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Abstract: In energy-constrained wireless sensor networks (WSNs), the design of an energy-efficient
smart strategy is a key to extend the network lifetime, but the unbalance of energy consumption
and node load severely restrict the long-term operation of the network. To address these issues,
a novel routing algorithm which considers both energy saving and load balancing is proposed in
this paper. First of all, the transmission energy consumption, node residual energy and path hops
are considered to create the link cost, and then a minimum routing graph is generated based on the
link cost. Finally, in order to ensure the balance of traffic and residual energy of each node in the
network, an “edge-cutting” strategy is proposed to optimize the minimum routing graph and turn
it into a minimum routing tree. The simulation results show that, the proposed algorithm not only
can balance the network load and prolong the lifetime of network, but meet the needs of delay and
packet loss rate.
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1. Introduction

1.1. Background and Motivation

With the acceleration of the Internet of Things era, wireless sensor networks (WSNs) have been
widely deployed in various application scenarios, such as volcanic eruption monitoring [1,2], medical
care monitoring [3], and smart home monitoring [4]. Therefore, many studies about the topic have
been done, including load balancing, security, QoS, congestion control, connectivity, coverage [5–11],
etc. Besides, due to the limited energy storage [12,13] of battery-powered sensor networks, these
applications also have a common requirement for the network lifetime, thus reducing the energy
consumption to extend the network lifetime is one of the key tasks of the WSN. However, some nodes
undertake excessive data forwarding because of the location factors, and the network is prone to
energy hole phenomenon due to uneven energy consumption [14], which resulting in faster node
death and lower network lifetime. Therefore, in order to maximize the network lifetime, both energy
consumption reducing and load balancing are needed to be considered when making routing decisions.

1.2. Related Works

In some traditional routing algorithms that extend the network lifetime by reducing network
energy consumption [15,16], the energy consumption is saved mainly by reducing the hop counts
of the transmission paths. Among them, the GBR algorithm [15] finds the path with the least hops
from source node to the sink by calculating the parameter “node height”; Min-Hop [16] chooses
a node among the neighbors as the relay, which has the least hops from source node to the sink
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node, and when there are multiple paths with the fewest hop counts, the residual energy of the
nodes will be taken as a decisive factor. This type of algorithms based on the minimum hops is
equivalent to the minimum energy consumption routing [17]. Generally, it can reduce the path energy
consumption, but it is easy to cause some nodes to exhaust prematurely due to overuse, bringing
about an uneven distribution of residual energy and a short network lifetime. In addition, there are
some routing algorithms that consider the sleep strategies [18–20]. These algorithms lessen the energy
consumption rate by adjusting the “sleeping” and “awake” working modes of nodes, thus prolonging
the lifetime of the entire network. However, there always exists a trade-off between energy efficiency
and other performances.

For the above problems, some routing algorithms that consider the load balancing are proposed
in [21–26]. Among them, SLDD [21] uses the evaluation function to select a super-link to redistribute
network load through nodes with large energy and communication capacity on the super-link.
However, since only a single metric is considered in the routing decision, this strategy can only
be locally optimal, which may make other nodes exceed the load capacity [27]. In order to avoid the
nodes in hot spot from taking too many forwarding tasks, in [22], the transmission power is controlled
to balance the load, which can shrink the difference of residual energy of each node and achieve the
purpose of extending the network lifetime, but for the network performance optimization, such as
the network throughput and transmission delay, it is irrationally overlooked. DECOR [23] proposes a
degree-limited routing, in which the load-balanced routing tree is established by limiting the degree
of each node, but the required overhead of the computation and communication in this algorithm
are large. To ensure the load balancing of node communication, a heuristic multi-path algorithm is
proposed in [24], but it ignores the energy consumption caused by the distance factor. In [25], the FAF-
EBRM adopts an energy balancing routing protocol based on a forward sensing factor, and utilizes
the energy density of the forward region and the link data traffic to make routing decisions, which
can alleviate data congestion in some way, similarly, due to the energy loss of detours, it is hard to
minimize the path energy consumption. In [26], FLEOR can reduce the energy waste caused by the
detours on the basis of the fuzzy theory, it selects the next hop by considering the transmission distance,
hop counts and energy balance of the path, which can reduce the transmission energy consumption
and prioritize the nodes with higher residual energy. Nevertheless, the fuzzy rules are formulated
artificially, which lead to the lack of objectivity of next hop selecting, so the final path may not be
the optimal.

