were proposed [8–11]. Lu et al. [8] posed the control method of cell divisions in the
nervous system as symmetry and asymmetry. Precup et al. [9] developed the new Takagi-Sugeno
proportional-integral-fuzzy controllers (PI-FCs) to control a class of servo systems with maximum
sensitivity. Martin et al. [10] proposed a genetic algorithm for optimal tuning of a networked linear
controller, and then applied it to a complex electromechanical process. Vrkalovic et al. [11] developed
the design of Takagi-Sugeno fuzzy controllers in state feedback form by the use of swarm intelligence
optimization algorithms. The adaptive backstepping controllers were applied in linear induction
machine control [12,13]. Furthermore, the adaptive backstepping controllers combined with the neural
networks to control the nonlinear systems have been proposed in References [14,15]. However, the error
compensation mechanisms in these methods have never been proposed. Thus, the motivation of the
proposed adaptive, amended Elman neural network backstepping (AAENNB) control system by use of
a linear optical-ruler sensor with 1 µm precision and three Hall sensors provides an error compensation
mechanism to enhance the robustness of the system under parameter variations and external force
disturbances to raise the control precision.

Elman [16] proposed an especially partial recurrent neural network (RNN) which is called the
Elman neural network (ENN). The classical ENN is a RNN with delayed feedback in the hidden
layer. It can provide the standard state-space expressions for some dynamic systems. It can also be
regarded as a special kind of RNN with feedback links from the hidden layer to the context layer.
The context layer is an additional layer which can be regarded as an extra memory to memorize
previous activations of the hidden neurons. It feeds to all the hidden neurons after the one-step
time delay. Compared to the ordinary RNNs, the ENN has an unusual strict memory to deposit the
provisional information. In general, the ENN can be regarded as an especial kind of feed-forward
NN with added memory neurons. The ENN has certain dynamic fits over the static neural network
(NN) [17–19], owing to the context nodes in the ENN. In addition, the ENN has been applied abroad
for identification and control of systems [20–23]. Furthermore, in order to raise fast convergent capacity
and to enhance the high precision ability for high-order nonlinear systems, the amended Elman neural
network (AENN) is proposed in this paper.

Owing to structural merit [24–27], the RNN has become one of most popular NNs in dynamic
control and nonlinear modeling. The main property of the RNN is a self-linked to memorize a feedback
message of the historical effect in the same node. Moreover, the specific self-link feedback of the
hidden node or the output node in the general RNN is in charge of memorizing the particular frontal
activation of the hidden node or the output node, and then feeds to itself only. Thus, the outputs
of the other nodes have no capacity to involve the particular neuron. However, the friction force
and the external force obstruction in the LPMSM with complicated nonlinear dynamic behavior is
always serviced as an important term. Hence, if each node in the RNN is regarded as a state in the
nonlinear dynamic system, the self-link feedback class cannot approximate the nonlinear dynamic
effectively. Moreover, the feedback signals not only are self-linked but also feed to all the hidden
nodes in the context nodes of ENN. Thus, the construction of ENN is more formidable than the general
RNN for dealing with time-varying and nonlinear dynamic systems because the ENN has more
approximated capacity effectively with the extra context layer. Furthermore, some amended Elman
neural networks (AENNs) [28–30] have been posed recently to improve the ability of identifying high
nonlinear systems. It has been proven to have more merits than the basic ENN, such as higher accuracy,
better performance, faster transient response and better dynamic robustness.

Due to easy implementation and having a quick convergent capacity for solution optimization,
a particle swarm optimization (PSO) has become one of the most popular optimization methods.
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The best solution in the global region can be found by simply regulating each individual towards
its own best position trajectory and toward the best solution at each step [31,32]. In optimization
methods, the fit control of global and local exploitations is related to find the optimization solution
effectively [33]. Moreover, the PSO has been widely used in multi-sensor data fusion and dynamic
model updating for bridge structures [34,35] due to its simple structure, simple parameter setting and
fast convergent speed. Furthermore, the PSO has the precocious convergent problem. The mended
PSO [36,37] with the fast convergent speed is thus posed to prevent precocious convergence and to
obtain an optimized learning rate.

The modeling errors and disturbances can occur in a function that has both unknown parameters
and dynamics of the system in the LPMSM drive system. Due to the effect of these uncertainties,
the better control performance of the LPMSM drive system is hard to achieve by use of linear
controller. In order to raise robustness, an adaptive amended Elman neural network backstepping
(AAENNB) control system is posed for controlling the motion of the mover position of the LPMSM
drive system to track periodic references. The motion of the mover position of the LPMSM drive
by use of the backstepping control system holds the merits of good transient control performance
and good robustness under uncertainty interference for two kinds of tracing periodic references.
Additionally, to further enhance the robustness of the LPMSM drive, an adaptive amended Elman
neural network uncertainty observer (AAENNUO) is posed for estimating the necessary lumped
uncertainty. Furthermore, to help improve convergence and to acquire better learning performance,
the mended PSO algorithm is utilized for adjusting the varied learning rate of the weights in the
AENN. Thus, in this paper, the objective of the AAENNB control system for controlling the LPMSM
drive system by use of linear optical-ruler sensor with 1 µm precision and three Hall sensors is to raise
the control precision and to enhance the robustness of the system under parameter variations and
external force disturbances. The AENN with adaptive law is posed to adapt the lumped uncertainty
value. The error estimated law is posed for compensating the observed error that prevailed by the
AENN with adaptive law, and we cannot build the convergence of the tracing error to zero. Therefore,
all errors defined on the AAENNB control system converge into a neighborhood with reachable radius,
and stay within uniformly final boundedness. Moreover, to help improve convergence and to acquire
better learning performance, the mended PSO algorithm is utilized for adjusting the varied learning
rate of the weights in the AENN. Finally, the robustness and effectiveness of the posed AAENNB
control system are shown in some experimental results.

