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Abstract: A single piezoelectric patch can be used as both a sensor and an actuator by means of the
self-sensing piezoelectric actuator, and the function of self-sensing shows several advantages in many
application fields. However, some problems exist in practical application. First, a capacitance bridge
circuit is set up to realize the function of self-sensing, but the precise matching of the capacitance of
the bridge circuit is hard to obtain due to the standardization of electric components and variations
of environmental conditions. Second, a local strain is induced by the self-sensing actuator that is not
related to the global vibration of the structure, which would affect the performance of applications,
especially in active vibration control. The above problems can be tackled by the feedforward
compensation method that is proposed in this paper. A configured piezoelectric self-sensing circuit is
improved by a feedforward compensation tunnel, and a gain of compensation voltage is adjusted by
the time domain and frequency domain’s steepest descent algorithms to alleviate the capacitance
mismatching and local strain problems. The effectiveness of the method is verified in the experiment
of the active vibration control in a wind tunnel, and the control performance of compensated
self-sensing actuation is compared to the performance with capacitance mismatching and local
strain. It is found that the above problems have negative effects on the stability and performance of
the vibration control and can be significantly eliminated by the proposed method.

Keywords: self-sensing actuation; feedforward compensation; capacitance mismatching; local strain;
steepest descent algorithm; active flutter suppression

1. Introduction

Self-sensing piezoelectric actuators are used as sensors and actuators simultaneously in active
vibration control, mass detection, and condition monitoring. They have many advantages over separate
piezoelectric sensors and actuators, such as guaranteed system stability and the prevention of spillover.
The self-sensing actuators separate the driving voltage and measurement signal by the bridge circuit
that was first proposed by Dosch [1]. Since the measurement and actuator piezoelectric patch (lead
zirconate titanate, PZT) are collocated, it is lighter and costs less than single piezoelectric sensors and
actuators. Furthermore, a self-sensing actuator applies the driven force to the same location of the
sensor, which avoids the possibility of instability caused by the location of the sensor and actuator on
the modal node.

The application of self-sensing actuators has been widely studied in the past. Self-sensing PZT
actuators have been widely employed in vibration and acoustic control, condition monitoring, and
energy harvesting [2–5]. Tzou et al. studied the vibration control of an Euler–Bernoulli beam using
self-sensing spatial orthogonal actuators [6]. Frampton et al. studied the use of self-sensing actuators for
active flutter suppression [7]. Bo proposed a novel self-sensing vibration control method and applied
a self-sensing electromagnetic transducer to suppress the vibration of a space antenna reflector [8].
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Hu proposed a general circuit topology of enhanced indirect-driven self-sensing actuators to improve
the rejection capability of audio-induced vibration [9]. Furthermore, self-sensing actuators were also
applied in the field of active acoustic control [10,11] and health monitoring [12–14]. Qiu et al. applied
the self-sensing actuator concept to PZT stack actuators used as a micropositioner [15]. The authors
used a nonlinear element in the self-sensing circuit to negate any nonlinear effects, thus improving the
signal-to-noise ratio. Sodano et al. studied the use of macrofiber composites (MFCs) in self-sensing
actuators for the alleviation of vibrations of inflatable structures [16]. Samira proposed a method to
detect adsorbed masses by self-sensing piezoelectric microsensors, which improved the platform with
higher sensitivity and selectivity for the detection of smaller masses [17].

The advantages of self-sensing actuators are remarkable according to the published literature;
however, they also turn out to have a major defect in origin configuration, which limits their practical
and commercial use. The essence of self–sensing actuators is the balance of the bridge circuit, but this is
hard to implement. The match capacity of the PZT is hard to obtain due to the standard specifications
in production and sensitivity to environmental temperature [18–20]. When used as an actuator, the
voltage applied to the PZT material tends to be 100 times greater than the voltage generated during
sensing. Since sensing and driving signals are applied simultaneously on the piezoelectric patch, it
is hard to separate the sensing voltage from the mixed signals. The PZT that is used in self-sensing
actuators can lead to control stability problems if the environmental conditions are not matched to the
properties of the PZT materials [21].

