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Abstract: This paper proposes a system for estimating the level of danger when a driver accesses the
center console of a vehicle while driving. The proposed system uses a driver monitoring platform to
measure the distance between the driver’s hand and the center console during driving, as well as the
time taken for the driver to access the center console. Three infrared sensors on the center console
are used to detect the movement of the driver’s hand. These sensors are installed in three locations:
the air conditioner or heater (temperature control) button, wind direction control button, and wind
intensity control button. A driver’s danger level is estimated to be based on a linear regression
analysis of the distance and time of movement between the driver’s hand and the center console, as
measured in the proposed scenarios. In the experimental results of the proposed scenarios, the root
mean square error of driver H using distance and time of movement between the driver’s hand and
the center console is 0.0043, which indicates the best estimation of a driver’s danger level.

Keywords: driver’s danger level; infrared sensor; linear regression analysis; advanced drivers
assistance system (ADAS)

1. Introduction

The most important aspect of safe driving is monitoring the driver to prevent the occurrence of
serious accidents [1-5]. An advanced driver assistance system (ADAS) [1-4] is a system for achieving
safe driving; the aim of such systems is to reduce the risk of a driver’s accident and assist safe driving.
In particular, such a system provides safety to the driver by obviating danger factors while driving [1].
Furthermore, an ADAS supports the automation of control tasks, to relieve the driver from manual
control of a vehicle and assist safe driving [5].

Recent research on autonomous vehicles [6,7] has focused on a high-level intelligent ADAS.
An intelligent ADAS alerts the driver when the driver’s driving ability is insufficient due to inattention.
Safe interface technology between a human and machine is also required to implement an intelligent
ADAS. To develop this technology, driver monitoring system (DMS), such as driver status monitoring
(DSM) [8-10] and driver fatigue monitoring (DFM), are employed to warn the driver about certain
dangers [11].

An analysis of the driver’s perception reaction time (PRT) [12-14] is required to detect the
driver’s state using a DMS. The PRT is an important factor, which directly affects the safety of
the driver when driving on the road, and should also be considered in the design of a highway.
To monitor a driver’s state, some research [14] has proposed simulator studies, controlled road studies,
or naturalistic observation. The advantage of conducting studies using simulators is that it is easy
to control such systems for test in experimental environments [8-10]. Controlled road studies and
naturalistic observation require real-time driving conditions for a driver’s stress measurement [§],
while some drivers cannot perform predictive responses for such an experiment. In other words,
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if an obstacle appears while driving, the result of an experiment needs to show that the driver uses
the brake. The driver sometimes avoids an obstacle by driving without using the brake in controlled
road studies and naturalistic observation. The reason behind this is that the driver cannot perform
predictive response in these cases.

Infrared [15-18] and ultrasonic sensors [19] are generally used to track driver movements inside
a vehicle. It can be difficult to track driver movements using ultrasonic sensors. On the other hand,
infrared sensors can be adopted for accurate measurements; these not only keep track of driver
movements but they are also economical [15]. Infrared sensors used inside a vehicle detect a driver’s
drowsiness [15], and infrared sensors installed outside the vehicle track the movements of other
vehicles [16,17].

The driver’s inattention in real-time driving can lead to dangerous accidents. In order to prevent
such dangerous accidents and to monitor the experiments on dangerous conditions such as driver’s
inattention, the proposed system employs a driver monitoring platform, in view of the advantage
of simulator driving. Previous research [15] using an infrared sensor inside the vehicle is limited
to detecting a driver’s drowsiness in the driver’s seat. In previous safe driving systems [10,20],
the driver’s condition is classified in a discrete manner such as safety and danger. On the other hand,
this system proposes a method of estimating the driver’s danger level in a continuous manner from the
distance and the time of movement between the driver’s hand and the infrared sensor installed in the
center console of the driver monitoring platform. The ground truth value is set for the driver’s danger
level in consideration of the distance, time of movement between the driver’s hand and the infrared
sensor. Then, the difference was analyzed between the ground truth value of the driver’s danger
level and the estimated driver’s danger level using the linear regression analysis [18,21]. Experiments
on the driver’s frame dataset collected by eight drivers demonstrate the feasibility of the proposed
estimation method.