The remainder of this paper is organized as follows: The materials and methods including
composition of LPMSM drive and control methods are reviewed in Section 2. Experimental results
and discussion including some experimental results and characteristic performance comparisons for
the three control systems are presented in Section 3. Some conclusions are given in Section 4.

2. Materials and Methods

2.1. Composition of LPMSM Drive

The d-q axis voltage model of the LPMSM can be presented in synchronous rotating reference
frame in References [1–3]) as follows:

vq = Rsiq + Lq
.
iq + ωe(Ldid + λm) (1)

vd = Rsid + (Ld
.
id +

.
λm)−ωeLqiq (2)

where ωr and ωe = Pωr/2 are the electrical angular speeds of the mover and switching power.
vd, id and Ld are the d axis voltage, current and inductance, respectively. vq, iq and Lq are the q axis
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voltage, current and inductance, respectively. λm, Rs and P are the flux linkage of permanent magnet,
the phase winding resistance and the number of pole, respectively. Furthermore,

ωr = πur/nr (3)

ue = Pur/2 = τ ft (4)

where ue, ur, nr and ft are the electrical linear speed, the linear speed, the pole pitch and the electrical
frequency, respectively. The electromagnetic force [2] can be denoted by

fd = 3πP[λmiq +
(

Ld − Lq
)
idiq]/(4nr) (5)

The electromagnetic power [2] can be denoted by

pd = fdue = 3P[λmiq +
(

Ld − Lq
)
idiq]ωe/4 (6)

The dynamic equation of the mover can be denoted as

fd = M
.
ur + Dur + fl (7)

where fl , fd, M and D are the external force disturbance, the electromagnetic force, the total mass of
the moving element system and the viscous friction, respectively.

The control method based on field orientation mechanism [2] for the LPMSM drive system is
adopted. The flux linkage position in the d-q axis frame can be determined by three Hall sensors. In (5)
and (6), if id = 0 and λm is constant for the LPMSM, then the electromagnetic force fd is proportional to
iq, which is determined by closed-loop control. The rotor flux linkage is produced by the d-axis current
only, and the force current is generated by the q axis current for the field-oriented control. Since the
generated machine force is linearly proportional to the q axis current when the d axis rotor flux linkage
is constant in (5), the maximum force per ampere can be achieved. The simplified force equation is
given by

fd = 3πλmiq/(4nr) (8)

The optimized electromagnetic performance for the LPMSM drive system is thus implemented
by controlling the main current distribution to lie in the q axis, i.e., id = 0, and this will yield a linear
force per amp characteristic for the LPMSM drive system.

The formation of the LPMSM drive system with field-oriented control is shown in Figure 1,
which is comprised of a LPMSM, a ramp comparison current control, a coordinate transformation,
a cos/sin generator, a speed control, a position control, a linear optical ruler sensor and three
Hall sensors. A linear optical ruler sensor with 1 µm precision is used for detecting the motion
position of the mover. The linear optical ruler sensor is a DC 5V grating ruler. A linear optical ruler
sensor has three digital output signals, A/B/Z and A/B/Z, which issue quadrature squarewaves
and zero pulse. Depending on its internal mechanism, an encoder may derive A and B directly
from sensors which are fundamentally digital signals in nature, or it may interpolate its internal
signals. Then, the four-multiplier converter circuit converts 1000 pulses into 1 mm = 0.5 V. In this
case, the interpolation process effectively sub-divides the scale period and thereby achieves higher
measurement resolution. Moreover, three Hall sensors denoted U, V and W are used to detect the flux
linkage position of the permanent magnet (PM). Three Hall sensors consist of the Hall elements and
the associated electronics which is a basic analog output device. Analog sensors provide an output
voltage that is proportional to the magnetic field to which it is exposed. The additional circuit functions
were added to simplify the application. The analog sensor accepts a 4.5 V to 10.5 V supply voltage.
The sensor has a sensitivity (mV/Gauss) and offset proportional (ratiometric) to the supply voltage.
This device has rail-to-rail operation. Its output varies from almost zero (0.2 V typical) to almost the
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supply voltage (Vs, 0.2 V typical). The basic analog output device can be converted into a digital
output sensor with the addition of a Schmitt trigger circuit.

The iron disks with different sizes and spring with the same or the opposite force can
be mounted on the mover of LPMSM to change the mass of the moving element and viscous
friction, i.e., the parameters disturbance with four times the nominal value of the mover mass and
viscous friction.
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Figure 1. Formation of LPMSM drive system with field-oriented control using DSP control system.

The field-oriented control was implemented by use of digital-signal-processor (DSP) TMS320C32
control system. The LPMSM drive and control system by use of field-oriented control in References [1–3]
can be simplified as shown in Figure 2, where

fd = k f iq (9)

k f = 3πPλm/(4nr) (10)

Hp(s) = 1/(Ms + D) (11)
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where k f is the thrust coefficient. iq = i∗q is the command of thrust current. s is a Laplace’s operator.
The specifications of LPMSM with linear optical ruler sensor with 1 µm precision in this study are
given as 220 V, 3.1 A, 0.6 kW, 50.8 N. The position and speed signals in the control loop are set at
1 V = 2 mm and 1 V = 2 mm/s for the convenience of the controller design. The parameters of the
system are given as M = 2.1 kg = 0.1812Ns/V, D = 81.62 kg/s = 5.021 N/V, k f = 32.2N/A. The “−”
symbol represents the system parameter in the nominal case.
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2.2. Control Methods

By use of (7), the actual LPMSM drive system including parameter variations, external load
disturbance, and friction force can be presented by

.
dr = ur = xa (12)

.
xa = (a1 + ∆a1)xa + (b1 + ∆b1)ua + c1 fl (13)

y = dr (14)

where dr and xa are the mover position and speed of the LPMSM. a1 = −D/M, b1 = k f /M > 0
and c1 = −1/M are three constants. ∆a1 and ∆b1 are two uncertainties from M and D parameters
variations. ua = iq is the control effort which inputs to the LPMSM drive system, i.e., the thrust current.
Then (13) can be denoted by

.
xa = axa + bua + la (15)

and
la ≡ ∆axa + ∆bua + c fl (16)

where la is called the lumped uncertainty. The lumped uncertainty will be inspected by an adaptive
uncertainty observer. It is assumed that the observation is a constant. Because the sampling period
of the observer is very short compared with the variation of la, the constant assumption is valid in
practical digital processing of the observer.