To overcome the defect of the self-sensing bridge, some improved methods have become a
topic of research; the current study is concerned with the development of robust and adaptive
self-sensing actuators. Cole et al. proposed an adaptive filter algorithm to measure the capacitance
of the piezoelectric material to monitor the parametric variations of self-sensing circuits [22,23].
Ye proposed a new adaptive signal separation method based on the bridge circuit, which can separate
a relatively small sensing voltage from related mixed voltage adaptively [24]. Many researchers have
cast the adaptive self-sensing actuator in the context of state-space observer-based problems. Dong
utilized the observer for self-sensing with an improved circuit that involves the voltage-driving and
capacitance-measuring functions [25]. Okugawa constructed a self-sensing system by an identification
and state-space estimation method to increase the control stability [26]. All of these methods behave in
the implementation of software, where the measurement signal can be accurately estimated within
a certain range; however, the actual measurement signal is affected by the driving signal. When
the bridge is unbalanced, it will cause the measurement signal to exceed the allowable range of
the measuring circuit and even break down the circuit. Nishigaki used two piezoelectric materials
with equivalent capacitance to compensate for changes in temperature [27]. Simmers evaluated the
effects of an unbalanced bridge circuit and quantified the variations in PZT capacitance as a result of
temperature changes [28]. The new design included adding a capacitor in a series or parallel to the PZT
and matched capacitance. It was found that the added capacitors increased the system stability with a
slight decrease in the effectiveness of the vibration reduction. This method can reduce the influence
of the bridge imbalance to the vibration control under certain conditions, but it cannot completely
eliminate the interference in the measurement, and it will consume more driving energy. Time
multiplexed configuration is another way to avoid the bridge imbalance. Time division self-sensing
actuators were proposed by Wang and Wang [29], where the piezoelectric patch is connected with a
sensor and actuator circuit in turns through the shift of a switch controlled by a time base signal. Suresh
et al. proposed a simple circuit for a piezoelectric actuator that used a potential dividing concept for
resonant mass sensors [30]. Later, an analog self-sensing circuit was proposed, in which the half-periods
of a sinusoidal signal were used for actuator and sensing [31]. Although time division multiplexing
can accurately measure the piezoelectric induction signal, it makes the excitation discontinuous,
so that it is not applicable in the field of vibration control. Ruppert used charge amplifier-based
self-sensing configurations that did not suffer from a capacitive circuit mismatch and were insensitive
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to parasitic capacitance on the operation amplifier input [32,33]. Putra designed an adaptive controller
to compensate for the nonlinearity and output disturbance of the self-sensing circuit [34,35].

With the exception of capacitance mismatching, piezoelectric actuation is also confronted with the
problem of inducing local strain in the structure to which it is coupled. The local strain-induced signal
is measured by the piezoelectric patch, which is typically not related to the vibration of the global
structure, and in general has a negative effective on the stability and performance of active vibration
control. To overcome the local strain problem, Ji and Wu investigated the influence of local strain by a
numerical and experimental method and separated the local strain signal by using neural network
identification [36]. Michau observed the bending nearfield problem in active acoustic control by
self-sensing actuation and proposed a method to compensate for the transfer function of the modified
model [37]. Pelletier proposed a digital compensation method for the signal induced by local strain
based on the PZT and cantilever beam parameters [38].

In this study, an adaptive feedforward compensation method is proposed that can treat
the problems of capacitance mismatching and local sensing in a unified manner. An improved
configuration of a piezoelectric self-sensing circuit is designed that is subject to the imbalance of
the bridge, and does not affect the excitation voltage applied to the PZT. The improved self-sensing
piezoelectric circuit compensates the measurement signal by a feedforward tunnel in which the
gain is adjusted by a digital potentiometer. A time domain steepest descent (TDSD) method is first
implemented for the problem of capacitance mismatching by adjusting the gain of the feedforward
voltage, then the frequency domain steepest descent (FDSD) method is implemented to further modify
the compensation gain to alleviate the local strain for vibration control. The new self-sensing circuit
is utilized in the flutter suppression of flexible wings in a wind tunnel that exhibits effectiveness in
control stability.

2. Self-Sensing Piezoelectric Actuator

2.1. Original Self-Sensing Piezoelectric Actuator

The original piezoelectric self-sensing actuator bridge is shown in Figure 1. An equivalent electric
model of the piezoelectric element is composed of a voltage source Vs in series with capacitance Cp. The
voltage source accounts for the strain sensing and the capacitor accounts for the dielectric properties of
the piezoelectric. The matching capacitor C′p and capacitor C1 are used to construct the bridge circuit,
which subtracts the driving voltage from the measurement signal to obtain the sensing signal.
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The constitutive equations of piezoelectric materials involve the variables of stress, strain, electric
field, and electric displacement, which are represented by a single pair of electromechanical equations:

ε = sEσ + dtE
D = dσ + εTE

(1)

where ε, σ, D, E are the strain, stress, electric displacement, and electric field, respectively, and sE, d, εT

denote the elastic compliance and piezoelectric constant. When the driving voltage and induced
voltage are applied to the piezoelectric material simultaneously, the measurement voltage can be
expressed by the integration of the whole piezoelectric field Ω:

Vm = Cp

y

Ω

(dσ + εTE)dΩ (2)

