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Abstract: Electro-active paper (EAPap) is a cellulose-based smart material that has shown promising
results in a variety of smart applications (e.g., vibration sensor, piezo-speaker, bending actuator)
with the merits of being flexible, lightweight, fracture tolerant, biodegradable, naturally abundant,
cheap, biocompatible, and with the ability to form hybrid nanocomposites. This paper presents a
review of the characterization and application of EAPap as a flexible mechanical vibration/strain
sensor, bending actuator, and vibration energy harvester. The working mechanism of EAPap is
explained along with the various parameters and factors that influence the sensing, actuation, and
energy harvesting capabilities of EAPap. Although the piezoelectricity of EAPap is comparable to
that of commercially available polyvinylidene fluoride (PVDF), EAPap has the preferable merits in
terms of natural abundance and ample capacity of chemical modification. The article would provide
guidelines for the characterization and application of EAPap in mechanical sensing, actuation, and
vibration energy scavenging, along with the possible limitations and future research prospects.
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1. Introduction

Smart or functional materials are the kind of materials that respond to external stimuli in a
controlled fashion by altering one or more of their inherent properties [1,2]. Since the discovery of
the piezoelectric effect by the Curie brothers in 1880 [3], a lot of research efforts have been devoted
to the development [4–6] and industrial application [7,8] of smart materials. Examples of some
well-known smart materials reported in the literature are piezoceramic [9], piezo polymers [10],
shape memory alloys [11], electroactive polymers [12], electrorheological and magnetorheological
fluids [13], and covalent adaptive network polymers [6], among others. Piezoelectric materials have
shown promising results in mechanical vibration sensing [14–16], actuation [17,18], and energy
transduction applications [19,20]. Piezoelectric ceramics (e.g., lead zirconate titanate (PZT)) and
piezoelectric polymers (polyvinylidene fluoride (PVDF)) are the most commonly used, commercially
available piezoelectric materials. However, PZT and PVDF suffer from the following limitations:
the fabrication of PZTs requires the toxic material of lead oxide to be produced, whereas PVDF is a
petroleum-based polymer, and suffers from extreme temperature fluctuations and various types of
radiation. Hence, there exists a need for environment friendly and natural resource-based renewable
piezoelectric materials.

Electro-active paper (EAPap), discovered by Kim et al. [21], is a cellulose-based smart material that
has shown promising results as piezoelectric actuator, mechanical vibration and strain sensor, vibration
energy harvesting transducer, flexible speaker, paper transistor, micro-flying object, and MEMS/NEMS

Sensors 2018, 18, 3474; doi:10.3390/s18103474 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7057-5174
http://dx.doi.org/10.3390/s18103474
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/10/3474?type=check_update&version=2


Sensors 2018, 18, 3474 2 of 20

device [22]. The raw material of EAPap is cellulose that is a nontoxic, colorless, and odorless solid
with a per year production of 100 billion tons on Earth from the natural resources of plants, cotton,
and seaweed [5,23]. Some promising advantages of EAPap as a smart material are its flexibility,
transparency, low cost, high mechanical strength, renewable nature, large displacement output,
low actuation voltage, biodegradable characteristics, and dryness [21,24,25]. The electromechanical
properties of EAPap without any additive are comparable to that of PVDF, and can be substantially
improved by wet drawing [26], coating of nanolayer of zinc oxide [27], and the hybridization of
cellulose with nanocomposites [22]. EAPap is fabricated in the form of thin film with a thickness of
(20–30) µm and electrodes coated on both sides. The flexible nature of EAPap allows it to be attached
to surfaces of different geometric configurations, and does not influence the resonant frequencies of
the host structure, due its ultra-light weight nature. Also, the flexibility of EAPap allows it to be used
in harsh vibration, where PZTs cannot be employed, due to their brittleness.