The control aim is that the output y(t) of the system can trace the reference trajectory yd(t), i.e., dm,
asymptotically. The control system is designed to achieve the position-tracing aim, and is described by
use of the backstepping control system as follows.

Order 1: Define the tracing error for the position-tracing aim as

ea = dm − dr = yd − y (17)
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Its derivative is denoted by
.
ea =

.
yd −

.
y =

.
yd − xa (18)

Define the following stabilizing function:

βa = caea +
.
yd + cbσ (19)

where ca and cb are positive constants. σ =
∫

ea(τ)dτ is the integral factor. The tracing error can
converge to zero by the use of an integral factor.
Define the virtual tracing error as

eb = xa − βa (20)

The derivative of eb can be presented by

.
eb =

.
xa −

.
βa = (axa + bua + la)−

.
βa (21)

The lumped uncertainty la can be assumed to be bounded, i.e., |la| ≤ la. In order to design the
backstepping control system, the first Lyapunov function is defined by

fa = e2
a/2 + e2

b/2 + cbσ2/2 (22)

By using (18) and (21), then the derivative of fa can be presented by

.
f a = ea

.
ea + eb

.
eb + cbσ

.
σ

= ea(
.
yd − xa) + eb(axa + bua + la −

.
βa) + cbσ

.
σ

= ea(−caea − cbσ− eb) + eb[a(eb + βa) + bua + la −
.
βa] + cbσ

.
σ

= −cae2
a − eaeb + eb[a(eb + βa) + bua + la −

.
βa]

(23)

Then the posed backstepping control system ua = iq from (23) is designed as

ua = iq = b−1[ea − cceb − a(eb + βa) +
.
βa − lasgn(eb)] (24)

where cc is positive constant. Substituting (24) into (23), then (23) can be obtained by

.
f a = −caea

2 − cce2
2 + ebla − |eb|la

≤ −caea
2 − cceb

2 − |eb|(la − |la|)
≤ −cae2

a − cce2
b

(25)

Define the following term:
ε(t) = cae2

a + cbe2
b ≤ −

.
f b (26)

Then ∫ t

0
ε(τ)dτ ≤ fb(ea(0), eb(0))− fb(ea(t), eb(t)) (27)

Since fa(ea(0), eb(0)) is limited, and fa(ea(t), eb(t)) is nonincreasing and limited, then lim
t→∞

∫ t
0 ε(τ)dτ < ∞.

Moreover,
.
ε(t) is limited then and ε(t) is uniformly successive [38,39]. By use of Barbalat’s lemma [38,39],

it represents lim
t→∞

ε(t) = 0, then ea and eb will converge to zero as t→ ∞ . Furthermore, lim
t→∞

y(t) = yd and

lim
t→∞

xa =
.
yd. Thus, the posed backstepping control system will be asymptotically stable. The stability

of the posed backstepping control system can be guaranteed, and then the block diagram of the posed
backstepping control system is shown in Figure 3.

Order 2: Because the lumped uncertainty la is hard to measure and the upper bound la is hard to
determine, therefore, an AENN uncertainty observer is posed to adapt the value of the lumped
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uncertainty. The composition of the proposed four-layer AENN, which involves the input, hidden,
context and output layers, is shown in Figure 4 to be used to carry out the estimation of the lumped
uncertainty. The models in each layer are represented by

Layer 1: Input Layer i

net1
i (N) = ∏

o
x1

i (N)µoiy4
o(N − 1), y1

i (N) = f 1
i (net1

i (N)) = net1
i (N)), i = 1, 2 (28)

Layer 2: Hidden Layer j

net2
j (N) = ∑

k
µkjy3

k(N) + ∑
i

µijy1
i (N), y2

j (N) = f 2
j

(
net2

j (N)
)
=

1

1 + e−net2
j (N)

, j = 1, 2, . . . , m1 (29)

Layer 3: Context Layer k

net3
k(N) = y2

j (N − 1) + αy3
k(N − 1), y3

k(N) = f 3
k (net3

k(N)) = net3
k(N)), k = 1, · · · , n1 (30)

Layer 4: Output Layer o

net4
o(N) = ∑

j
µjoy2

j (N), y4
o(N) = f 4

o

(
net4

o(N)
)
= net4

o , o = 1 (31)
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where ea,
.
ea and x1

i are the difference between the reference model dm and the mover position dr,
the derivative and the ith input signal of the input layer, respectively. m1, n1, N and z−1 denote the
number of neurons in the hidden layer, the number of neurons in the context layer, the number of
iterations and the time delay, respectively. µij, µkj and µoi are the connective weights between the input
layer and the hidden layer, the connective weight between the context layer and the hidden layer and
the recurrent weight between the output layer and the input layer, respectively. y1

i (N), y2
j (N), y3

k(N)

and y4
o(N) are the ith output of the input layer, the jth output of the hidden layer, the kth output of

the context layer and the oth output of the output layer, respectively. f 1
i , f 2

j , f 3
k and f 4

o are the linear
function, the sigmoid function, the linear function and the linear function, respectively. α is the self-link
feedback gain of the context layer between 0 and 1. The output y4

o(N) of the AENN is represented by

y4
o(N) = l̂a(Ω) = ΩTΦ (32)

where Ω =
[
µ1o µ2o · · · · · · µm1o

]T is the vector of the weights of the AENN. Φ =
[
x4

1 x4
2 · · · · · · x4

m1

]T
is the input vector of the output layer, which is determined by the selected sigmoid function and
0 ≤ x4

j ≤ 1.
To exploit the adaptive law of the AENN uncertainty observer, the minimum rebuilt error δ is defined by

δ = la − la(Ω
∗) (33)



Sensors 2018, 18, 3345 10 of 30

where Ω∗ is an optimized weight vector that reaches the minimum rebuilt error. The |δ| is less than
a small positive constant, δ, i.e., |δ| ≤ δ. Then, the Lyapunov function is chosen as

fb = fa + (δ̂− δ)
2
/(2γ) + (Ω−Ω∗)T(Ω−Ω∗)/η1 (34)

where γ and λ are positive constants. δ̂ is the estimated value of the minimum rebuilt error δ.
The estimation of the rebuilt error is used to compensate the observed error induced by the AENN
uncertainty observer, and to further guarantee the system stable. Take the derivative of the Lyapunov
function from (34)

.
f b =

.
f a + (δ̂− δ)

.
δ̂/γ + (Ω−Ω∗)T .