The measurement voltage Vm between two poles of the PZT is composed of the control voltage Vc

and the sensing voltage Vs:
Vm = Vc + Vs (3)

In order to utilize a self-sensing PZT actuator, it is necessary to separate the control voltage Vc

supplied to the PZT for the actuator from the sensing voltage Vs created by the material’s deformation.
The separation of voltage is performed by a bridge circuit; the PZT can be modeled as a voltage source
Vc and capacitor Cp in series, resulting in a bridge circuit that is balanced with a capacitor of matched
capacitance C′p as shown in Figure 1. The measurement voltage of the self-sensing bridge is given by
the following equation:

Vm = (
Cp

C1 + Cp
−

C′p
C1 + C′p

)Vc +
Cp

C1 + Cp
Vs (4)

It can be seen from the expression that the measurement output is equivalent to the voltage
induced by the deformation of the piezoelectric patch, while the captaincy is matched, i.e., C′p = Cp,
the self-sensing actuator, is in ideal working condition. The measurement voltage of bridge output is
proportional to the sensing voltage:

Vm =
Cp

C1 + Cp
Vs (5)

Figure 2a shows the relationship with the capacitance and temperature of the PZT 5A material
(70 × 10 × 0.1 mm3), which indicates the sensitivity to the temperature variation. Since the driving
voltage is often several orders of magnitude larger than the induced voltage, even a small capacitance
mismatch will have a greater impact on the output error. In this study, the capacitance of the MFC
piezoelectric patch is 15.5 nF and C1 = 50 nF. Figure 2b shows the variation curve of the measurement
error voltage peak with the capacitance mismatch.
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Figure 2. (a) Piezoelectric capacitance vs. temperature; (b) peak value curve of the driven and
inference voltage.

It can be seen from the figure that even if the difference between the capacitance and actual
capacitance of the piezoelectric material is small, a substantial interference voltage will be produced at
the measuring end when the peak value of the driving voltage is large. The interference voltage is so
great that is possible to exceed the allowable value of the measuring circuit, so that a bridge circuit based
on capacitance matching is limited by the capacitance deviation. To suppress the interference caused
by a capacitance mismatch, in this study, the original self-sensing piezoelectric bridge is improved.

2.2. Voltage Feedforward Compensation Self-Sensing Configuration

A self-sensing piezoelectric bridge based on an adaptive gain adjustment compensation method
was designed that alleviates the disturbance of driven voltage from the mismatched capacitor by the
feedforward voltage to get over the deflection of the original self-sensing piezoelectric bridge circuit.
The voltage feedforward compensation configuration is shown in Figure 3.
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As shown in Figure 3, a feedforward tunnel was added to the traditional capacitance matching
bridge. The output voltage of the feedforward channel is proportional to the driving voltage, and the
gain of the tunnel is regulated by the digital potentiometer. According to Equation (2), the disturbance
signal caused by capacitance mismatch is also directly proportional to the driving voltage, so that there
is an optimal gain to eliminate the error signal completely.

In the feedforward tunnel, the compensating signal is derived from the driving signal and applied
to the digital potentiometer through the capacitor divider. The gain of the compensating voltage is
modified by the digital potentiometer, which is applied to the measurement output by the voltage
follower or subtraction circuit. The mismatch of capacitance can be divided into two different cases,
as follows.

When the matching capacitance is less than the piezoelectric capacitance, the input signal is in
the same phase as the driving voltage, and the output signal of the feedforward path is applied to the
measured signal through the voltage follower by analog switching. When the matching capacitance is
greater than the piezoelectric equivalent capacitance, the input signal is opposite to the driving voltage,
and the output signal of the feedforward path is applied by the reverse amplification circuit.

The connection option is determined by the analog switch, and the measurement voltage of the
output terminal of the bridge can be expressed as:

Vm = (
Cp

C1 + Cp
−

C′p
C1 + C′p

)V +
Cp

C1 + Cp
Vs ± kV (6)

Since the phase of compensation signal is identical to the driven voltage, feedforward interference
can be completely compensated by the feedforward tunnel.

The self-sensing circuit is dependent on the ability of the feedforward voltage to compensate for
the piezoelectric capacitance dynamically. For this, an adaptive estimation strategy for piezoelectric
capacitance value is utilized. The adaptive estimation mechanism is a remedy for the automatic tuning
of the capacitance bridge. Along this line, a technique to adaptively turn the digital potentiometer in
real time is presented.