Therefore, in order to maximize the network lifetime, we both consider reducing the energy
consumption of the whole network and balancing the node load, proposing an equilibrium strategy-
based routing optimization algorithm for wireless sensor networks (ESRA).

1.3. Contributions

Based on the above analysis, the major contributions of this paper are summarized as follows:

• We defined the link cost for the sake of energy saving and less delay, by considering the residual
energy of the node, the transmission energy consumption and the forward energy consumption
of the next hop.

• We generated the minimum routing graph based on the link cost. Here, in order to obtain this
graph, the shortest path set of each node is calculated from the source node to the sink node
according to the improved Dijkstra algorithm [28].

• We proposed an “edge-cutting” strategy to balance the load in the minimum routing graph, so that
the network structure can be adjusted in real time to optimize the route by dynamically sensing
the node load. Simulation results show that our algorithm can decrease the average network
energy, balance the node load, extend network lifetime, and also reduce transmission delay and
packet loss rate, showing a good network performance.
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The rest of this paper is organized as follows: in Section 2, we describe the network model and
related definitions. Section 3 introduces the proposed ESRA algorithm in detail. The performance of
our algorithm is analyzed and discussed in Section 4 according to relevant simulation results. Finally,
the conclusions drawn are summarized in Section 5.

2. Network Model and Related Definitions

2.1. Network Model

In this paper, we focus on the typical information collection application in event-driven wireless
sensor networks. The sensor nodes periodically perceive the data and transmit them to the sink node
in a multi-hop manner. In order to simplify the network, it is assumed that:

(1) All sensor nodes are isomorphic and randomly deployed in a certain monitoring area. The sensor
nodes have only one sink node, and the location of sensor nodes and the sink node will not be
changed after being deployed.

(2) The node can change the transmission power according to the distance to the receiver, and the
distance from one sensor node to another can be estimated based on the received signal strength.

(3) In a practical application, the packet size and the data generation rate can be determined according
to different scenarios. As for this paper, in order to simplify the model, the size of the packet is
fixed and the data generation rate is the same for all nodes.

2.2. Related Definitions

In order to describe our algorithm more clearly, the relevant definitions are provided as follows:

Definition 1. Network lifetime: the round of the first dead node due to energy exhaustion [29–33].

Definition 2. Forward energy consumption: the distance from the node i to the sink is defined as the forward
distance dis, thus the forward energy consumption eis can be calculated according to the forward distance dis
and the energy consumption model in [34]. Namely, the model is expressed as:

Et(λ, d) =

{
λEbas + λε f sd2

λEbas + λεmpd4
d < d0

d ≥ d0
(1)

Er(λ) = Ebas(λ) = λEbas (2)

where λ represents the length of the packet, and ε f s, εmp represent the transmit amplifier, d is the distance of

node sending data, d0 =
√

ε f s/εmp denotes the threshold of the communication distance, Ebas is the energy
consumed when transmitting or receiving 1 bit of data. Here, considering that the receiving energy consumption
Er(λ) is much smaller than the sending energy consumption Et(λ, d), so we ignore it in the calculation.

Definition 3. Node load: under the assumption that the data generation rate of all nodes in the network is the
same, the number of descendant nodes of the node i reflects the load size in some way. At the same time, it is
considered that the node itself also generate monitoring data, so the node load LN(i) is defined as the number of
all nodes (namely descendant nodes) that can transfer data to node i and also plus itself.

Definition 4. The candidate parent set: in the generated minimum routing graph, all parent nodes on the
multiple shortest paths of node i are defined as candidate parent set CN(i).

Definition 5. The adjacent node set: a set of nodes, whose nodes are one hop away from the nodes on the initial
shortest path of node i and can transmit data to them, are denoted as NBS(i).
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Definition 6. Transmission energy refers to the energy consumed by the source node sending the data to next
hop, and the path energy consumption represents the sum of the transmission energy of each node on the path.