2. Related Work

It is important to monitor the vehicle’s internal and external conditions while driving on the
road in order to enhance a driver’s safety [15-17]. To detect the motion of an object, a considerable
amount of research [15-18] has employed an infrared sensor, which is an electronic instrument that
senses the movement of an object by emitting or detecting infrared rays. Lee et al. [15] proposed a
drowsiness detection system based on real-time data of a driver’s head movements using four infrared
sensors on the headrest of the driver’s seat and two webcams to record the driver’s state. The driving
condition can be classified as normal or drowsy driving based on the driver’s head movement data.
In the proposed system, the success rate of detecting drowsy driving was 61% without a learning
module. However, the success rate proved to be 78% with a learning module incorporated.

An infrared sensor has been employed on the vehicle body to track the movement or obstacles
presented by other vehicles [16,17]. Mobus et al. [16] proposed a driver assistance system called
adaptive cruise control (ACC) using an infrared sensor and a 77 GHz radar sensor on the carbody to
track other vehicles. Comparing the result of the single sensor tracking algorithm with the result of
a multiple sensor fusion algorithm, the authors proved that the multi-sensor fusion algorithm using
infrared sensor data and radar data achieved a better detection range and accuracy for object tracking.

Stuckman et al. [17] presented a method for detecting vehicles or objects in a driver’s blind spot
using an active infrared sensor. The signal received from the infrared sensor was generalized through
filtering, amplification, and rectification. A binary correlation coefficient was applied between the
generalized data and received data to detect whether the correlation coefficient was greater than 0.5.
Therefore, one of the factors that affected the proposed system was color, and bright objects were easier
to detect than dark ones.

Malheiros et al. [18] presented a linear regression study between the beam diameter and the
distance of an infrared sensor on an industrial robotic arm. This system employed the infrared distance
sensor of Sharp’s GP2Y0OA21YKOF model in a Motoman HP6 industrial robot arm with an NX100
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controller. A robotic arm and an obstacle were placed facing one another, and 128 output samples
were collected while moving at right angles, with the distance decreasing by 5 mm intervals starting
from a maximum distance of 80 cm to a minimum distance of 8 cm. The experimental result showed
that the measured beam diameter and distance are in the linear relationship with the linear regression
slope of 0.0399.

Nagqvi et al. [20] developed a gaze detection system for safe driving that classified 17 gaze zones
using a convolutional neural network. In order to verify the validity of the method, they designed an
experiment including the images of left eye, right eye and face, respectively. The images were collected
for 20 drivers including 3 wearing glasses using a near-infrared (NIR) camera considering the driver’s
head and eye movement. The accuracy of gaze detection was strictly correct estimation rate (SCER) of
92.8% and loosely correct estimation rate (LCER) of 99.6%, which show good accuracy.

Fernandes et al. [22] predicted risky driving behaviors from risky driving factors using a multiple
linear regression model. The research compared a driver’s risky driving behaviors with their risk
factors while driving. The first stage examined the risk factors for 109 young drivers. In order
to generalize the driver’s risk behaviors of first stage, the second stage selected 115 drivers of
various ages, sex, and ethnicity. The second stage tested three analysis methods, and employed
full regressions including age as a predictor, regressions excluding age as a predictor, and regressions
in an age-restricted sample. As a result of the experiment, it was found that if the age factor was
controlled of second stage, two risk factors such as speeding and not wearing seat belts are not
generalized as the result of two driver’s risk factors of first stage.

Previous studies using infrared sensors have been limited to detecting drowsy driving using
an infrared sensor inside a vehicle or recognizing obstacles using an infrared sensor on the outside
of a vehicle. Research on estimation systems using linear regression analysis in a vehicle have also
been limited to estimating driver risk behaviors. Therefore, this study employed infrared sensors
installed in the center console of a vehicle to detect driver’s movements inside the vehicle. Based on a
linear regression analysis, we estimate a driver’s danger level by considering the distance and time of
movement between the driver and the center console.

3. Frame Dataset and Proposed Methods

In this paper, a system is proposed for estimating a driver’s danger level by measuring the distance
and time of movement between the driver’s hand and the center console during driving. Figure 1
presents an overview of the proposed estimation system. First, three infrared sensors were installed in
the center console of the driver monitoring platform. A driver drives the vehicle, and the distance
and time of movement between their hand and the three infrared sensors in the straight sections of
the proposed driving scenario are measured. In order to collect accurate distance data between the
driver’s hand and the center console, the infrared sensor was set to detect the area around the center
console, and the noise of the infrared sensor value was filtered. Subsequently, a linear regression
analysis trained the collected frame data, consisting of measured distances with time of movement and
the ground truth values of a driver’s danger level. When a new test distance and time of movement
is given, the same process is performed, and the driver’s danger level is estimated by applying the
returned linear regression coefficient.