2.3. Adaptive Compensatory Mechanism for Capacitance Mechanism

For practical implementation of self-sensing, the piezoelectric capacitance Cp must be
compensated in real time. The output voltage will reflect the sensing voltage only if the condition
Cp = C′p is satisfied. The adaptive compensatory mechanism that is shown in Figure 4 performs an
online modification of the gain of compensation tunnel and uses an adaptive algorithm to dynamically
drive the error to minimum. For this, a low-power persistent excitation signal Φ, which is at a different
frequency from the control voltage Vd, is used as the test signal. The low power ensures that the
voltage signals do not induce a moment in the piezoelectric actuator, and hence do not set the structure
into vibration. Then, a bandpass filter is utilized to filter out the driven voltage in the process of
adaptive iteration.
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The adjustment of the digital potentiometers is realized by the steepest gradient method. The
regulation formula of the steepest gradient method is given by:

w(n + 1) = w(n)− c
∂E

∂w(n)
(7)

where w is the parameter to be adjusted, E is the objective function, and c is a constant that ensures
iterative convergence. The steepest gradient method shows good performance for the objective
function with a unique extreme value, so it is used for the adjustment of a digital potentiometer. The
objective function is selected to be:

E = (
Cp

C1 + Cp
k1 −

C′p
C1 + C′p

ek2)

2

Vc
2 (8)

where k1 is the driving voltage interference gain derived from capacitance mismatch in the original
self-sensing piezoelectric bridge, k2 is the gain of the driving voltage signal to the measuring end in
the compensation tunnel, and e is the gain of the digital potentiometer as the dependent variable of
the objective function. The digital potentiometer is utilized as a voltage divider in the compensation
channel and changes the value between −1 and 1. The partial deviation is taken for the dependent
variable of the objective function:

∂E
∂e

= 2
C′p

C1 + C′p
k2(ek2 − k1)V2

c (9)

Since
C′p

C1+C′p
(ek2 − k1)Vc is the output voltage Vm, and Vc is the drive voltage, both are measurable

quantities, so the control gain of the digital potentiometer can be updated through the following equation:

e(n + 1) = e(n)− cVmVc (10)

A smaller step size is chosen that makes the gain converge to the global optimum. The algorithm
is implemented in a self-sensing piezoelectric driving circuit by controlling the digital potentiometers

with a microcontroller. The input voltage of the digital potentiometer is
C′p

C1+C′p
V, which is driven by the

capacitor divider, and the gain of the digital potentiometer is programmed by the microprocessor to

drive the tap to the calculated value in each period, and the output voltage is
∣∣∣∣e(n) C′p

C1+C′p
V
∣∣∣∣. Meanwhile,
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the microcontroller controls the switch between the voltage follower and subtracts the circuit. When
the value is between −1 and 0, the analog switching is connected with the voltage follower, and when
the value is between 0 and 1, the analog switching is connected with the subtract circuit.

2.4. Adaptive Compensatory Mechanism for Local Sensing

The local strain problem of a piezoelectric self-sensing circuit has been discussed in the previous
literature. In general, the measurement signal of self-sensing actuation is composed of the voltage
induced by the global vibration of the coupled structure and a local strain induced by the converse
piezoelectric effect. Within the linearity range of the piezoelectric patch, the local strain of the near field
is proportional to the driving voltage applied to the actuation. On the other hand, the strain induced
by the global vibration can be expressed as the sum of modal deformation, which is proportional
to the modal displacement. According to Equation (1), the driving strain of the piezoelectric patch
is given by σs = cdtE, and the strain induced by the global vibration is given in the modal space:

σt =
n
∑

i=1
ϕi(
−
x,
−
y,
−
z)xi where xi is the ith modal variable and ϕi is the ith modal participation factor.

Then the induced charge on the terminal of measurement is given by:

Q =
y

Ω

d(σs + σt)dΩ =
y

Ω

cddtEdΩ +
n

∑
i=1

y

Ω

cdϕixidΩ (11)

where Ω is the integration field. It can be seen from Equation (11) that the voltage induced by the local
strain is proportional to the driving voltage applied to the piezoelectric patch, and the voltage induced
by the global vibration can also be given by the form of modal space. The transfer function from the
driving voltage to the measurement voltage is obtained by the Laplace transformation:

Vm(s)
Vc(s)

=
n

∑
i=1

ϕiβ

ϕis2 + 2ξωnis + (ωni)
2 + αϕi (12)

where α and β are the gain coefficients of driving and measurement voltage, respectively. By converting
the transform function to the frequency domain, the frequency response function, which involves
the effect of local strain, is also expressed as the summation of modal deformation and feedforward
voltage, and thus the local strain part can be compensated by the feedforward compensation method.
Considering the frequency response function, which involves the local strain effect and feedforward
compensation:

H(jω) =
n

∑
i=1

(
ϕiβ

−ϕiω2 + j2ξωniω + (ωni)
2 + αϕi)−

C′p
C1 + C′p

ek2 (13)