3. ESRA Routing Algorithm

In a WSN, in order to improve the energy efficiency of the entire network and maintain a long
network lifetime, it is usually necessary to adopt an energy-efficient routing strategy to reduce energy
consumption. At the same time, the node load can not only reflect the traffic of the node, but also
predict the residual energy of a node to some extent because of the transmission energy consumption
generated by forwarding data. Therefore, so as to avoid the uneven energy distribution caused by too
light or too heavy loads of the nodes, the load balancing of the nodes also should be considered.

Firstly, our algorithm considers the two factors of energy consumption and hops to establish the
link cost, and thus generates a minimum routing graph. Secondly, in order to balance the load of
nodes, an edge-cutting strategy is implemented on the minimum routing graph. Among this process,
a candidate parent node with the smallest load is set as next hop, and the links between source node
and other candidate parent nodes are removed, thus the minimum routing tree is obtained so as to
avoid the load unbalance caused by the influx of large amounts of data. The data flow is transmitted
along the minimum routing tree, which will be dynamically adjusted by sensing the load of all sensor
nodes and updating their residual energy in real time.

3.1. Link Cost

Due to the limited communication distance of the sensor nodes, the nodes generally need to
transmit the sensed data to the base station in a multi-hop manner. Therefore, how to establish a path
with the least energy consumption from source node to the sink node is a priority for the routing
algorithm. Here, in order to avoid data backhaul and ensure that data are transmitted forward along
the direction of the sink, according to the model of [25], the forward neighbor node set of node i is
defined as follows:

FN(i) =
{

j
∣∣dij ≤ R, djs < dis

}
(3)

where dij is the distance from node i to node j, dis and djs are the distance from node i and node j to
sink respectively, R represents the maximum communication radius of node i.

As shown in Figure 1, after taking the spatial positional relationship between the current node i,
the next hop j, and the sink node, as well as the energy level of each node into consideration, a data
transmission path reducing energy consumption and delay is established in this paper. For source
node i, the smaller the energy consumption of the single-hop transmission is to next hop node j,
the slower the energy consumption caused by the data transmission. But for the overall path, if the
path with a small single-hop distance (that is, the transmission energy consumption is small) is selected
multiple times, there may exist more unnecessary energy loss and larger path hops will be caused due
to the detour (such as the path: i→ K → M→ Q→ sink ). Therefore, in the process of generating the
link cost, the forward distance of next hop j should also be considered, because the closer the next
hop is to the sink, and the less path hops it will be, thus the faster that data can be transmitted to the
sink. Based on the above analysis, in order to reduce the energy consumption and transmission delay
of node i, the path where the next hop is located should be as close as possible to the straight line of
node i to the sink node.

Therefore, in this paper, from the perspective of energy consumption and hop count, we take
into account the residual energy, the energy consumption of single-hop transmission, and the forward
energy consumption, the link cost ui,j between node i and node j is defined, and its expression is
as follows:

ui,j = α
eij

Ei
+ β

ejs

Ej
, j ∈ FN(i) (4)
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where j belongs to the forward neighbor node set of current node i to avoid the return of data packets,
eij is the transmission energy consumption from node i to node j, ejs is the forward energy consumption
from node j to sink, and both of them can be calculated by the energy consumption model in [34].
Ei, Ej are the current residual energy of node i and node j respectively. Besides, it should be noted
that the link cost is set to infinity when the distance between node i and node j is longer than the
communication radius R.

Simultaneously, in Equation (4), α, β are the positive harmonic coefficients, and satisfy α + β = 1.
When the value of α is larger, the selection of next hop tends to consider the residual energy of the
current node and the transmission energy consumption of a single hop, seeking to minimize the energy
consumption of transmission and maximize the residual energy, so that the ratio of the two is as
small as possible. Conversely, when the value of α is smaller, the residual energy and forward energy
consumption of forward node are considered to select the next hop, trying to make the ratio of the
two as small as possible to reduce the hop counts, so that the data can be transmitted to sink faster.
Therefore, by adjusting the relative values of α and β, different requirements of network performance
in hop counts and energy consumption can be obtained.

According to Equation (4), when the network size is N, the link cost matrix of the whole network
can be expressed as:

U =


u1,1 u1,2 · · · u1,N u1,s
u2,1 u2,2 · · · u2,N u2,s

...
...

. . .
...