3.1. Accurate Distance Measurement Process

A driver monitoring platform for the laboratory environment was employed to simulate the exact
experimental environment of the driver. This was used to measure the driver’s danger level of the
distance and time of movement between the driver and the center console during driving. The driver
monitoring platform adopted the Hyundai Grandeur car model. In Figure 2, the infrared sensors
installed to collect frame data on the driver’s hand position when accessing the center console of the
driver monitoring platform are illustrated. To simulate an actual driving situation in the laboratory,
a driver monitoring platform was employed. In this driver monitoring platform, three infrared
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sensors on the center console were employed to collect the driver’s hand position when accessing the
center console.

To measure accurate data for the driver’s hand position, the frame data of the infrared sensors
was collected using the Data Acquisition (DAQ) equipment of National Instruments. Then, to monitor
the measurement of the accurate distance between the driver’s hand and the infrared sensors collected
from the DAQ equipment, a system was developed to collect measured distances from each of the
three infrared sensors using the Labveiw program. The system was designed to represent the distance
between the driver’s hand and each of the three infrared sensors and the total driving time. As a result,
we were able to check the accurate distance and time of movement between the driver’s hand and
the three infrared sensors of the center console of the driver monitoring platform using this system in
real time.

N frame data of the distance and time of
movement between the driver's hand and the
three infrared sensors on the center console

I

Noise elimination for accurate distance
of three infrared sensors

— ]

Training driver’s frame data |

l Test
| Linear regression analysis | driver’s
l frame
data

Calculate linear regression
coefficients

I |
'

Estimation of driver’s danger level

Safety — 1 I:I I] Danger

Figure 1. The proposed driver’s danger level estimation approach.

Figure 2. Experimental design on driver monitoring platform.

The module of the infrared sensor for the experiment was the GP2Y0A21YK model by Sharp.
The operation principles of a sensor are as follows. The infrared transmitter emits an infrared light
to an object’s surface, and the reflected infrared light is then absorbed by the infrared receiver. Then,
the voltage value is output by measuring the amount of absorbed infrared light. Finally, the distance
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between the object and the infrared sensor is measured. In this study, the infrared sensors installed in
the center console emitted infrared light to the driver’s hand, and then this infrared light was reflected
and absorbed by the infrared module to determine whether the driver’s hand was detected. When the
driver’s hand was detected by the infrared sensor, the voltage value was measured.

While collecting driver’s frame data, the infrared sensor’s noise was generated. The raw data for
the measured voltage values was difficult to analyze owing to the infrared sensor’s noise. Therefore,
the infrared sensor’s noise was filtered to collect precise driver’s frame data. The Butterworth filter,
which has a maximally flat magnitude response, was employed to reduce the infrared sensor’s noise
and measure an accurate distance. Equation (1) [23] defines the Butterworth filter:

N(w) = —— (1)
V14w

Here, N(w) denotes the Butterworth filter, w indicates the number of vibrations per second, and n
is the number of poles. The voltage value at which the noise was filtered by applying Equation (1) was
used to calculate the distance between the driver’s hand and the infrared sensor using Equation (2):

D =27.86(V) 11 2

Here, D indicates the distance between the driver’s hand and the infrared sensor, and V defines
the voltage measurement.

The infrared module GP2Y0A21YK has a data sheet [24] that is shown in Figure 3. In this datasheet,
the infrared module voltage is a minimum of 0.4 V and a maximum of 3.25 V, and its measureable
distance is a minimum of 8 cm and maximum of 80 cm as theoretical data. However, after applying
the Butterworth filter the results shown by dots in Figure 3 were obtained. The voltage value was
exactly the same as for the theoretical data sheet, but the distance was different, in that the minimum
value was reduced from 8 cm to 4 cm, and the maximum value was decreased from 80 cm to 69 cm.
Therefore, the distance measurement range for the infrared sensors of the driver monitoring platform
can be measured from a minimum distance of 4 cm to a maximum distance of 69 cm.
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Figure 3. Datasheet for sharp infrared sensor (analog output voltage vs. distance to reflective object).
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3.2. Method of Collecting Driver’s Frame Data

The three infrared sensors were employed on the center console of the driver monitoring platform,
as shown in Figure 4. These three infrared sensors of the center console used in the experiment were
installed: at the top of the buttons that control the air conditioner and heater (temperature controller),
wind direction controller, and wind intensity controller. The three infrared sensors were installed on
the center console in an x-axial direction from the center of the steering wheel at distances of 22 cm,
36 c¢m, and 54 cm. The position of the right end of the center console between the driver and passenger
is 22 cm from the steering wheel, which is defined as (1). The middle position, representing the
wind direction control button, is 36 cm, and is set as (2). The position on the left end is 54 cm, and is
defined as (3).