This review article places emphasis on the characterization of cellulose-based electroactive
paper (EAPap) as mechanical vibration/strain sensor, actuator, and energy harvesting transducer.
The actuation, sensing, and energy transduction mechanisms of EAPap are briefly summarized in
a short initial section. The contents of the sections that follow are dedicated to a thorough and
up-to-date discussion on the characterization and application of EAPap for flexible piezoelectric
actuation, vibration or strain sensing, and mechanical vibration energy harvesting, along with possible
challenges and limitations. Various parameters, such as fiber orientation, type of electrode, power,
and surrounding noise, that affect the performance of EAPap are identified and discussed. The article
provides a comprehensive review of the characterization and application of EAPap for mechanical
actuation, sensing, and vibration energy harvesting.

2. Working Principle of EAPap

Cellulose-based EAPap has shown promising results as flexible sensor, actuator, and energy
harvesting transducer [28]. From the morphological point of view, EAPap is a sheet of regenerated
cellulose that consists of ordered and disordered regions. The ordered regions are characterized by
crystalline and amorphous structure, whereas the disordered regions are characterized by the presence
of water molecules and sodium ions that are injected during the fabrication process of EAPap. Also, in
the disordered region, there exists a lot of hydroxyl groups around the disordered chains of cellulose.
The water molecules may be attached to the hydroxyl group or present as free water, as shown in the
conceptual configuration of EAPap in Figure 1c.
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Figure 1. Concept of electro-active paper (EAPap) actuator: (a) EAPap is made from cellulose paper
on which gold electrodes are deposited on both sides; (b) cellulose microfibril has ordered crystalline
regions and disordered regions; (c) water molecules are bonded with hydroxyls on the cellulose surface
(bound water) or clustered in free (free water) [21].
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In the disordered region, the water molecules can move freely, as well as interact with the
sodium ions. The crystalline structure in the ordered region of regenerated cellulose is responsible
for the piezoelectric effect, whereas the interaction of hydroxyl groups with the water molecules and
sodium ions results in an ion migration effect. It is believed that the combined effect of the inherent
piezoelectricity in the ordered regions and ion migration in the disordered region is responsible for the
working of cellulose EAPap as a smart material. In the form a piezoelectric actuator, when an electric
field is applied to EAPap, a bending phenomenon is observed as a result of the volumetric change of
the EAPap that is caused by the movement of sodium ions surrounded by water molecules towards
the anode of the external electric field [21].

In general, the polarizability of cellulose EAPap is attributed to the electronic contribution from
the displacement of the electron shell relative to nucleus, ionic contribution from the displacement
of charged ion relative to other ions, and permanent molecular dipole moments of the hydroxyl and
carboxyl groups. In particular, the hydrogen bonding of cellulose chains in the disordered regions
(Figure 1c) of EAPap results in many localized states that dominate the charge transfer process upon
the release or excitation of charge carriers in these states. Hence, the permanent polarization and
subsequent piezoelectric behavior of EAPap is observed due to the disordered regions that stabilize
the dipoles and lead to permanent polarization. The piezoelectric effects of EAPap make it a promising
candidate as a flexible piezoelectric sensor, artificial muscle, and energy harvesting transducer [29–31].

3. EAPap as a Flexible Vibration/Strain Sensor

Cellulose-based electro-active paper has shown promising results as a flexible vibration and
strain sensor in measuring the dynamic characteristics of vibrating structures. Some advantages of
EAPap as a vibration sensor over other piezoelectric materials are its eco-friendly behavior, flexibility,
light weight, natural abundance, low cost, and ease of manufacturing [21,32], among others. From
a structural viewpoint, the piezoelectricity of EAPap is associated with the dipolar orientation and
monoclinic structure of cellulose. As a flexible piezoelectric sensor, EAPap generates surface charge
as a response to mechanical deformation. This phenomenon is called direct piezoelectricity, and is
governed by the mathematical expression of Equation (1)

Di = dijcjkεk + kimEm i, j = 1, 2, 3 (1)

where εk, Di, and Em denote the strain tensor, dielectric displacement vector, and electric field vector,
respectively. The terms dij, cjk, and kim refer to matrices of piezoelectric, elastic stiffness, and dielectric
permittivity constants, respectively.