Ω/η1

= −cae2
a − eaeb + eb[a(eb + βa) + bua + la −

.
βa] + (δ̂− δ)

.
δ̂/γ + (Ω−Ω∗)T .

Ω/η1

(35)

According to (35), an AAENNB control system ua = ûa = iq is proposed as follows:

ua = ûa = iq = b−1[ea − cceb − a(eb + βa) +
.
βa − l̂a − δ̂] (36)

From (36) and (35), the following equation can be obtained

.
f b = −caea

2 − cce2
b + ebla − eb l̂a − eb δ̂ + (δ̂−δ)

.
δ̂

γ + (Ω−Ω∗)T .
Ω

η1

= −caea
2 − cce2

b + eb(la − l̂a(Ω∗))− eb(l̂a(Ω)− l̂a(Ω∗))− eb l̂a − eb δ̂ + (δ̂−δ)
.
δ̂

γ + (Ω−Ω∗)T .
Ω

η1

= −caea
2 − cce2

b − eb(Ω−Ω∗)T
Φ− eb l̂a − eb(δ̂− δ) + (δ̂−δ)

.
δ̂

γ + (Ω−Ω∗)T .
Ω

η1

(37)

The adaptive law for
.

Ω and an error estimated law for
.
δ̂ are designed as:

.
Ω = η1ebΦ (38)

.
δ̂ = γeb (39)

Thus, (37) can be rewritten as follows:

.
f b = −caea

2 − cce2
b = −ε(t) ≤ 0 (40)

By use of Barbalat’s lemma [38,39], it presented −ε(t)→ 0 as t→ ∞ from (26) and (27), then ea

and eb will converge to zero as t→ ∞ . Consequently, the stability of the proposed AAENNB control
system can be guaranteed, and the control diagram block of the proposed AAENNB control system is
shown in Figure 5. The persistent excitation condition [38,39] will be satisfied for the estimated value
to converge to its theoretic value.



Sensors 2018, 18, 3345 11 of 30
Sensors 2018, 18, 3345  11 of 30 

 

ac

s

beae a

-

+

ax
rdy 

md dy 

1b

fk

df

ru

LPMSM and Drive System

lf

DMs 

1





 

+
-

+

a

cc

- +

-+

-

-

bc



+
-

s

+

a a ae

s

1

s

1

+

Amended Elman Neural 
Network (AENN), Eq. (32)

Adaptive Law, 
Eq. (38), (43), (44), (45)

s

ae

ae

Φ

Ω



s

1

Adaptive Amended Elman Neural Network Backstepping
(AAENNB) Control System, Eq. (36),

alNy ˆ)(4
0 

be

̂

be

Optimized 
Learning Rate 
Using Amended  
PSO, Eqs. (46), 
(47), (48), (49)

*
11  

Reference
Model

*d

rd

qaa iuu  ˆ

DSP Control System

qaa iuu  ˆ

-


̂

Error 
Estimated 

Law, Eq. (39)

 
Figure 5. Block diagram of the proposed AAENNB control system using DSP control system. 

In order to train the AENN effectively, an on-line parameter training methodology can be 
derived by use of the adaptive law Ω  in (38). Then the adaptive law of the parameters in the 
AENN, ),,,( oiijkjjo Ω  can be counted by use of the gradient descent method and the 

backpropagation algorithm, and these updated weights are presented in the following procedures. 
The connective weight jo  can be updated by 

4
41

4

4

4

411 Δ j
o

b

jo

o

o

o

o

b
bjo x

y

f

u

net

net

y

y

f
eu

















  Φ  (41)  

The above Jacobian term of controlled system can be presented as bob eyf 4 . The error term 
can be counted by  

b
o

b
k e

y

f


4


   (42)  

The connective weight kj  can be updated by 

  
kj

j

j

j

j

o

o

o

o

b

kj

b
kj u

net

net

y

y

net

net

y

y

f

u

f
u




















2

2

2

2

4

4

4

4





 jjok P  (43) 

where kjjj uyP  2  can be counted from (29).  

The connective weight ij  can be updated by 

ij

j

j

j

j

o

o

o

oij

b
ij u

net

net

y

y

net

net

y

y

f

u

f
u




















2

2

2

2

4

4

4

4
2




 jjok Q  (44)  

where ijjj yQ  2 can be counted from (29).  

The recurrent weight oi  can be updated by 

Figure 5. Block diagram of the proposed AAENNB control system using DSP control system.

In order to train the AENN effectively, an on-line parameter training methodology can be
derived by use of the adaptive law

.
Ω in (38). Then the adaptive law of the parameters in the AENN,

.
Ω(µjo, µkj, µij, µoi) can be counted by use of the gradient descent method and the backpropagation
algorithm, and these updated weights are presented in the following procedures.

The connective weight µjo can be updated by

.
ujo = η1ebΦ , −η1

∂ fb
∂y4

o

∂y4
o

∂net4
o

∂net4
o

∂ujo
= −η1

∂ fb
∂y4

o
x4

j (41)

The above Jacobian term of controlled system can be presented as ∂ fb/∂y4
o = −eb. The error term

can be counted by

ρk , −
∂ fb
∂y4

o
= eb (42)

The connective weight µkj can be updated by

.
ukj = −

∂ fb
∂ukj

= − ∂ fb
∂y4

o

∂y4
o

∂net4
o

∂net4
o

∂y2
j

∂y2
j

∂net2
j

∂net2
j

∂ukj
= ρkµjoPj (43)

where Pj ≡ ∂y2
j /∂ukj can be counted from (29).