Figure 4. Positions of infrared sensors on the center console.

The experimental environment for collecting the driver’s frame data on the distance between the
driver’s hand and the center console is shown in Figure 5. As shown in the figure, one participant
sat in the driver’s seat of the driver monitoring platform and drove using the proposed scenarios.
Using the system implemented in the Labview 2014 program, the driver’s frame data was collected.
A total of eight drivers participated in the experiments under the proposed scenarios, and the driver’s
frame data were collected on the distances and time of movement between each driver’s hand and the
infrared sensors while driving straight ahead. The participants of the eight drivers, who have a Korean
driver’s license, had driving experiences from a minimum of three months to a maximum of 20 years.
Of these participants, two drivers were Chinese and six drivers were Korean, four drivers were female
and four drivers were male. The average age of the eight voluntary participant drivers was 31 years.

Figure 5. Experimental scenario for collecting access frame data for the center console of the driver
monitoring platform.
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In order to collect the driver’s frame data for the distance and time of movement between the
driver’s hand and the infrared sensors, a virtual road was defined. The virtual road included five
driving sections such as three go straight sections and two turn right sections, as depicted in Figure 6.
The total driving time for each of the scenarios was 60 s on the virtual road, as detailed in Table 1.
The numbered lists of the proposed driving conditions are as follows:

Go straight for 17 s.
Turn right for 3 s.
Go straight for 20 s.
Turn right for 3 s.
Go straight for 17 s.

Gl PN

Table 2 shows the eight proposed scenarios for each of the eight drivers. In addition, Table 2
details the proposed scenarios for estimating the driver’s danger level using the distance and time of
movement between the driver’s hand and the infrared sensors while driving on the straight sections
(@, ®, ® in Table 1). To set the distance, the distances between the driver’s hand and infrared sensors
while driving straight ahead are set to be close to the minimum measurable distance. In the right
turning sections (@), @ in Table 1), the maximum distance is measured, because the driver’s hand does
not move towards the infrared sensors. Therefore, the time corresponding to the driver’s danger level
is not measured. To employ the time with the distance, the time is set as either short or long, because
the driver’s danger level differs depending on whether their hand accesses the center console for a long
or short time while driving. Therefore, the proposed scenarios consist of the cases of “being close for a
short time” and “being close for a long time.” To classify between the short and long time, the reference
value is set to be 2.5 s, which represents the perception reaction time (PRT) [12-14]. The reference
value means total time measured by one movement in one section.

s ™

r’é) @

®,

®

|
1
1
]
|
|
|
¥

Figure 6. Proposed virtual road condition (turning right).

Table 1. Proposed driving conditions and the measured distance between a driver’s hand and the three
infrared sensors of the center console for each route in the virtual road condition. (s: seconds)

Route No. D () ©) ® ®

Distance Close N/A Close N/A Close
Driving direction ~ Go straight Turnright Go straight Turnright Go straight
Driving time 17s 3s 20s 3s 17's
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Table 2. Proposed scenarios for measuring the distance and time of movement between a driver’s

hand and the three infrared sensors while driving straightfor each of the eight drivers. (s: seconds,

The number of hand colse ups: the number of driver A’s hand close ups, (1): infrared sensor (1), (2):

infrared sensor (2), (3): infrared sensor (3))