...
uN,1 uN,2 · · · uN,N uN,s

 (5)
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3.2. Generation of Minimum Routing Graph

Using the link cost in Section 3.1 as a weight, all shortest paths from any node i to sink can be
found to form the minimum routing graph. Specifically, as it has been shown in Algorithm 1, the
Dijkstra algorithm can be used to obtain an initial shortest path from node i to the sink, which is
recorded as mpis

0 and added to the shortest path set MPis of node i. At the same time, it can be known
from [28] that those nodes on the other shortest paths must be distributed around the initial shortest
path mpis

0 . Therefore, the adjacent nodes in NBS(i) and the nodes in the shortest path mpis
0 can be

chosen to form n candidate paths pathis
t (1 ≤ t ≤ n) from node i to the sink, and these paths are

recorded as Pis. It should be noted that when t = 1, pathis
t is set as the initial shortest path mpis

0 .
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Here, the total link cost of any path pathis
t is defined as follows:

wis
t =

j=|pathis
t |−1

∑
j=1

uj,j+1 (6)

Thus, the total link cost wis
t of all candidate paths pathis

t in the set Pis can be sequentially calculated
according to Equation (6), and when wis

t is equal to the total link cost of the initial shortest path wis
1 ,

this candidate shortest path will be added to MPis.

Algorithm 1 The Generation of Minimum Routing Graph

Input: the link cost matrix U, the network size N
Output: the shortest path set MPis

1. for I = 1:N
2. Calculate the initial shortest path mpis

0 of node i by Dijkstra algorithm.
3. update MPis ← MPis + mpis

0
4. Find the set of adjacent nodes NBS(i) of the shortest path mpis

0 .
5. k = 1 // Start finding adjacent nodes from the first node of mpis

0 .
6. while (k <

∣∣mpis
0
∣∣)

7. Insert adjacent nodes from the kth node of mpis
0 , and get the candidate path pathis

t under the current k.
8. update Pis ← Pis + pathis

t
9. k = k + 1
10. end // Get the candidate path set Pis.
11. g = 2
12. while (g ≤ n)
13. Calculate the link cost wis

g by Equation (6).
14. if wis

g = wis
1

15. update MPis ← MPis + pathis
g

16. end
17. g = g + 1
18. end
19. end
20. return the shortest path set MPis

3.3. Path Optimization Based on Edge-Cutting Strategy

If the data are transmitted along the minimum routing graph, the average energy consumption
and hops of the whole network can be effectively reduced. However, due to ignoring the loads of
nodes, this routing strategy will easily lead to load unbalance and large differences of residual energy
between nodes, thus reducing the network lifetime.

Therefore, as it is shown in Algorithm 2, this section proposes an edge-cutting strategy to “trim”
the minimum routing graph. In this edge-cutting strategy, in order to avoid a large amount of data
influx into some nodes at the same period, all nodes in the minimum routing graph dynamically select
the candidate parent nodes with the smallest load as the next hop, which can promote the balance of
energy and traffic of each node. Furthermore, it can improve energy efficiency and prolong network
lifetime simultaneously.

As it can be seen from Section 3.2, a node may have multiple shortest paths. In order to make
each node evenly undertake data forwarding tasks and avoid node congestion, the candidate parent
node with smaller node load should be selected as the next hop as much as possible, and dynamically
adjust it as the load changes.
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Algorithm 2 The Edge-Cutting Strategy

Input: the minimum routing graph, the layered set L, initial load LN(i) of node i in the minimum
routing graph
Output: the minimum routing tree
1. for k = 1 : (|L|−1)
2. while (

∣∣lk∣∣ > 0) //complete edge-cutting for all nodes of layer lk.
3. if exist a node “a” with the least load at the layer lk
4. if exist multiple candidate parent nodes of the child nodes of node “a”
5. Cut off the link between the child nodes of “a” and other candidate parent nodes.
6. end
7. else if exist multiple nodes with the least load at the layer lk
8. Calculate the node product LCN(i), and set the node with the smallest node product to “a”.
9. if the child node of node “a” exist multiple candidate parent nodes.
10. Cut off the link between the child nodes of “a” and its other candidate parent nodes.
11. end
12. update lk ← lk -a //delete the node “a”
13. end
14. Recalculate the load of all nodes
15. end
16. end
17. return the minimum routing tree