Since the modal deformation section of the frequency response function is quite small with the
range apart from the natural frequency and irrelevant to the global vibration induced by the driving
voltage, the object function is determined by:

E =
n

∑
i=1
|H(jωi)Vc(jωi)|2 (14)

where i = 1, 2 . . . . . . , n represents the n frequency point, apart from the neutral frequency of the
structure. Then, the partial deviation is taken for the potentiometer gain of the objective function:

∂E
∂e

= 2
C′p

C1 + C′p
k2

n

∑
i=1

∣∣∣H(jωi)V2
c (jωi)

∣∣∣ (15)
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Then the steep descent iterative expression based on frequency domain is given by:

e(n + 1) = e(n)− c
n

∑
i=1

∣∣∣H(jωi)V2
c (jωi)

∣∣∣ (16)

The block diagram of the frequency domain steepest descent algorithm is shown in Figure 5; the
driving voltage and measurement signal are acquired to estimate the frequency response function, and
the measurement signal is transformed to the frequency domain by FFT (Fast Fourier Transformation).
Then, the potentiometer gain is adapted by Equation (16).
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The block diagram of the frequency domain steepest descent algorithm is shown in Figure 5; 
the driving voltage and measurement signal are acquired to estimate the frequency response 
function, and the measurement signal is transformed to the frequency domain by FFT (Fast Fourier 
Transformation). Then, the potentiometer gain is adapted by Equation (16). 
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2.5. Offline Adjustment Test

A wing model was designed to verify the control algorithm in a wind tunnel test. The wing model
was made of elastic plastic with an elastic modulus of 1.1 Gpa, a density of 1430 kg/m3, and a Poisson
ratio of 0.39. The cross-section of the wing model was NACA0006 and the max thickness was 6% of the
chord length. A lumped mass of 36 grams was mounted on the tip of the wing as the counterweight
in the wind tunnel test. Table 1 shows the modal parameter of the wing model. The wing root was
vertically fixed on the base of the closed wind tunnel. The configuration of the actuator and sensor is
shown in Figure 6a. MFC (Macro Fiber Composite) was adhered to the root of the wing model as the
control actuator, and an accelerometer was mounted on the tip of the wing as the monitoring signal.
Figure 6b shows the mode shape of the wing model.

Table 1. Comparison of numerical and experimental natural frequencies.

Mode Numerical Experimental Mode shape

1 1.99 Hz 2.42 Hz First bending
2 8.60 Hz 11.46 Hz Second bending
3 23.47 Hz 25.93 Hz Third bending
4 59.24 Hz 67.11 Hz First torsion

The driving voltage of the piezoelectric material was the sinusoidal signal applied on an MFC
through the power amplifier. The gain of the compensation tunnel was modified by the operational
amplifier OPA552, which provided the voltage range of±30 V to alleviate the feedforward interference
of the measurement signal. The measurement voltage and driving voltage of the bridge were
acquired by the AD module and the gain of the digital potentiometer voltage was adjusted in the
STM32 microcontroller.
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Figure 6. (a) Configuration of the flexible wing model; (b) mode shape of the flexible wing.

The offline sinusoidal driving voltage was determined by 2 V and 10 Hz, and the iterative step
length of the steepest gradient was 0.0002. It can be seen that the final value of the digital potentiometer
gradually converged to the ideal value after iteration, and the error curve tended to the minimum, as
shown in Figure 7.
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Figure 7. (a) Time domain steepest descent (TDSD) convergence curve of the measurement signal; (b)
TDSD convergence curve of the positioner gain.

After the time domain steepest descent algorithm was implemented, the frequency domain
steepest descent algorithm was utilized to alleviate the local strain. A bandpass signal within the
range of 0 Hz to 50 Hz was applied to the piezoelectric electrode as a test signal, and the summation of
the frequency response function (FRF) magnitude within the range from 35 Hz to 45 Hz was selected
to be the object function of the frequency domain steepest descent algorithm. The output error and
convergence curve of the gain are shown in Figure 8.
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The frequency response function from the driving signal to the sensing signal was taken, which
determined the balance of the bridge circuit and local strain. When the value of matching capacitance
C′p varied, the induced effect was reflected on FRFs. With the change in C′p, variation in the resonance
and antiresonance locations of FRF can be observed. When the capacitance value of C′p was less than
Cp, the antiresonance occurred prior to the resonance, and the contrary occurred when C′p was greater
than Cp. Furthermore, since the driving voltage and local strain were added to the measurement signal,
it can be observed that the magnitude of FRF moved upward compared to the matching capacitance.
With the feedforward compensation, the antiresonance and magnitude bias were eliminated in FRF.
Figure 9 shows FRF comparison with no compensation and after compensating.