Proposed
Scenario

@. Go Straight (17 s)
Close Distance

®. Go Straight (20 s)
Close Distance

®. Go Straight (17 s)
Close Distance

I
The number of hand close ups

Repeat more than 2.5 s
(1):3,(2):3,(3):3

Repeat more than 2.5 s
(1):3,(2):3,(3): 3

Repeat more than 2.5 s
(1):3,(2):3,(3):3

II Repeat less than 2.5 s Repeat less than 2.5 s Repeat less than 2.5 s
The number of hand close ups (1): 4, (2): 4, (3): 4 (1):4,(2): 4, (3): 4 (1): 4, (2): 4, (3): 4
I Repeat less than2.5s  Repeat more than2.5s  Repeat less than 2.5 s
The number of hand close ups (1):4,(2):4,(3): 4 (1):3,(2):3,(3): 3 (1):4,(2):4,(3): 3
v Repeat more than2.5s  Repeatless than2.5s  Repeat more than 2.5s
The number of hand close ups (1):3,(2):3,(3): 3 (1): 4, (2): 4, (3): 4 (1):3,(2):3,(3): 3
\% Repeat less than 2.5 s Repeat less than 2.5 s Repeat less than 2.5 s
The number of hand close ups (1): 4, (2): 4, (3): 4 (1):5,(2): 4, (3): 4 (1):3,(2):3,(3): 3
VI Repeat more than2.5s  Repeat more than2.5s  Repeat less than 2.5 s
The number of hand close ups (1):3,(2):3,(3): 3 (1):3,(2):3,(3): 3 (1): 4, (2):4,(3): 5
VII Repeat more than2.5s  Repeat less than 2.5 s Repeat less than 2.5 s
The number of hand close ups (1):3,(2):3,(3): 3 (1): 4, (2): 4, (3): 4 (1): 4, (2): 4, (3): 4
VI Repeat less than2.5s  Repeat more than2.5s Repeat more than 2.5 s

The number of hand close ups
Total number of hand close ups

(1): 4, (2): 4, (3): 4
(1): 28, (2): 28, (3): 28

(1):3,(2):3,(3): 3
(1): 26, (2): 25, (3): 25

(1):3,(2):3,(3): 3
(1): 25, (2): 25, (3): 25

To measure the various patterns of driver’s danger level, the proposed scenarios considered
repetitive motions in which the driver’s hand moved closer to the infrared sensor (1) of the three
infrared sensors and remained there for either less than 2.5 seconds or longer than 2.5 seconds. The
proposed scenarios were performed to each of the infrared sensors (2) and (3) in turn. In scenario
III of Table 2, driver A’s hand repeats the motion of moving close to the infrared sensor (1) of the
three infrared sensors for less than 2.5 s four times during the 17 s driving time on the first straight
section (D). Furthermore, during the 20 s driving time of the second straight section (3), driver
A’s hand repeats the motion of moving closer to the infrared sensor (1) for over 2.5 s three times.
During the 17 s driving time for the third straight section (), driver A’s hand repeats the motion of
moving close to the infrared sensor (1) for less than 2.5 s four times. Then, the distance and time of
movement between driver A’s hand and infrared sensors (2) was measured using the same process.
The remaining infrared sensors (3) were also measured. Therefore, we collected frame data consisting
of the distance and time of movement between driver A’s hand and infrared sensors (1), (2) and (3)
using the process of this scenario III.

Each scenario, considering the distances and time of movement between the driver’s hand and
the three infrared sensors of the center console in the straight sections (D), @), ®) represents data on a
total of 300 frames collected at a rate of 5 frames per second (fps). Table 3 shows the sample frame
used in the experiment that driver A collected in the straight section (&) according to scenario III for
infrared sensor (1). Moreover, a total of 85 frame data including omitted data is shown. Here, the
omitted data and the same distance data from the three infrared sensors (216, 233, 241, 254, 261, 273,
280, and 294) means that driver A’s hand does not move towards any of the three infrared sensors.
Thus, the values of the three infrared sensors are the maximum distances, and the time of movement is
zero s. As shown in Table 3, the sample frame data of driver A is the case in which the driver A’s hand
approaches the infrared sensor (1) four times. One frame consists of the distance between driver A’s
hand to infrared sensor (2), and infrared sensor (3) being the same at 69 cm. It also consists of the
time of movement between driver A’s hand at 1.2 s and the distance from hand to infrared sensor (1)
being at 6.76232 cm. For example, between the frames 295 to 300, driver A’s hand moves once towards
the infrared sensor (1) for less than 2.5 s. That is, the total time of the movement of driver A’s hand
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towards the infrared sensor (1) is 1.2 s. The value of the infrared sensor (1) represents the distance
of the driver’s hand to the infrared sensor (1) for 1.2 s. The infrared sensors (2) and (3) are 69 cm,
which means the maximum distance, respectively. The total number of frames used for the experiment
consists of the frames merged sequentially for the data from scenarios I through VIII, giving data on a
total of 7200 frames.