When EAPap is used as sensor, no electric field is applied (Em = 0) and the charge of interest (D3)
is collected through the electrodes on upper and lower surfaces of EAPap. Equation (1) simplifies to
the expression of Equation (2):

D3 = d31c1kεk (2)

The piezoelectric charge constant of EAPap is determined experimentally from the expression of
Equation (3) [33]:

d31 =

(
∂D3

∂T1

)
E
=

induced charge per unit electrode area
Applied in − plane normal stress

(C/N) (3)

where the subscript E denotes the constant electric field imposed during the pulling test for determining
piezoelectric charge constant.

Figure 2 shows a schematic of the process of experimentally determining the piezoelectric charge
constant using Equation (3) [31].
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The effect of directionality on the piezoelectric charge constant of EAPap was investigated by
considering three different orientations, as shown in Figure 3.
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Table 1 shows the piezoelectric charge constant of EAPap for different orientation within the
elastic limit.

Table 1. Piezoelectric charge constants of electro-active paper (EAPap) according to material orientation [31].

Orientation d31 (pC/N)

0◦ 8.01
45◦ 28.2
90◦ 23.4

Kim et al. [34] investigated the possibility of EAPap as a vibration sensor. The average capacitance
and relative permittivity of EAPap were found to be the same as those of commercially available
synthetic PVDF. It was found that the sensing capabilities of EAPap are not useful in the presence
of ambient and power noise; however, grounding and shielding of EAPap dramatically reduces the
effect of noise, and EAPap can correctly capture the dynamic response characteristics (i.e., natural
frequencies) of the beam without any charge amplifier. Furthermore, the grounded and shielded EAPap
showed better performance as a vibration sensor than the accelerometer, as the EAPap clearly captured
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two twisting modes that were not clearly obtained by the accelerometer. Abas et al. [35] characterized
EAPap as a vibration sensor by impact testing and random excitation. The performance of EAPap as a
vibration sensor was compared with that of PVDF. The dynamic response in the frequency domain
revealed that EAPap sensor has good sensitivity to a lower level of strain and low frequency vibration;
however, the usefulness of EAPap as a sensor in the high-frequency range is limited due to power
noise. Also, the comparison of the time domain response of the EAPap and PVDF sensors to the same
input revealed that EAPap is more sensitive to ambient and power noise than PVDF.

Kim et al. [29] investigated the possibility of using EAPap as a piezoelectric sensor by studying
the vibration control of a cantilevered beam made of aluminum. A PID-based feedback controller was
employed to suppress the vibration of the beam by minimizing the output of the EAPap sensor, which
was considered as a position error of the cantilevered beam. The open and closed loop performance
of the controller revealed that EAPap has great potential as a piezoelectric vibration sensor. Also,
comparison of the impulse responses as measured by EAPap and PZT-5H showed that EAPap has
sensing capability similar to that of the piezoceramic patch (PZT-5H) for low frequency vibration as
shown in Figure 4.
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Lee et al. [36] studied the direct piezoelectricity of EAPap by subjecting the EAPap to in-plane
normal static/dynamic load, and measuring the induced charge and voltage during a pull test. It was
found that the piezoelectric charge constant of dimethylacetamide (DMAC) EAPap is dependent on
the material orientation (0, 45, 90)◦ and mechanical drawing ratio (Dr), as shown in Table 2.

Table 2. Piezoelectric charge constant of dimethylacetamide (DMAC) EAPap [36].

Drawing Ratio (Dr) Piezoelectric Charge Constant (pC/N)

0◦ 45◦ 90◦

1.0 - 0.40–0.41 -
1.5 2.5 3.1 0.65
2.0 5.2 7.3 0.39

Mun el al. [37] characterized the strain sensing behaviors of a flexible and transparent cellulose
film coated with silver nanowires. Silver nanowires (AgNW) were sprayed on the dried cellulose
film via a spray layer-by-layer technique; it was found that the sheet resistance decreases with an
increase in the concentration of AgNW solution, and a trade-off exists between the transmittance and
resistance of AgNW-coated cellulose films. The mechanical, electrical, and strain-sensing characteristic
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of the AgNW-coated cellulose films were quantified in the stretching and bending modes under
cyclic loadings.