The connective weight µij can be updated by

.
uij = −

∂ fb
∂uij

= − ∂ f2

∂y4
o

∂y4
o

∂net4
o

∂net4
o

∂y2
j

∂y2
j

∂net2
j

∂net2
j

∂uij
= ρkµjoQj (44)

where Qj ≡ ∂y2
j /µij can be counted from (29).
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The recurrent weight µoi can be updated by

.
uoi = −

∂ f2

∂uoi
= − ∂ f2

∂y4
o

∂y4
o

∂y2
j

∂y2
j

∂y1
i

∂y1
i

∂uoi
= ρkµjoRj (45)

where Rj ≡ ∂y2
j /uoi can be counted from (28).

In order to acquire a better learning rate, the mended PSO is thus posed for finding the optimized
learning rate of the weight in the AENN. Two acceleration coefficients ka, kb and inertia weight ρm,n(t)
in the PSO [31–35] can result in an important effect on performance of the algorithm. Smaller inertia
weight in the PSO results in a faster convergence speed and works well in local search. Larger inertia
weight in the PSO can achieve a more accurate value and works well in global search. The dynamic
modification of inertia weight is adopted for training the appropriate value of ρm,n(t) in order to consort
between find accuracy and find speed. Therefore, in order to speed up convergence, the mended PSO
algorithm [36,37] is given by

ηm,n(t + 1) = ηm,n(t) + zm,n(t + 1), m = 1, n = 1, 2, . . . , q1 (46)

zm,n(t + 1) = ρm,n(t) zm,n(t) + ςm,n(t)kaφa
m,n(Pb

m,n − ηm,n(t))
+ςm,n(t)kbφb

m,n(Pg
m,n − ηm,n(t)), m = 1, n = 1, 2, . . . , q1

(47)

ρm,n(t) =

{
ρa

m,n +
φc

m,n(ρ
a
m,n−ρb

m,n)(ym,n−ya
m,n)

(yc
m,n−ya

m,n)
, i f y ≤ ya

m,n

ρb
m,n, i f y > yc

m,n

, m = 1, n = 1, 2, . . . , q1 (48)

ςm,n(t) = ςa
m,n + t · ςb

m,n/T, m = 1, n = 1, 2, . . . , q1 (49)

where ηm,n(t) is the current position of particle Pm,n in the nth hyperspace at step t and with regard
to an optimized learning rate η∗m(t), m = 1 at step t. zm,n(t) is the current speed of particle Pm,n in
the nth hyperspace at step t. ρm,n(t) is the inertia weight within 0.4 < ρm,n(t) < 0.9 [33,34] in the nth
hyperspace at step t, so that search space can be changed steadily from global to local. ρb

m,n and ρa
m,n

represent the maximum value and minimum value of ρm,n(t) in the nth hyperspace. φa
m,n, φb

m,n and
φc

m,n are random numbers obtained from the uniform random distribution function in the interval [0, 1]
in the nth hyperspace.Pb

m,n and Pg
m,n represent the best previous position of the nth hyperspace and the

position of the best particle among all particles in the population in the nth hyperspace, respectively.
ym,n is the current objective function value of particles. yc

m,n, yb
m,n and ya

m,n are the average objective
function value, the maximum objective function value and the minimum objective function value
of all the current particles. ςa

m,n and ςb
m,n are the initial positive constants in the interval [0, 1] in the

nth hyperspace. t = 1, 2, · · · tmax denotes the number of the iteration. tmax denotes the number of the
maximum iteration. T denotes the number of generations. ςm,n(t) is the constriction factor [36,37]
to avoid the swarm from premature convergence and to ensure stability of the system. In summary,
the online tuning algorithm of the AENN is based on the adaptive law (38) for the connective weight
adjustment by using the optimized learning rates ηm,n(t) = η∗m(t), m = 1 in (41). Moreover, the AENN
weight estimation errors are basically bounded [40]. The AENN weight estimation errors are bounded
to ensure that the control signal is bounded. The flowchart which is shown Figure 6 presents the
executed procedure of an optimized learning rate by using the mended PSO algorithm.
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3. Experimental Results and Discussion

The block diagram of the LPMSM drive system with a linear optical-ruler sensor and three Hall
sensors by use of the DSP control system is presented in Figure 1. An experimental set-up picture of
the LPMSM drive system is shown in Figure 7. The used DSP control system includes four sets of
D/A converters, two sets of encoder interface circuits and eight sets of 16-bits input/output ports.
The coordinate transformation in the field-oriented mechanism is enforced by the DSP control system.
First, a 2nd-order transfer function with a rise time of 0.1 s is chosen as the reference model for the
periodical step command [29]:

dm(s)
d∗(s)

∣∣∣∣
fl(s)=0

=
1156

s2 + 68s + 1156
(50)

The control aim is to move the mover position to 4.0 mm periodically. Then, when the command
is a sinusoidal reference trajectory, the reference model is set to be unit gain. The sampling interval of
the control program in the experiment is set at 2 ms.
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Five cases in the experimentat are offered in order to compare control performance by use of
the eminent PI controller, the posed backstepping control system and the AAENNB control system.
Case 1 is the nominal cases due to periodic step commands. Case 2 is the parameter disturbance with
four times the nominal value of the mover mass and viscous friction due to periodic step commands.
Case 3 is the nominal case due to periodic sinusoidal commands. Case 4 is the parameter disturbance
with four times the nominal value of the mover mass and viscous friction due to periodic sinusoidal
commands. Case 5 is the step force disturbance with adding load force as fl = 2N via the opposite
spring force.