Table 3. Sample of the collected driver A’s frame data used in the experiment. (scenario III, the straight
section ((®), Infrared sensor (1): 4)

Number Infrared Sensor (1) Infrared Sensor (2) Infrared Sensor (3) Time of Movement

216 69.00000 69.00000 69.00000 0.0
233 69.00000 69.00000 69.00000 0.0
234 6.30972 69.00000 69.00000 0.2
235 6.36629 69.00000 69.00000 0.4
236 6.53602 69.00000 69.00000 0.6
237 6.30972 69.00000 69.00000 0.8
238 6.19657 69.00000 69.00000 1.0
239 6.30972 69.00000 69.00000 1.2
240 6.36629 69.00000 69.00000 1.4
241 69.00000 69.00000 69.00000 0.0
254 69.00000 69.00000 69.00000 0.0
255 6.30972 69.00000 69.00000 0.2
256 6.25314 69.00000 69.00000 0.4
257 6.30972 69.00000 69.00000 0.6
258 6.30972 69.00000 69.00000 0.8
259 6.19657 69.00000 69.00000 1.0
260 6.36629 69.00000 69.00000 1.2
261 69.00000 69.00000 69.00000 0.0
273 69.00000 69.00000 69.00000 0.0
274 6.25314 69.00000 69.00000 0.2
275 6.36629 69.00000 69.00000 0.4
276 6.36629 69.00000 69.00000 0.6
277 6.25314 69.00000 69.00000 0.8
278 6.36629 69.00000 69.00000 1.0
279 6.36629 69.00000 69.00000 1.2
280 69.00000 69.00000 69.00000 0.0
294 69.00000 69.00000 69.00000 0.0
295 6.25314 69.00000 69.00000 0.2
296 6.25314 69.00000 69.00000 0.4
297 6.30972 69.00000 69.00000 0.6
298 6.36629 69.00000 69.00000 0.8
299 6.30972 69.00000 69.00000 1.0
300 6.76232 69.00000 69.00000 1.2

3.3. Approach to Estimating the Driver’s Danger Level

After the driver’s frame data were collected for the proposed driving scenarios, a linear regression
analysis [18,21] was applied to estimate the driver’s danger level for a close distance and time between
the driver’s hand and the infrared sensors (1), (2), and (3) installed on the center console.

Linear regression analyses [21] can be classified into simple linear regression analyses, in which
there is one predictor variable, and multiple linear regression analyses, in which there are several
predictor variables. In this paper, a multiple linear regression analysis is employed, because several
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predictor variables are considered. To estimate the driver’s danger level, the linear regression analysis
Equation (3) is applied.

ev; = Bo + Pruft + BoulR® 4 BaulR® 4 gyulime,i=1,2,..1 (3)

Here, u'R!, 4'R2 and u'R3 denote the distance between the driver’s hand and infrared sensor (1),

(2), and (3), respectively. uT¢ denotes the time of movement between the driver’s hand and the
three infrared sensors. e¢v represents the estimated value of the driver’s danger level in test driver’s
frame data, B denotes the coefficient of the linear regression analysis estimated by the linear regression
analysis, and [ is defined as the number of driver’s frame data.

The linear regression analysis employed in this paper represents how close to
linear the relationship is between the four predictor variables u!R! = [uIRl IRl ulIRl}

ulR2 — [M{R2, u£R2’m, ulIRZ], yIR3 — [M{RSI u£R3,..., ulIRBL yTime — [u}"zme’ u%"zme’m, u;‘zme}’

and
and the response variables ev = [evy,evy, ..., ev;]. Therefore, B represents the estimated value
of the linear regression coefficient for the multiple linear regression analysis of ev, which is a response
variable for the predictor variable u.

Thus, in training driver’s frame data, the predicted variables represent the distances and time
of movement between the driver’s hand and the three infrared sensors, and the response variables
represent the ground truth values of the driver’s danger level. Based on the linear regression coefficient
estimation f calculated in this process, the estimated value of the driver’s danger level can be calculated
for the frame data consisting of the distance and time of movement between the driver’s hand and the
three infrared sensors to be tested.