Ko et al. [38] investigated the strain sensing behavior of cellulose ZnO hybrid nanocomposite
(CEZOHN) in bending and longitudinal stretching modes. Figure 5 shows the stress–strain curve and
induced charge curve of the CEZOHN, while Table 3 compares its electromechanical properties with
bare and aligned cellulose [39].
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Table 3. Comparison of Young’s modulus and piezoelectric charge constant of cellulose and cellulose
ZnO hybrid nanocomposite (CEZOHN) [38,39].

Samples Young’s Modulus (GPA) Piezoelectric Charge Constant d31 (pC/N)

Bare cellulose 5.3 6
Aligned cellulose 7.0 30

CEZOHN 5.0 145

Table 3 shows that ZnO did not affect the mechanical rigidity of the cellulose; however, the
piezoelectric charge constant was increased 30 times compared with bare cellulose, and 6 times
compared with aligned cellulose. The stretching test showed that the induced current signal of
CEZOHN closely followed the applied stretching strain, as shown in Figure 6.
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4. EAPap as a Flexible Actuator

Among the various available electro-active polymers (EAPs), conductive polymers [40], ionic
polymer metal composite [41], dielectric elastomers [42], gel-polymers [43], and so on, EAPap has
been spotlighted as a promising biomimetic actuator. Some noticeable characteristics of EAPap as an
actuator are its large displacement output, dryness, flexibility, low actuation voltage, biodegradability,
low power consumption, and light weight nature [21,44,45]. Various parameters that influence the
performance of EAPap as an actuator are its fabrication processes, type of solvent in which cellulose
pulp is dissolved, deposition of electrode and the geometry of the pattern of the electrode, mechanical
stretching, and environmental conditions of temperature and humidity. A comprehensive literature
review on various aspects of EAPap, its hybrid nanocomposites, and applications up to 2016 can be
referred to in a previous paper [22] from the same authors. In this section of the paper, we review some
fundamental aspects of EAPap as an actuator for mechanical applications.

As a flexible piezoelectric actuator, EAPap works on the principle of converse piezoelectricity,
where an external electric field induces mechanical strain in EAPap. Yun et al. [46] experimentally
quantified the converse piezoelectric charge constant using Equation (4).

d31 =

(
∂S1

∂E3

)
T
=

induced in − Plane strain
Applied voltage/thickness

[m
V

]
(4)

where S denotes the in-plane induced strain, E is the externally applied electric field, and the subscript
T denotes boundary condition of constant stress during the applied electric field. The subscripts 1 and
3 refer to the in-plane and out-of-plane orientation of the sample, respectively. The d33 mode of the
piezoelectric charge constant can be quantified from the general relation of Equation (5) for converse
piezoelectric effect [33].

d =

(
∂S
∂E

)
T
=

induced in − Plane strain
Applied voltage/thickness

[m
V

]
(5)

Yun et al. [47] investigated the performance of a thin stretched EAPap film in the form of unimorph
type and stacked type actuators as functions of frequency and applied electric field. The bending
displacement of the stacked actuator (d33 mode) was found to be strongly dependent on frequency
of operation such that an increasing operating frequency caused an exponential decrement in the
piezoelectric charge constant. For a unimorph actuator (d31 mode), the bending displacement was
observed to be a linear function of the applied voltage and almost independent of the operating
frequency, as shown in Figure 7.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 20 

 

4. EAPap as a Flexible Actuator 

Among the various available electro‐active polymers (EAPs), conductive polymers [40], ionic 

polymer metal composite [41], dielectric elastomers [42], gel‐polymers [43], and so on, EAPap has 

been spotlighted as a promising biomimetic actuator. Some noticeable characteristics of EAPap as an 

actuator are its large displacement output, dryness, flexibility, low actuation voltage, 

biodegradability, low power consumption, and light weight nature [21,44,45]. Various parameters 

that influence the performance of EAPap as an actuator are its fabrication processes, type of solvent 

in which cellulose pulp is dissolved, deposition of electrode and the geometry of the pattern of the 

electrode, mechanical stretching, and environmental conditions of temperature and humidity. A 

comprehensive literature review on various aspects of EAPap, its hybrid nanocomposites, and 

applications up to 2016 can be referred to in a previous paper [22] from the same authors. In this 

section of the paper, we review some fundamental aspects of EAPap as an actuator for mechanical 

applications. 