The eminent PI controller for the real-time control fulfillment in the DSP processors are comprised
of the primary program and the secondary interrupt service program (SISP) in the DSP control
system as illustrated in Figure 8. In the primary program, input/output (I/O) setting and parameters
initialization are treated first. Then, the interrupt interval for the SISP is to be enabled. After enabling
the interruption, the primary program is used to execute supervised control data. The important
procedure of SISP with 2 ms sampling interval is to reailize for reading the mover position of the
LPMSM drive system from a linear optical ruler sensor and three Hall sensors, reading three-phase
currents from A/D converter, computing reference model and position error, enforcing lookup table
and coordinate transformation, enforcing the eminent PI controller, and outputting three-phase current
commands to switch the pulse-width-modulation (PWM) voltage source inverter with three sets
of IGBT power modules by way of the isolated and delay-time circuits. The PWM voltage source
inverter with three sets of insulated-gate-bipolar-transistor (IGBT) power modules is enforced by
a ramp-comparison current-controlled PWM with a switching frequency of 15 kHz. Additionally,
the measured bandwidth of the position loop control is about 80 Hz and the measured bandwidth of the
current loop control is about 800 Hz for the LPMSM drive system by no-load test. The used controllers
are all enforced by the DSP control system. The coordinate transformation in the field-oriented
mechanism is also enforced by the DSP control system. To attain good transient-state and steady-state
control performance, two gains of the eminent PI controller are kpp = 4.1, and kip = kpp/Tip = 1.8 by
using the Kronecker method to construct a stability boundary in the kpp and kip plane. This method is
used to narrow down the region for iterative selection of values of the parameters of kpp and kip [41–43]
on the tuning of the PI controller in the nominal case for the position tracking. Figure 9 shows the
experimental results of the eminent PI controller for controlling the LPMSM drive system due to
periodic step command from 0 mm to 4 mm in the nominal case and in the parameter disturbance case
as in Case 1 and Case 2. The position reactions of the mover in Case 1 and Case 2 due to periodic step
command from 0 mm to 4 mm are illustrated in Figure 9a,c, respectively. The reactions of the associated
control efforts with respect to Case 1 and Case 2 are illustrated in Figure 9b and d, respectively. Figure 10
is the experimental results of the eminent PI controller for controlling the LPMSM drive system in
the nominal and parameter disturbance cases due to periodic sinusoidal command from −4 mm to
4 mm as in Case 3 and Case 4. The position reactions of the mover in Case 3 and Case 4 are shown in
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Figure 10a,c, respectively. The reactions of the associated control efforts with respect to Case 3 and
Case 4 are shown in Figure 10b and d, respectively. The favorable tracing reactions of the position
can be obtained by using the eminent PI controller in Case 1 and Case 3, as shown in Figures 9a
and 10a. Moreover, worse tracing reactions of position in Case 2 and Case 4, as shown in Figures 9c
and 10c, are very obvious due to the bigger nonlinear disturbance. From these experimental results,
sluggish tracing reactions of position are obtained for controlling the LPMSM drive system by use of
the eminent PI controller. Because of inappropriate rgulating two gains, the linear controller has weak
robustness under the bigger nonlinear disturbance.
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Figure 9. Experimental results of the eminent PI controller due to periodic step command from 0 mm 
to 4.0 mm: (a) position reaction of the mover in Case 1, (b) reaction of control effort in Case 1,  
(c) position reaction of the mover in Case 2, (d) reaction of control effort in Case 2. 
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Figure 9. Experimental results of the eminent PI controller due to periodic step command from 0 mm to
4.0 mm: (a) position reaction of the mover in Case 1, (b) reaction of control effort in Case 1, (c) position
reaction of the mover in Case 2, (d) reaction of control effort in Case 2.
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Figure 10. Experimental results of the eminent PI controller due to periodic sinusoidal command from
−4.0 mm to 4.0 mm: (a) position reaction of the mover in Case 3, (b) reaction of control effort in Case 3,
(c) position reaction of the mover in Case 4, (d) reaction of control effort in Case 4.
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The posed backstepping control system for the real-time control fulfillment in the DSP processors
are comprised of the primary program and the secondary interrupt service program (SISP) in the
DSP control system as illustrated in Figure 11. In the primary program, input/output (I/O) setting
and parameters initialization are treated first. Then, the interrupt interval for the SISP is to be
enabled. After enabling the interruption, the primary program is used to execute supervised control
data. The important procedure of SISP with 2 ms sampling interval is to reailize for reading the
mover position of the LPMSM drive system from a linear optical ruler sensor and three Hall sensors,
reading three-phase currents from A/D converter, computing reference model and position error,
enforcing lookup table and coordinate transformation, enforcing the posed backstepping control
system, and outputting three-phase current commands to switch the pulse-width-modulation (PWM)
voltage source inverter with three sets of IGBT power modules by way of the isolated and delay-time
circuits. The PWM voltage source inverter with three sets of insulated-gate-bipolar-transistor (IGBT)
power modules is enforced by a ramp-comparison current-controlled PWM with a switching frequency
of 15 kHz. Additionally, the measured bandwidth of position loop control is about 80 Hz and the
measured bandwidth of current loop control is about 800 Hz for the LPMSM drive system by no-load
test. The used controllers are all enforced by the DSP control system. The coordinate transformation
in the field-oriented mechanism is also enforced by the DSP control system. Four parameters of the
posed backstepping control system are given as ca = 2.4, cb = 2.5, cc = 2.3 and la = 8.2 according
to heuristic lore [4,5], resulting in the periodic step command from 0 mm to 4.0 mm in the nominal
case for the position tracing to achieve good transient-state and steady-state control performance.
Figure 12 is the experimental result of the posed backstepping control for controlling the LPMSM
drive system due to periodic step command from 0 mm to 4.0 mm in the nominal case and in the
parameter disturbance case as in Case 1 and Case 2. Figure 13 is the experimental result of the posed
backstepping control system for controlling the LPMSM drive system due to periodic sinusoidal
command from −4.0 mm to 4.0 mm in the nominal case and in the parameter disturbance case as in
Case 3 and Case 4. The position reactions of the mover in Case 1 and Case 2 are shown in Figure 12a,c,
respectively. The reactions of the associated control efforts with respect to Case 1 and Case 2 are shown
in Figure 12b,d, respectively. The position reactions of the mover in Case 3 and Case 4 are shown in
Figure 13a,c, respectively. The reactions of the associated control efforts with respect to Case 3 and Case
4 are shown in Figure 13b,d, respectively. The favorable tracing reactions of position can be obtained
by the use of the posed backstepping control system in Case 1 and Case 3, as shown in Figures 12a
and 13a. Meanwhile, fine tracing reactions of position in Case 2 and Case 4, as shown in Figures 12c
and 13c, are obvious under the bigger nonlinear disturbance. From these experimental results, good
tracing reactions of position are obtained for controlling the LPMSM drive system by use of the posed
backstepping control system in Case 1, Case 2, Case 3 and Case 4. However, the larger upper bound
with the switching function in the control effort caused serious vibration. Moreover, the vibration of
control effort will wear the bearing mechanism and might excite unstable system dynamics.
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Figure 11. Flowchart of the enforced posed backstepping control system program by use of DSP
control system.
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Figure 12. Experimental results of the posed backstepping control system due to periodic step
command from 0 mm to 4.0 mm: (a) position reaction of the mover in Case 1, (b) reaction of control
effort in Case 1, (c) position reaction of the mover in Case 2, (d) reaction of control effort in Case 2.
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The proposed AAENNB control system for the real-time control fulfillment in the DSP processors
are comprised of the primary program and the secondary interrupt service program (SISP) in the
DSP control system, as illustrated in Figure 14. In the primary program, input/output (I/O) setting
and parameters initialization are treated first. Then, the interrupt interval for the SISP is to be
enabled. After enabling the interrupt, the primary program is used to execute supervised control
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data. The important procedure of SISP with 2 ms sampling interval is to reailize for reading the
mover position of the LPMSM drive system from a linear optical ruler sensor and three Hall sensors,
reading three-phase currents from A/D converter, computing reference model and position error,
enforcing lookup table and coordinate transformation, enforcing the proposed AAENNB control
system, and outputting three-phase current commands to the switch pulse-width-modulation (PWM)
voltage source inverter with three sets of IGBT power modules by way of the isolated and delay-time
circuits. The PWM voltage source inverter with three sets of insulated-gate-bipolar-transistor (IGBT)
power modules is enforced by a ramp-comparison current-controlled PWM with a switching frequency
of 15 kHz. Additionally, the measured bandwidth of the position loop control is about 80 Hz and
the measured bandwidth of the current loop control is about 800 Hz for the LPMSM drive system
by no-load test. The used controllers are all enforced by the DSP control system. The coordinate
transformation in the field-oriented mechanism is also enforced by the DSP control system. To show
the effectiveness of the control system with a small number of neurons, the AENN has 2, 6, 6 and
1 neurons in the input, hidden, context and output layers, respectively, because of providing fast
convergence and better transient-state and steady-state responses. Five parameters of the proposed
AAENNB control system: ca = 2.4, cb = 2.5, cc = 2.3, γ = 0.1 and α = 0.2 through some heuristic
lore [4,5], [28–30] result in the periodic step command from 0 mm to 4.0 mm in the nominal case for
the position tracing in order to achieve good transient-state and steady-state control performance.
The parameter adjustment process remains continually active for the duration of the experimentation.
The parameter’s initialization of the AENN in Reference [40] is adopted to initialize the parameters in
this paper. Figure 15 is the experimental result of the proposed AAENNB control system for controlling
the LPMSM drive system due to periodic step command from 0 mm to 4.0 mm in the nominal case and
in the parameter disturbance case as in Case 1 and Case 2. Figure 16 is the experimental result of the
proposed AAENNB control system for controlling the LPMSM drive system due to periodic sinusoidal
command from −4.0 mm to 4.0 mm in the nominal case and in the parameter disturbance case as in
Case 3 and Case 4. The position reactions of the mover in Case 1 and Case 2 are shown in Figure 15a,c,
respectively. The reactions of the associated control efforts with respect to Case 1 and Case 2 are shown
in Figure 15b,d, respectively. The position reactions of the mover in Case 3 and Case 4 are shown in
Figure 16a,c, respectively. The reactions of the associated control efforts with respect to Case 3 and
Case 4 are shown in Figure 16b,d, respectively. The best tracing reactions of position can be obtained
by use of the proposed AAENNB in Case 1 and Case 3, as shown in Figures 15a and 16a. Moreover,
excellent tracing reactions of position in Case 2 and Case 4 are shown in Figure 15c and 16c and are
very conspicuous under the bigger nonlinear disturbance. From these experimental results, better
tracking reactions of position are obtained by the use of the proposed AAENNB control system for
controlling the LPMSM drive system. Moreover, the vibration of control efforts in Case 1, Case 2, Case
3 and Case 4 are much reduced by the use of the AAENNB control system as shown in Figure 15b,d,
and Figure 16b,d, respectively. However, the robust control performances of the proposed AAENNB
control system under the occurrence of parameter variations in the different trajectories are obvious
owing to the on-line adaptive adjustment of the AENN. From the experimental results, the control
performance of the proposed AAENNB control system is better than the control performance of the
backstepping control system for the tracing of periodical commands.
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Figure 15. Experimental results of the proposed AAENNB control system due to periodic step
command from 0 mm to 4.0 mm: (a) position reaction of the mover in Case 1, (b) reaction of control
effort in Case 1, (c) position reaction of the mover in Case 2, (d) reaction of control effort in Case 2.
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Figure 16. Experimental results of the proposed AAENNB control system due to periodic sinusoidal
command from −4.0 mm to 4.0 mm: (a) position reaction of the mover in Case 3, (b) reaction of control
effort in Case 3, (c) position reaction of the mover in Case 4, (d) reaction of control effort in Case 4.