3.4. Experimental Results

The ground truth value for the driver’s danger level were set by considering the distances and
time of movement between the driver’s hand and the center console’s three infrared sensors employed
in the experiment. The case in which the driver’s hand does not get close to the center console is
defined as “safety.” In addition, the ground truth value of “safety” is set to zero. The case in which the
driver’s hand is close to the center console is defined as “danger.” First, the ground truth value for the
driver’s danger level is defined considering the time of movement between the driver’s hand and the
center console. The longer the time of movement, the higher the driver’s danger level. On the other
hand, the shorter the time of movement, the lower the driver’s danger level. Therefore, the ground
truth value for the time of movement is defined as a value that increases by 0.1 in proportion to the
driver’s level if the time increases by 0.2 s (5 fps) intervals. Then, the ground truth value for the
driver’s danger level is defined considering the distance between the driver’s hand and the center
console. The closer the distance between the driver’s hand and the center console, the higher the
driver’s danger level. On the other hand, the farther the driver’s hand is from the center console,
the lower the driver’s danger level. The ground truth value for the distance is defined as (1/distance)
because the driver’s level is inversely proportional to the distance. Thus, the ground truth value for
the driver’s danger level combining the distance and time of movement is defined as a value that
adds (1/distance) to the number of data in increasing time x 0.1. For example, in the case that the
distance between the driver’s hand and infrared sensor (1) is 4 cm and the measured time is 0.2 s, the
driver’s danger level is 0.1, and when the reciprocal of 4 is added, the driver’s danger level becomes
0.35. For the case in which the driver’s danger level is higher than a certain numerical value, an alarm
can be set up.

Table 4 presents the experimental results based on the linear regression analysis for the frame data
consisting of the ground truth values for driver’s danger level and the distances and time of movement
between the driver’s hand and the three infrared sensors for eight drivers for each scenario in Table 2,
i.e., scenarios I through VIII. Each of the proposed scenarios was performed for the following proposed
methods: a method considering the distances and times between the driver’s hand and the infrared
sensors, one considering the distances only, and one considering the times only. Leave-one-out cross
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validation (LOOCV) and 10-fold cross validation were employed to validate the performance of the
frame data using the linear regression analysis. Suppose that the total number of entire data is N. Then,
LOOCYV is a method of using N — 1 training data in order for one data point to be tested. Furthermore,
10-fold cross validation is a method of dividing the total of N data into 10 equal parts, then employing
each single part one-by-one as the test data with the remaining nine parts as the training data.

Table 4. Results for the RMSE based on the linear regression analysis of the eight drivers’ frame data
for each proposed scenario. (RMSE: the root mean square error, time: time of movement)

Scenario
Proposed Method Cross Validation
II II1 v A% VI VII VI
Distance & time LOOCV 0.0071  0.0072  0.0074 0.0069 0.0076 ~ 0.0079  0.0068  0.0088
10-fold 0.0074  0.0073  0.0079 0.0071 0.0080 0.0083 0.0072  0.0093
Distance only LOOCV 0.5184 0.1107 0.4554 0.5390 0.4240 05759 0.4671 0.5593
10-fold 0.5513  0.1232  0.5337 0.5395 04680 0.6127 05140 0.6323
Time only LOOCV 0.0484 0.0329 0.0505 0.0505 0.0891 0.0517 0.0520 0.0512
10-fold 0.0447 0.0294 0.0475 0.0468 0.0513 0.0486 0.0542 0.0478

With respect to each proposed method and the validation methods, the root mean square error
(RMSE) was calculated for the driver’s danger level. The RMSE is used to handle the difference
between the estimated value and the ground truth one. If the RMSE is large, then the error is large,
and vice versa. The RMSE used in the experiment is defined in Equation (4):

r= \/25_1 (wjk, — )’ 4)

Here, T is defined as the total number of frame data, wy means the ground truth value of an
arbitrary frame data, and @ denotes the value estimated using the linear regression analysis for an
arbitrary frame data. For example, the RMSE of scenario VII is 0.4671 when estimated the driver’s
danger level by using the LOOCV method and the method considering only the distances between
the driver’s hand and the three infrared sensors. On the other hand, in the case of using the LOOCV
method and both the distances and times between the driver’s hand and the infrared sensors for the
same scenario, the RMSE is 0.0068. Therefore, it is found that the frame data that considers both the
distances and times between the driver’s hand and the center console exhibits a lower RMSE than
that considering only the distances. Under the same conditions, comparing the result obtained when
using both the distances and times with the result obtained when using the times only, the RMSE of
estimating the driver’s danger level when using only the times for the driver’s hand being close to the
infrared sensors is 0.0520, which is larger than the RMSE using both the distances and times. The other
scenarios exhibit the best RMSE results when considering the times and distances between the driver’s
hand and the infrared sensors. Therefore, for all the proposed scenarios it is determined that when both
the distances and times between the driver’s hand and the infrared sensors are considered together,
which reflects the proposed method, the best estimation of the driver’s danger level is obtained.