As a flexible piezoelectric actuator, EAPap works on the principle of converse piezoelectricity, 

where an external electric field induces mechanical strain in EAPap. Yun et al. [46] experimentally 

quantified the converse piezoelectric charge constant using Equation (4). 

         

1
31

3

inducedin‐Plane strain

Applied voltage/thickness
T

S md
VE

 (4) 

where S denotes the in‐plane induced strain, E is the externally applied electric field, and the 

subscript T denotes boundary condition of constant stress during the applied electric field. The 

subscripts 1 and 3 refer to the in‐plane and out‐of‐plane orientation of the sample, respectively. The 

d33 mode of the piezoelectric charge constant can be quantified from the general relation of Equation 

(5) for converse piezoelectric effect [33]. 

         

induced in‐Plane strain

Applied voltage/thickness
T

S md
VE

 (5) 

Yun et al. [47] investigated the performance of a thin stretched EAPap film in the form of 

unimorph type and stacked type actuators as functions of frequency and applied electric field. The 

bending displacement of the stacked actuator (d33 mode) was found to be strongly dependent on 

frequency of operation such that an increasing operating frequency caused an exponential decrement 

in the piezoelectric charge constant. For a unimorph actuator (d31 mode), the bending displacement 

was observed to be a linear function of the applied voltage and almost independent of the operating 

frequency, as shown in Figure 7. 

 

Figure 7. Plots of the bending displacement versus the applied voltage (Vamp) at the frequencies of 

(a) f = 0.1 Hz and (b) f = 10 Hz [47]. 

The performance of the EAPap not only depends on the material fiber orientation, but also on 

the electrode pattern, which is usually deposited as a thin layer on both sides of the EAPap. Ridley et 

al. [48] studied pattern electrode of fishbone geometry, and compared it with the previous research 
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(a) f = 0.1 Hz and (b) f = 10 Hz [47].

The performance of the EAPap not only depends on the material fiber orientation, but also
on the electrode pattern, which is usually deposited as a thin layer on both sides of the EAPap.
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Ridley et al. [48] studied pattern electrode of fishbone geometry, and compared it with the previous
research on rectangular electrode pattern [49]. Both types of electrode pattern geometries were
compared in terms of bending displacement, resonance frequency, and electrical power consumption.
The maximum actuator force and the corresponding maximum mechanical power output of the EAPap
actuators were obtained from the bending displacement via Equations (6) and (7), respectively.

F =
3EIδ

L3 =
Ebh3δ

4L3 (6)

Pmax = 2πδ f F = π
f Ebh3δ2

2L3 (7)

where F and Pmax are the maximum actuator force and maximum mechanical power output,
respectively. The term δ refers to the measured bending displacement of EAPap, I and E denote
the moment of inertia and Young’s modulus of the EAPap, respectively. The quantities b, h, and L are
the width, thickness, and length of the EAPap sample, respectively.

The performance of the rectangular and fishbone electrodes were compared in terms of bending
displacement, resonance frequencies, electrical power consumptions, mechanical power output, and
actuator efficiency on two samples of EAPap, namely DCell and cellophane; as shown in Table 4.

Table 4. Electrode pattern effect on the actuator performance of cellulose EAPap actuators at 5 V, 90%
RH, 25 ◦C [48].

Electrode Pattern Max. Displ.
(mm)

Resonance
Frequency (Hz)

Electrical Power
Consum. (mW)

Mechanical Power
Output (µW) Efficiency (%)

Rectangular (DCellR) 5.1 ± 0.11 7.5 ± 0.1 30 ± 1.2 3.6 ± 0.13 0.012 ± 0.001
Fishbone (DCellF) 4.8 ± 0.09 11.0 ± 0.1 28 ± 1.0 4.6 ± 0.15 0.013 ± 0.0012

Rectangular (CellR) 6.5 ± 0.12 5.5 ± 0.1 40 ± 1.3 4.3 ± 0.13 0.011 ± 0.0007
Fishbone (CellF) 5.6 ± 0.11 9.0 ± 0.1 28 ± 1.0 5.2 ± 0.16 0.019 ± 0.0017

Although the fishbone pattern of electrodes showed 30–60% improvement in the actuator
efficiency (mechanical power output/electrical power consumption), its electrodes were more severely
damaged than rectangular electrodes as a result of more electric field concentration around the ‘fingers’
of the fishbone pattern.