Sensors 2018, 18, 3447  11 of 21 

 

range of 0 Hz to 50 Hz was applied to the piezoelectric electrode as a test signal, and the summation 
of the frequency response function (FRF) magnitude within the range from 35 Hz to 45 Hz was 
selected to be the object function of the frequency domain steepest descent algorithm. The output 
error and convergence curve of the gain are shown in Figure 8. 

 
Figure 8. (a) Frequency domain steepest descent (FDSD) convergence signal of the measurement 
signal; (b) FDSD convergence curve of the positioner. 

The frequency response function from the driving signal to the sensing signal was taken, which 
determined the balance of the bridge circuit and local strain. When the value of matching 
capacitance '

pC  varied, the induced effect was reflected on FRFs. With the change in '
pC , variation 

in the resonance and antiresonance locations of FRF can be observed. When the capacitance value of 
'
pC  was less than pC , the antiresonance occurred prior to the resonance, and the contrary occurred 

when '
pC  was greater than pC . Furthermore, since the driving voltage and local strain were added 

to the measurement signal, it can be observed that the magnitude of FRF moved upward compared 
to the matching capacitance. With the feedforward compensation, the antiresonance and magnitude 
bias were eliminated in FRF. Figure 9 shows FRF comparison with no compensation and after 
compensating. 

(a) 
 

Sensors 2018, 18, 3447  12 of 21 

 

  
(b) 

Figure 9. Frequency response function of bridge unbalance circuit (a) with no compensation, and (b) 
with feedforward compensation. 

3. Active Flutter Control Using Self-Sensing Circuit 

3.1. Dynamic Equation of an Aeroelastic System 

Flutter is a self-exiting aeroelastic phenomenon that occurs when fluid couples with energy in a 
structure motion, causing instability and excessive vibration. In this study, MFC and a self-sensing 
piezoelectric driving circuit were utilized to control the flutter of the flexible wing model. The 
aeroelastic equation is determined by the modal vibration formulation and unsteady aerodynamic 
force, which can be obtained as: 

' ' ' '( ) ( , )rM x C x Kx F u Q k M xξξ

⋅⋅ ⋅

∞+ + = +  
(17) 

where , ,M C K  are the modal mass, modal damping, and modal stiffness matrix, respectively, 
( , )rQ k Mξξ ∞  is the unsteady aerodynamic matrix under a modal coordinate, and ( )F u  is the 

dynamic system from the control output to the generalized force applied to the modal variable. The 

unsteady aeroelastic matrix changes with varying wind speed. When the wind speed exceeds the 

particular critical speed, the aeroelastic system turns unstable, and exhibits a strong vibration, so 

flutter control by MFCs and the self-sensing piezoelectric actuator will be introduced in the 

following part. Figure 10 shows the experimental equipment for the flutter suppression test and 

Figure 11 shows the scene of the wind tunnel test. 

 

Figure 10. Experimental equipment of the wind tunnel test. 

Figure 9. Frequency response function of bridge unbalance circuit (a) with no compensation, and
(b) with feedforward compensation.



Sensors 2018, 18, 3447 12 of 19

3. Active Flutter Control Using Self-Sensing Circuit

3.1. Dynamic Equation of an Aeroelastic System

Flutter is a self-exiting aeroelastic phenomenon that occurs when fluid couples with energy in a
structure motion, causing instability and excessive vibration. In this study, MFC and a self-sensing
piezoelectric driving circuit were utilized to control the flutter of the flexible wing model. The
aeroelastic equation is determined by the modal vibration formulation and unsteady aerodynamic
force, which can be obtained as:

M
··
x′ + C

·
x′ + Kx′ = F(u) + Qξξ(kr, M∞)x′ (17)

where M, C, K are the modal mass, modal damping, and modal stiffness matrix, respectively,
Qξξ(kr, M∞) is the unsteady aerodynamic matrix under a modal coordinate, and F(u) is the dynamic
system from the control output to the generalized force applied to the modal variable. The unsteady
aeroelastic matrix changes with varying wind speed. When the wind speed exceeds the particular
critical speed, the aeroelastic system turns unstable, and exhibits a strong vibration, so flutter control
by MFCs and the self-sensing piezoelectric actuator will be introduced in the following part. Figure 10
shows the experimental equipment for the flutter suppression test and Figure 11 shows the scene of
the wind tunnel test.
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3.2. Experimental Setup of the Wind Tunnel Test