First, for the convenience of the following description, each node in the minimum routing graph
needs to be layered, that is, all nodes in the minimum routing graph that are one hop from the sink
node are defined as the first level l1, and the nodes in the two-hop distance from the sink node are
defined as the second level l2, and so on. In this way, similar operation is completed until finding
the layer that contains the most peripheral nodes. Besides, it should be specified that one node only
belongs to one layer. Finally, a hierarchical set L containing all nodes is obtained, namely:

L = {l1, l2, ..., lmax} (7)

In the process of implementing the edge-cutting strategy, we start from the first layer l1, and the
load sizes of all nodes in the same layer are sorted. Here, it is divided into the following two cases:

• Case 1 When there is only one node “a” with the least load in this layer, if the child nodes of node
“a” have multiple candidate parent nodes, the link between the child nodes of node “a” and other
candidate parent nodes are cut off. If the child nodes of node “a” only have one candidate parent
node, the edge-cutting operation is not performed. Then, node “a” is removed from this layer and
all nodes’ loads are updated.

• Case 2 When there are multiple nodes with the least load simultaneously, the smaller the load
product of all the nodes on the shortest path which is from this node to the sink, the larger the
residual energy of this node, thus the smaller the amount of data transfer undertaken by this path.
That is, the advantage of this node as next hop is greater. Here the “node product”, expressed as:

LCN(i) =
∏ζ∈pathis

t f−sink LN(ζ)

Ei
(8)

where pathis
t f is the final shortest path left by the node i after the previous edge-cutting operation,

and ζ represents all nodes on this final shortest path except the sink node.

Based on Equation (8), the node with smallest node product is set to “a”, if the child nodes of
node “a” have multiple candidate parent nodes, then the link between the child nodes and their other
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candidate parent nodes are cut off. If there is only one candidate parent node of node “a”, no edge
trimming is performed. Then, node “a” is removed from the layer and all nodes loads are updated.

The same operation is used to traverse other nodes in the same layer until all nodes in this layer
complete the edge-cutting. Meanwhile, this strategy will be performed on other layers until all layers
complete the edge-cutting.

Here, in order to explain the working process of edge-cutting strategy more clearly, this paper
takes a simple network topology in Figure 2 as an example. The details are as follows:
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Figure 2. Example of the edge-cutting process. (Note: the value in parentheses indicates the 

corresponding node load, (a) is the minimum routing graph, (h) is the minimum routing tree, (a–h) 

show the edge-cutting process from the minimum routing graph to the minimum routing tree). 

The minimum routing graph including all nodes in the network shown in Figure 2a is 

generated according to the link cost. Firstly, the load of first layer node A, B, and C can be 

calculated, at this time, it shows that node C has the smallest load, so the link FB is cut off and the 

loads of other nodes are updated, and Figure 2b is obtained. In Figure 2b, node B becomes the node 

with the smallest load in first layer, so the link EA needs to be cut off and the load of each node is 

updated. At this point, the edge-cutting of all the nodes in the first layer is completed, and Figure 2c 

is obtained. 
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Figure 2. Example of the edge-cutting process. (Note: the value in parentheses indicates the corresponding
node load, (a) is the minimum routing graph, (h) is the minimum routing tree, (a–h) show the edge-cutting
process from the minimum routing graph to the minimum routing tree).

The minimum routing graph including all nodes in the network shown in Figure 2a is generated
according to the link cost. Firstly, the load of first layer node A, B, and C can be calculated, at this time,
it shows that node C has the smallest load, so the link FB is cut off and the loads of other nodes are
updated, and Figure 2b is obtained. In Figure 2b, node B becomes the node with the smallest load in
first layer, so the link EA needs to be cut off and the load of each node is updated. At this point, the
edge-cutting of all the nodes in the first layer is completed, and Figure 2c is obtained.

In Figure 2c, the second layer consists of four nodes, namely D, E, F, and G. The link IE is firstly
cut off and the node loads are updated, then we can get the Figure 2d. Here, considering that the loads
of node D, E, F, and G are the same and the smallest, according to above Case 1, node D is the only
parent of its child node H and I, so the node D doesn’t need to perform edge-cutting processing. Then
we need to cut off the link NF since the node product of node E is the smallest and update all node
loads according to the foregoing case 2. Hence, Figure 2e is obtained. Moreover, the load of node F is
smaller than that of node G, so the link KG is cut off and all node loads are updated. At this point, all
nodes in the second layer have completed the edge-cutting, and Figure 2f can be obtained.