The mechanical stretching effect also affects the performance of the EAPap. Kim et al. [50]
observed the lattice elongation of cellulose fibrils due to in-plane tensile stress along the stretching
direction by X-ray diffraction method. They stretched the cured cellulose film at different ratios
(DR = 1.1, 1.5, and 2.0). Figure 8 shows a comparison of the measured wide X-ray diffraction data of
the stretched EAPap film with the non-stretched EAPap for 2θ angle from (5 to 40)◦.

Two peaks were observed for the stretched EAPap, as well as for the non-stretched one, that is, 110
and 110, respectively. The first peak (110) for the non-stretched EAPap was observed at ~12.2◦, which
was slightly lower than any of the three stretched EAPaps (~12.5◦). The second peak was observed at
20.6◦ for both the stretched and non-stretched EAPap; however, for the stretched EAPap with a DR of
2.0, the 110 peak became dominant, which confirmed the improvement of the EAPap as an actuator
in the stretching direction of the sample. The performance of the EAPap is also maximized with a
conductive coating on its surface. Kim et al. [51] electrochemically deposited conductive polyaniline
on a cellulose paper. The performance of the coated EAPap increased three times compared with the
non-coated EAPap. Furthermore, it was observed that in terms of bending displacement, a tri-layer
EAPap actuator performed better than a bi-layered actuator. Figure 9 shows a schematic of the bilayer
and tri-layer EAPap actuators coated with conductive polymers (CP–EAPap actuators).
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Various test methods have also been developed to measure the pertinent performance parameters
of EAPap as a flexible actuator. Of these test methods, tip deflection, radius of curvature, and blocked
force are the important parameters that measure the performance of EAPap as a bending actuator [52].
Figure 10 shows the three types of performance parameters, that is, (a) free displacement, (b) blocked
force, and (c) blocked force versus displacement relation with increasing voltage.
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Kim et al. [53] measured the blocked force of EAPap bending actuator using a microbalance, and
compared it with a cantilever beam model blocked force. Figure 11 shows the comparison of measured
blocked force with the theoretical blocked force calculated from the relation of Equation (8):

P =
3EIδ

L3 = 24.9 µN (8)

where P is the theoretical blocked force, E is the elastic modulus of EAPap, I is the moment of inertia, δ

is the displacement, and L is the length of the EAPap.
Figure 11 shows that the theoretical and measured blocked force have minute uncertainty up

to a DC voltage of 4 V. After 4 V, the measured blocked force has a deviation of 5 µN, which was
considered to be in the error range. The theoretical and the measured blocked force followed the same
trend against DC voltage, which confirmed the high accuracy of the measured blocked force while
using a micro-balance.
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Figure 11. Comparison of measured and calculated blocked forces on DC electric field [53].

Yun et al. [52] measured the blocked force of the EAPap actuator by a custom-built force transducer.
The aim of this study was to measure the blocked force of an EAPap actuator through AC actuation,
rather than DC actuation. Figure 12 shows the static and dynamic tip deflection of the force transducer
under 350 V mm−1 and 80% relative humidity condition.
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Figure 12 shows that after a certain period of time, stable dynamic tip deflection of the force
transducer is obtained. The transducer force was defined as the sum of the static and dynamic
deflections, as given by Equation (9):

F = k
(

δst + δdyn

)
(9)

Another physical property that affects the performance of EAPap as a flexible actuator is its
thickness. Yun et al. [32] studied three actuators of thicknesses (20, 30, and 40 µm) in terms of
tip displacement, blocked force, electrical power consumption, and efficiency, and found that the
mechanical properties drastically increased with increasing thickness. Figure 13 shows the tip
displacements of three EAPap actuators of different thickness (20, 30, and 40 µm) with voltage
and frequency variations.
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Figure 13. (a–c) Tip displacements of EAPap actuators with thickness variation [32].