The control system configuration is shown in Figure 12. The self-sensing circuit was connected
with an MFC to provide the driving voltage and obtain the sensing signal. The control and monitoring
programmer was implemented in the embedded controller and programmed by LabVIEW. The control
output signal was calculated and applied to the MFC actuator through a power amplifier. The vibration
signal was acquired by the acceleration signal to monitor the performance of the control. The flutter
controller was designed by the state-space model under wind speed 27 m/s, and sampling time was
0.002 s.
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3.3. State-Space Model of Aeroelastic System

The aeroelastic system of the wind tunnel is modeled by the state-space equation:

·
x = Ax + Bu
y = Cx + Du

(18)

where A, B, C, D are the state-space matrix of the aeroelastic system, x is the state-space variable, y is
the output, which is the signal measured by the MFC in the actual system, and u is the control signal,
which is exported from the DA of the controller. Consider a dynamic feedback controller, which can be
expressed as:

·
xk = Akxk + Bky
u = Ckxk + Dky

(19)

Substituting Equation (13) into Equation (12), the closed-loop system can be expressed as:

·
x = Acl x (20)

The closed-loop system of the uncertainty model can be expressed as:

Ac1 =

[
A + BDKC B2CK

BKC AK

]
(21)

The purpose of the controller design is to place the poles of the uncertain closed-loop system
within a specific region. Prior to designing the controller, the state-space model of the aeroelastic
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system was determined by system identification. Frequency domain subspace identification was used
to obtain the state-space model. Since flutter mode plays a dominant role in vibration, a two-order
model was used to approximate the unstable mode. The identification algorithm was implemented
based on the frequency response data to estimate the system matrix of the state-space model, and it
exhibited reliable performance.

3.4. Pole Placement Controller Design

Since flutter is caused by instability of the aeroelastic system, and the poles of the system should be
located in the left half of the complex plane for linear stability, pole placement controllers were designed
to make closed-loop system poles in the left half of the complex plane beyond the flutter speed. The
relevant content can be found in the literature [39,40]. In general, the pole placement controller makes
the aeroelastic system stable, increasing the damping of the system and the anti-interference of the
aeroelastic system to vibration excitation.

The feedback pole placement controller is available such that all of the poles of the closed-loop
system (21) are located in the designated field if and only if two symmetric matrices R, S and state-space
matrices Ak, Bk, Ck, Dk exist via:

Λ(R, S) =

[
R I
I S

]
> 0 (22)

 L⊗Λ(R, S) + M⊗ΦA MT ⊗ΦT
A ∗ ∗

M1 ⊗ΦT
B 0 ∗

M2 ⊗ΦC I ⊗ΦD 0

 (23)

where

ΦA =

 AR + B
−

CK A + BDKC
−

AK SA +
−

BKC

, ΦB =

[
B
SB

]
ΦC =

[
CR C

]
, ΦD = D

∗ denotes the symmetric of the matrix. If the inequality in Equation (23) can be solved, then the
state-space matrix of the controller is given by:

DK =
−
DK

BK = N−1
−
BK − N−1SBDK

CK =
−
CK(MT)

−1 − DKC2R(MT)
−1

AK = N−1
−
AK(MT)

−1 − BKCR(MT)
−1 − N−1SBCK − N−1S(A + BDKC)R(MT)

−1

As for the parameters of LMI in Equation (23), L, M present the pole location of the closed-loop
system to be placed. In this study; L is set at 1.5, and M is set at 1; this means that the pole location of
the closed loop system is located in the region where the character inequality is L + z + z < 0, The
location of the pole indicates that all of the time constants of the system are greater than L/2 = 0.75,
and the vibration signal will exponentially decay faster than e−0.75t.

4. Results and Discussion

The wind tunnel experiment for validating the function of the proposed self-sensing method was
designed as follows. First, system identification was implemented to obtain the state-space model of
the aeroelastic system after the sensing signal was compensated. Second, the controller was designed
based on the identified aeroelastic system by LMI. During the design, the controller was utilized for
flutter suppression, and an adaptive strategy under the condition of capacitance mismatching was
implemented in the wind tunnel test to compensate for the sensing signal. Finally, the same controller
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was applied to flutter suppression by self-sensing actuation with no compensation, and C′p was not
equivalent to Cp for comparison.