Finally, experimental results of the measured mover position reaction under step disturbance
torque with adding load force as fl = 2N via the opposite spring force at 4 mm, i.e., Case 5, is illustrated
in Figure 17 by use of the eminent PI controller, the posed backstepping control system, and the
proposed AAENNB control system. Experimental results of the measured mover position reaction
by use of the eminent PI controller in Case 5 is illustrated in Figure 17a. Experimental results of
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the measured mover position reaction by use of the posed backstepping control system in Case 5 is
illustrated in Figure 17b. Experimental results of the measured mover position reaction by use of the
proposed AAENNB control system in Case 5 is illustrated in Figure 17c. From these experimental
results, the transient reaction of the proposed AAENNB control system is better than the eminent PI
controller and the posed backstepping control system at load force regulation. However, the robust
control performance of the proposed AAENNB control system was outstanding for controlling the
LPMSM drive system in the tracing of periodic step and sinusoidal commands under the occurrence
of parameter disturbance, and the load force regulation owing to the on-line adaptive adjustment of
the AENN.Sensors 2018, 18, 3345 26 of 30 
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Additionally, the comparison of the control performances of the eminent PI controller, the posed
backstepping control system, and the proposed AAENNB control system is enumerated in Table 1 with
respect to the experimental results of five test cases. The maximum errors of ea by use of the eminent PI
controller, the posed backstepping control system and the proposed AAENNB control system in Case
1 are 0.64 mm, 0.35 mm and 0.19 mm, respectively. The root-mean-square (RMS) errors of ea by use of
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the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 1 are 0.45 mm, 0.21 mm and 0.08 mm, respectively. The maximum errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 2 are 0.82 mm, 0.43 mm and 0.23 mm, respectively. The RMS errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 2 are 0.51 mm, 0.25 mm and 0.09 mm, respectively. The maximum errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 3 are 0.63 mm, 0.34 mm and 0.18 mm, respectively. The RMS errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 3 are 0.38 mm, 0.19 mm and 0.07 mm, respectively. The maximum errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 4 are 0.81 mm, 0.44mm and 0.22 mm, respectively. The RMS errors of ea by use of the
eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 4 are 0.48 mm, 0.23 mm and 0.09 mm, respectively. The maximum errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 5 are 0.82 mm, 0.45 mm and 0.22 mm, respectively. The RMS errors of ea by use of
the eminent PI controller, the posed backstepping control system and the proposed AAENNB control
system in Case 5 are 0.54 mm, 0.28 mm and 0.10 mm, respectively. As a result, the proposed AAENNB
control system has a smaller tracing error in comparison with the eminent PI controller and the posed
backstepping control system from Table 1. According to the tabulated measurements, the proposed
AAENNB control system indeed yields the better control performance.