Herein, it is observed that the resonance frequency corresponding to maximum displacement has
increased from 3 to 7 Hz and 8 Hz as the thickness increases from 20 to 30 µm and 40 µm, respectively.
Furthermore, the maximum displacement is decreasing with an increase in the thickness of the sample.
The EAPap sample of 30 µm thickness showed maximum mechanical power output among the
three samples.

5. EAPap as Flexible Vibration Energy Harvesting Transducer

The autonomous operation of low-power microscale electronic devices (e.g., wireless sensors,
implantable medical devices) mandates the extraction of power from minute but pervasive sources,
such as mechanical vibration [20,54–56], light [57], heat [58,59], radio frequency (RF) [60,61], and
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raindrops [62,63], among others. Ambient vibration is an appealing energy source for micro energy
transduction because of its abundance [64,65]. Piezoelectric materials have been extensively used
for energy harvesting from mechanical vibration [20,66,67]. In general, piezoceramics, such as lead
zirconated titanate (PZT), are the most commonly employed materials for harvesting energy from
mechanical vibration [68–71]. However, the brittle nature of PZTs hinder their application for energy
harvesting from harsh vibration [68]; and alternative materials, such as PVDF [72,73], ZnO piezoelectric
thin films [74], Nafion [75], electro-active polymer (EAP) [76,77], and EAPap [25], are receiving attention
for energy transduction from mechanical vibration. In this section, the use of EAPap as energy
harvesting transducer is reviewed. Some noticeable advantages of EAPap as an energy harvesting
transducer are its light weight nature, natural abundance, low cost, eco-friendliness, and fracture
tolerance [22,78], among others.

Abas et al. [25] studied the possibility of EAPap as energy scavenging transducer, and found that
EAPap can be employed as a flexible vibration energy harvesting transducer. Furthermore, the voltage
output from EAPap energy harvester was found to be dependent on the area of electrodes deposited
on EAPap. Hosseini et al. [79] presented an analytical model for calculating the energy generated from
the vibration of a cantilever substrate partially covered by EAPap material. Table 5 shows that the
analytical model was found to be in good agreement with the experimental results.

Table 5. Analytical and experimental results of the Vp-p, Ip-p, and Pmean for partially covered
cellulose-based piezoelectric energy harvester [79].

Vp-p (mV) * Ip-p (nA) ** Pmean (nW) ***

Experimental results 25.6 284 0.9071
Theoretical values 26.6 295 0.9831
Relative errors (%) 3.9 3.9 8.4

* Peak to peak voltage, ** peak to peak current, *** mean power output.

The harvested current, power, and voltage were found to be significant around the resonance
frequency of the structure, and the value of load resistance (RL) and damping ratios were identified as
important parameters that influence the harvested power, as shown in Figures 14 and 15.
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Figure 15. Mean power output of the EAPap-based energy harvester for a range of frequencies in
different damping ratios [79].

In an experimental study of vibrational energy harvesting from EAPap [80], it was found that the
frequency response functions (FRFs) of voltage and current show a monotonic trend with an increase
of the load resistor from 100 kΩ to 1 MΩ; however, the current FRFs showed an opposite trend from
voltage FRFs. Also, the output power FRFs did not show a monotonic trend. Abas et al. [81] studied
the effect of electrodes of different materials on the energy harvesting capabilities of EAPap. Figure 16
shows that three different specimens of EAPap were prepared with electrodes of gold, silver, and
aluminum, respectively.
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Figure 16. Fabricated gold, silver and aluminum electrode electroactive paper specimens [81].

Figure 17 shows that for different area of electrodes, the EAPap specimen with aluminum
electrodes was found to produce the largest open circuit voltage, compared with the EAPap specimens
of gold and silver electrodes. Figure 18 shows that although the peak-to-peak voltage output from all
the specimens increased as the amplitude of the input acceleration to the cantilever vibration bender
was increased, the rate of increase of the output voltage was identified to decrease with increasing
input acceleration.
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Figure 17. Average peak to peak open circuit voltage output for 400, 800, and 1200 mm2 gold, silver,
and aluminum electrode-coated EAPap [81].
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Figure 18. Variation of the average Vp-p against the input acceleration amplitude (grms) for three
parallel connected electrodes with an area of 1200 mm2 [81].