Table 5 presents the test results of the total frame data in all the scenarios for each of the eight
drivers. In the case of considering both the distances and time of movement between driver A’s hand
and three infrared sensors for all scenarios and employing the LOOCV method, the RMSE is 0.0049.
On the other hand, for the same method, the RMSE is 0.3096 when only the distances are considered,
and 0.0466 when only the times are considered. The RMSEs considering the distances and the times
for the total frame data for all drivers exhibited the best results. Therefore, the approach considering
the distances and times together for the total frame data for all drivers provides the best estimation of
the driver’s danger level. Hence, the proposed method provides accurate and detailed estimations of
the driver’s danger level.
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Table 5. Results of the RMSE for each of the eight drivers in all the scenarios based on the proposed
methods. (RMSE: the root mean square error, time: time of movement)

Driver
Proposed Method  Cross Validation
B C D E F G H
Distance & time LOOCV 0.0049 0.0212 0.0083 0.0059 0.0107 0.0072 0.0078 0.0043
10-fold 0.0050 0.0232 0.0083  0.0060 0.0107 0.0072 0.0080 0.0043
Distance only LOOCV 0.3096 0.6327 0.3881 0.5400 0.6918 0.7695 0.4653 0.2585
10-fold 0.3109 0.6339 0.3910 05434 0.7025 0.7749 0.4708 0.2594
Time only LOOCV 0.0466 0.0602 0.0502 0.0499 0.0555 0.0584 0.0544 0.0394
10-fold 0.0466  0.0606 0.0503 0.0500 0.0557 0.0584 0.0545 0.0395

Comparison of the proposed method with previous research for driver’s safe driving are
summarized in Table 6. In [10] a drowsiness detection system of fuzzy Bayesian network considering
smartphone, electrocardiography (ECG) shows true awake of 96%, true drowsy of 97%. In [20], a gaze
detection system was implemented as convolutional neural network (CNN) using a near-infrared
(NIR) camera. This system shows strictly correct estimation rate (SCER) of 92.8% and loosely
correct estimation rate (LCER) of 99.2%. The proposed system shows the RMSE of 0.0043 in Table 5,
which means the best estimated result of the driver’s danger level. Therefore, the previous systems
can be classified as driver’s safety or driver’s danger but the proposed system estimates the driver’s
danger level. Moreover, the performance of the proposed method is not directly comparable with
the performance of the two previous research studies because the performance comparison method
is different.

Table 6. Comparison of the proposed method with the previous research for safe driving. (CNN:
Convolutional neural network, SCER: strictly correct estimation rate, LCER: loosely correct estimation
rate, ECG: electrocardiography , PPG: photoplethysmography)

System Sensor Method Goal Result
Previous [10] Smartphone, Fuzzy bayesian Drowsiness True awake: 96%
ECG, PPG network detection True drowsy: 97%
Previous [20] Near-infrared Deep learning Gaze SCER: 92.8%
(NIR) camera (CNN) detection LCER: 99.6%
Proposed Infrared Linear regression Estimation of RMSE: 0.0043
sensor anaysis driver’s danger level (the best)

4. Conclusions

In this study, three infrared sensors were installed on the driver monitoring platform to estimate
the driver’s danger level by considering a close distance and time of movement between the driver’s
hand and the center console. Then the frame data for the distance and time of movement between the
driver’s hand and the three infrared sensors were collected under the proposed scenarios. The driver’s
danger level was estimated based on the linear regression analysis. As a result, by analyzing the RMSE
for the proposed methods, the case in which both the close distance and time of movement between
the driver’s hand and the center console were considered yielded the best results. Therefore, it is found
that a detailed and accurate estimation of the driver’s danger level is provided in this case. However,
drivers did not succeed unless they focused on repeating the same movement in one go straight section
for approximately 2.5 s using the proposed scenarios in the experiment. Most drivers felt they were
partaking in dangerous driving by repeating the same movement for 17 or 20 s. A device for securing
the safety of the driver was required when applying the proposed scenarios to the actual driving of
the vehicle.

In the future, a comprehensive study for estimation of driver’s danger level will be necessary
to consider not only the driver’s images, but also other types of sensor data collected on the driver
monitoring platform. It should also be considered whether the driver’s mobile phone or the center
console’s touch screen will be used while driving.
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