Table 1. Performance comparison of control systems.

Control System
and Five Cases Performance Case 1 Case 2 Case 3 Case 4 Case 5

Eminent PI
controller

Maximum error of ea 0.64 mm 0.82 mm 0.63 mm 0.81 mm 0.82 mm
RMS error of ea 0.45 mm 0.51 mm 0.38 mm 0.48 mm 0.54 mm

Backstepping
control system

Maximum error of ea 0.35 mm 0.43 mm 0.34 mm 0.44 mm 0.45 mm
RMS error of ea 0.21 mm 0.25 mm 0.19 mm 0.23 mm 0.28 mm

AAENNB
control system

Maximum error of ea 0.19 mm 0.23 mm 0.18 mm 0.22 mm 0.22 mm
RMS error of ea 0.08 mm 0.09 mm 0.07 mm 0.09 mm 0.10 mm

Furthermore, the characteristic performance comparisons of the eminent PI controller, the posed
backstepping control system and the proposed AAENNB control system are enumerated in Table 2
for experimental results. In Table 2, the various performances with respect to the vibration of control
effort, the dynamic response, the ability of load regulation, the convergence speed, the position tracing
error, and the rejection ability of parameter disturbance in the proposed AAENNB control system are
superior to the eminent PI controller and the posed backstepping control system.

Table 2. Characteristic performance comparisons of control systems.

Control System
Eminent PI Controller Backstepping Control System AAENNB Control System

Characteristic Performance

Vibration in control effort Smaller Larger Smaller
Dynamic response Slower Faster Fastest

Load regulation capability
Poor (maximum error

as 0.82 mm with
adding load at 4.0 mm)

Good (maximum error as
0.45 mm with adding load at 4.0

mm)

Best (maximum error as
0.22 mm with adding load

at 4.0 mm)
Convergent speed Slower Faster Fastest

Position tracing error Large Middle Small
Rejection for parameters

disturbance Poor Good Best

Learning rate - - Vary (optimal rate)
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4. Conclusions

The LPMSM drive system with a linear optical-ruler sensor and three Hall sensors for the
tracing of periodic reference inputs is controlled by the proposed AAENNB control system. The main
contributions of this study are as follows: (1) The field-oriented mechanism has been successfully
applied for controlling the LPMSM drive system with a linear optical-ruler sensor and three Hall
sensors; (2) the posed backstepping control system has been successfully derived according to the
Lyapunov function to reduce the influence under the lumped uncertainty disturbances; (3) the
proposed AAENNB control system has been successfully derived according to the Lyapunov function
for reducing the lumped uncertainty affect; (4) the AENN with adaptive law has been successfully
estimated the lumped uncertainty; (5) the error estimated law has been successfully compensated
the observed error induced by the AENN with adaptive law for diminishing the lumped uncertainty
effect; (6) the mended PSO has been successfully applied for regulating the optimal learning rate of the
AENN to raise convergent speed.

Furthermore, as indicated by the experimental results in Table 1, the proposed AAENNB control
system has a smaller tracing error and better disturbance rejection in comparison with the eminent PI
controller and the posed backstepping control system.

Finally, the comparisons of the various control performances are verified by the experimental
results and the the proposed AAENNB control system is superior to those of the eminent PI controller
and the posed backstepping control system with respect to the vibration of control effort, the dynamic
response, the ability of load regulation, the convergent speed, the position tracing error, and the
rejection ability of parameters disturbance.
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