In Figure 2f, according to the Case 1, node H does not need to implement the edge-cutting, and
the link MJ need to be cut off and all node loads are updated to obtain Figure 2g. At this point, the
node H, I, and J do not need to perform the edge cutting. According to the Case 2, the node product
LCN(K) is less than LCN(L) after calculation, so the link OL is cut off and all node loads are updated.
Finally, the minimum routing tree with minimum link cost and maximum load balance as shown in
Figure 2h is obtained.
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4. Simulation Results and Analysis

In order to verify the effectiveness of our algorithm, this paper adopts MATLAB to simulate,
and conducts comparative analysis with the FAF-EBRM and FLEOR algorithms. In addition, five
performance parameters will be used in the following paper: average energy consumption (AEC),
average hop count (AH), packet loss rate (PLR), energy variance (EV), and node survival rate (NSR).
Among them, AEC represents the average energy consumption of all nodes in each data transmission
round, which measures the utilization efficiency of network energy. AH can reflect the transmission
delay of data in the network, and the smaller the average hop count is, the faster data can be transmitted
to sink. PLR can reflect the network’s ability in congestion avoidance. EV can give expression to
the difference of energy residual value of each node, that is, the smaller the value of EV, the smaller
the curve fluctuation is, thus the more balanced energy of the network. NSR is used to indicate the
network lifetime and the effectiveness of energy utilization. The steeper the slope of the curve from
the death of first node to the death of all nodes, the more concentrated time for the nodes to run out of
energy, and the more balanced energy in the network. In addition, in order to avoid the contingency of
the experimental results, we repeat each experiment many times to get an average.

The specific simulation parameters are listed in Table 1.

Table 1. Simulation Parameters.

Definition Value

Simulation area 100 × 100 m2

Network size 150~300
Maximum communication range 30 m

Packets size 1024 bits
Buffer size 20 packets

Sink (50, 50)
Data generation rate 1024 bits/round

4.1. The Impact of Parameter β on Network Performance

In order to compare the influence of different parameters on the algorithm itself, in the simulation,
we value the β under different network sizes, and the interval and step size are [0, 1] and 0.2 respectively.

(1) Impact of parameter β on average hops under different network sizes

It can be seen from Figure 3 that, under the same network size, when the parameter β increases
from 0 to 0.6, the average hops gradually decreases. This is because as β increases, the forward energy
consumption of node j has an increasing influence on the selection of the next hop, that is, the source
node will focus on selecting the forward neighbor node closer to the sink as next hop, thus the number
of path hops is gradually reduced. When β is in [0.6, 1], the path hops tend to be stable as β increases
further. In addition, when β remains the same, as the network size expands, the node distribution
becomes denser, so that the average hops increases continuously.

(2) Impact of parameter β on average energy consumption under different network sizes

As shown in Figure 4, when β is the same, as the network size increases, the average hops increases
gradually (Figure 3), so the energy consumed on the path increases, resulting in the increasing of the
average energy consumption of the entire network. When the network size remains the same and β

increases in [0, 0.6], the average energy consumption gradually decreases. This is because as β increases,
on the one hand, the hops have an increasing influence on the link cost in Equation (4). On the other
hand, as shown in Figure 3, the average hops gradually decreases in [0, 0.6]. Thus, the overall energy
consumption of the network will gradually decrease. When β is in the range of [0.6, 1], the average hops
basically remains the same, but since the selection of the next hop neglects the influence of single-hop
energy consumption, the average network energy consumption has a slowly increase in this range.
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(3) Impact of parameter β on packets loss rate under different network sizes

Figure 5 shows the trend of packet loss rate PLR with parameter β at different network sizes.
When the network size is the same, the packet loss rate decreases as β increases in [0, 0.4], this is
because the value of β is small at this time, and the hops do not dominate the selection of the path.