Prior to the design of the controller, the aeroelastic model was identified by the frequency domain
subspace method. As the critical speed of flutter is 27 m/s, the aeroelastic model under the critical
flutter wind speed was identified. A bandpass signal that evolved the frequency of flutter was used
as the excitation, and the aeroelastic system was identified under a wind speed of slightly less than
27 m/s. Then, the output signal of the self-sensing piezoelectric drive circuit was acquired. The
frequency response function of input and output data was calculated by the correlation function for
frequency state-space identification. The identified state space models under wind speed below 27
m/s is:

A =

[
−3.974 −152.3

256 0

]
, B =

[
2
0

]
C =

[
0.636 1.709

]
, D = 0

Substituting the identified model into the linear matrix inequality (Equations (22) and (23)), the pole
placement controller is given by:

Ak =

[
−42.0951 188.1113
−200.1712 22.1701

]
, Bk =

[
0.1791
−0.1012

]
Ck =

[
−0.1682 −0.1674

]
, Dk = 0

Before the flutter suppression experiment, the designed controller should be discretized. A zero-order
hold transformation was used to convert the analog controller to the form of the difference equation.
The discrete transfer function of designed controller is given by:

K(z) =
−2.46× 10−6 + 2.003× 10−5z−1 + 2.249× 10−5z−2

1− 1.823z−1 + 0.9623z−2

The performance of the online adaption of potentiometer gain by TDSD and FDSD was validated.
When flutter happens, the self-adaptive regulating function of the self-sensing piezoelectric circuit is
opened. TDSD was first implemented to compensate the capacitance mismatching under the condition
that the matching capacitance is less than the piezoelectric capacitance. After the gain of TDSD
converged to the optimal value, the FDSD algorithm was implemented to alleviate local sensing. The
convergence curve of potentiometer gain of online iteration is shown in Figure 13.
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The performance of the online adaption of potentiometer gain by TDSD and FDSD was 
validated. When flutter happens, the self-adaptive regulating function of the self-sensing 
piezoelectric circuit is opened. TDSD was first implemented to compensate the capacitance 
mismatching under the condition that the matching capacitance is less than the piezoelectric 
capacitance. After the gain of TDSD converged to the optimal value, the FDSD algorithm was 
implemented to alleviate local sensing. The convergence curve of potentiometer gain of online 
iteration is shown in Figure 13. 
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Figure 13. (a) TSDS convergence curve of online iteration; (b) frequency domain steepest descent
(FDSD) convergence curve of online iteration.

Then, the effectiveness of the self-sensing compensation method in active vibration control was
verified. While the wind speed was adjusted to the critical speed of the flutter at 27 m/s, the flexible
wing swiftly turned from static state to vibration and reached a strong vibration state. After the
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controller was opened, the vibration signal and stress signal measured by the self-sensing piezoelectric
actuator converged simultaneously, as shown in Figures 14 and 15 shows the comparison between the
open loop and closed loop FRF.Sensors 2018, 18, 3447  17 of 21 
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Figure 15. (a) Power spectrum of the self-sensing signal; (b) power spectrum of the acceleration signal;
(c) comparison between the frequency response function (FRF) of the open loop and the closed loop.

It can be seen in the comparison of the power spectrum that the peak value of the spectrum is
significantly decreased. Since flutter is caused by the instability of the aeroelastic system, the critical
frequency can be calculated from the eigenvalues of the state-space model of the aeroelastic system.
When the controller is off, the eigenvalues of the aeroelastic system are natural, but when the controller
is on, the pole placement controller is applied to the aeroelastic system, and a new closed-loop system
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is constructed. It is obvious that the eigenvalues of the original system and closed loop system are
different, and the flutter frequency varies after the controller is on.

The root locus diagram of the eigenvalue of the system varies with the gain of the feedthrough
inference, as shown in Figure 16. As the gain of inference is increased, one conjunction pole would
pass through the imaginary axis, and the closed loop system is transformed to instablility.
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To validate the effect of control performance under the condition with capacitance mismatch and
local sensing, the control effects were compared under the capacitance mismatching conditions of
12 nf, with no compensation for local strain. Results shown in Figure 17 indicate that the feedforward
gain led to the instability of the closed-loop system and the flutter signal diverged.
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Figure 17. (a) Self-sensing signal vs. C′p = 12 nF; (b) self-sensing signal with no local strain
compensation.

5. Conclusions

A new method for self-sensing actuation is proposed for the imbalance of bridge and local strain.
The advantages of the new configuration are that the electric bridge circuit can be insured against
capacitance mismatching and local sensing, and the induced feedforward interference of driving
voltage in the measurement signal can be eliminated by compensation. The adaptive gain adjustment
strategy can be utilized under the offline or online condition in the time domain and frequency domain
that converges to the optimal value, which does not affect the application of the driving voltage.
The proposed self-sensing piezoelectric driving circuit is applied to the flutter control of flexible
wings by the controller that was designed by the pole placement algorithm. Theoretical analysis and
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experiment results show that the feedforward inference will greatly affect the stability and performance
of the control and make the pole assignment fail. The proposed self-sensing piezoelectric method,
which alleviates the feedforward interference, can avoid the influence of the bridge imbalance on
the pole placement control for flutter suppression and is also applicable to other fields for active
vibration control.
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