Abas et al. [82] developed a coupled-field finite element model (FEM) of EAPap energy harvester,
and verified the results experimentally. Figure 19 compares the experimental and FEM results of the
voltage output from an aluminum cantilever bender bonded with EAPap.
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Mun et al. [27] uniformly coated a nanolayer of zinc oxide on the surface of a regenerated cellulose
film, and found drastic improvement in the electromechanical properties of the zinc oxide nanocoated
cellulose film (ZONCE), as shown in Table 6.

Table 6. Comparison of mechanical, electrical and piezoelectric properties of cellulose EAPap, zinc
oxide nanocoated cellulose film (ZONCE), and polyvinylidene fluoride (PVDF) [27].

ZONCE Cellulose EAPap a PVDF

Young’s modulus (GPa) 3.5 5.0 2.7
Yield strength (MPa) 52.8 67.5 22.2

Tensile strength (MPa) 81.8 120.3 32.7
Dielectric constant (at 1 Hz) 21.3 16.0 13

Piezoelectric charge constant (pC/N) 93.5 26.5 20.0
Transparency (480 nm) 86.0 88.3 75.9

a Results are for mechanical stretching one.

Herein, the piezoelectric charge constant of ZONCE is observed to be 3.5 and 5 times higher
than the cellulose EAPap and PVDF, respectively. Figure 20 shows that the potential application of
ZONCE for vibration energy harvesting was also demonstrated in a cymbal type vibration energy
harvester. The peak-to-peak force (Fp-p), output voltage (Vp-p), induced current (Ip-p), and power
output (Wp-p) of ZONCE were found to be comparable to those of nanogenerators made of ZnO
nanorodes and nanowires.
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Im et al. [83] investigated the effect of width reduction on a cantilever type EAPap energy
harvester, and found that the widthwise split of EAPap and the cantilever beam resulted in more
electrical energy than a single beam of the same total width.
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6. Conclusions

This review article summarizes the characterization and applications of cellulose-based
electro-active paper (EAPap) as a flexible mechanical vibration/strain sensor, actuator, and vibration
energy scavenger. The experimental process of determining the piezoelectric charge constant of EAPap
has been discussed. The piezoelectric charge constant of EAPap is dependent on the orientation of
fibers of cellulose, and has the highest value for the fiber orientation of 45◦. The average capacitance
and relative permittivity of EAPap have been found to be similar to that of PVDF. Although the
EAPap sensor has shown better performance than the accelerometer in measuring the lower modes of
vibration, its sensing capabilities are strongly influenced by the ambient and power noise, which can be
dealt with via grounding and shielding of the EAPap sensor. EAPap has also shown promising results
as a strain sensor. The electromechanical properties and strain sensing capabilities of EAPap have been
tremendously enhanced by chemically growing ZnO nanorodes on cellulose. The important parameters
that influence the harvested current, power, and voltage output from the EAPap energy scavenging
transducer are materials of the electrodes, area of the electrodes, load resistance, and damping of the
vibration bender. Some noticeable parameters that affect the performance of EAPap as an actuator
are the pattern of electrodes (rectangular, fishbone etc.), mechanical stretching, conductive coating,
environmental conditions of temperature and humidity, and thickness of the EAPap. Although EAPap
has the obvious advantages of biocompatibility, natural abundance, recyclability, eco-friendliness,
flexibility, fracture tolerance, ease of manufacturing, and light weight, further research efforts are
needed to overcome the possible challenges associated with the real world applications of EAPap,
such as the following:

1. Its stability in harsh environment of high temperature and relative humidity.
2. The decrement in the Young’s modulus of EAPap with an increment in the relative humidity due

to hydrophilic nature of cellulose.
3. The decrease in the dielectric constant and subsequent actuation behavior of EAPap due to the

vaporization of water molecules at elevated temperatures.
4. Poor performance of EAPap vibration sensor in the presence of power and surrounding noise.
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