Meanwhile, after using the edge-cutting strategy, the load of each node in the minimum routing
graph is balanced, thereby reducing the packet loss rate of the node. However, as β continues to
increase, the node near the sink will be the priority node, that is, the path with less hops is selected to
forward the data as much as possible, which will cause the nodes close to the sink to be over-selected
and exceed the their capacity, resulting in packet loss. Then, the packet loss rate will increase slightly
and tend to be stable. When β remains the same, as the network size N increases, the forward neighbor
nodes in the inner layer gradually increase. By utilizing the edge-cutting strategy, excess load will be
shared to other nodes with fewer loads in advance, thus effectively reducing the packet loss rate.
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4.2. Comparison with Other Algorithms

Firstly, in order to validate the proposed protocol and perform a fair comparison, we take the
change of buffer size as an example and carry out experimental simulation in this section. Furthermore,
as the buffer size increases, the ability of the node to accommodate the data packet is improved, and
the degree of congestion in the area can be alleviated to some extent, so the packet loss rate will be
reduced accordingly. Here, Figure 6 shows the trend of packet loss rate with varying buffer size. It can
be seen that the packet loss rate does decrease with the increase of the buffer size, and our algorithm,
that is ESRA, shows obvious advantages.
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Then we analyze the time complexity of these three algorithms. In our proposed ESRA, an initial
shortest path from each source node to the sink can be calculated according to the Dijkstra algorithm,
and the required time complexity is O(N2). Then, all the paths that adjacent to their initial shortest
path of the same source node are calculated, and the paths are sorted according to the weights by
the merge sorting to obtain the shortest path set, so the time complexity is O(N·logN). The next step
is to layer all nodes, and the required time complexity is O(N). After that, we need sort the loads
of all nodes and implement the edge-cutting strategy, the time complexity of this step is O(N·logN).
In general, the time complexity of our proposed algorithm in a worst-case scenario is O(N2). As for
FLEOR and FAF-EBRM, after getting different values by considering some attributes of the forward
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neighbor nodes, the neighbor node with the largest value is selected as the next hop by sorting, namely,
the time complexity required of both algorithms is O(N·logN).

From the above analysis, it can be found that the computation of our proposed ESRA is slightly
larger than FAF-EBRM and FLEOR, but it shows obvious advantages in terms of network performance
according to the subsequent comparative analysis, which is detailed as following sections.

4.2.1. Average Hops and Average Energy Consumption

Figures 7 and 8 show the average hops and average energy consumption of the network at different
network sizes. It can be seen from the figures that the two have similar trends since hops can reflect the
energy consumption of the path in some way. In addition, the FAF-EBRM algorithm has the highest
average hops and energy consumption. This is because FAF-EBRM detours for selecting nodes with
higher energy as the next hop when routing, resulting in higher hop count and energy consumption.
The average hops of FLEOR relative to FAF-EBRM is smaller, this is because FLEOR considering the
selected path as close as possible to the shortest path, thus reducing the data forwarding times and average
energy consumption. As for the ESRA algorithm of this paper, when β is taken as 0.4, the single-hop
energy consumption has a greater influence on the selection of next hop. Simultaneously, as shown in
Figure 7, the ESRA algorithm can always maintain the smallest average hops, therefore, compared with
FLEOR and FAF-EBRM, our algorithm can effectively reduce the path energy consumption of the whole
network, and transfer data from source nodes to the sink node faster.
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4.2.2. Traffic Balance and Energy Balance

Usually, the node load affects network performance in two ways. On the one hand, the node
load can reflect the amount of traffic that is aggregated to the node at some point. The larger the load,
the more data need to be transferred. On the other hand, the number of the loads also determines
the residual energy of node to a certain extent, that is, the larger the load, the less energy the node
has due to the greater transmission energy consumption. In addition, the more balanced the energy
consumption between nodes, the higher the node survival rate and the longer the network lifetime.
Therefore, on behalf of measuring the balance of the network, we consider both traffic balance and
energy balance in this section.

(1) Traffic Balance

Figure 9 shows the different packet loss rates of different algorithms at different network sizes.
It can be seen that compared with the other two algorithms, the packet loss rate of ESRA algorithm is
always stable at a lower value as the network size changes. Obviously, this is because FAF-EBRM and
FLEOR do not take into account the queue size of the nodes. A large amount of data are concentrated
in some “hot spots” at the same time, causing nodes in this area to exceed their load capacity due to
excessive data reception, thus a large amount of data are discarded. On the contrary, our algorithm
adopts the edge-cutting strategy to balance the node load. In the minimum routing graph, the load is
updated in real time, and the candidate parent nodes with smaller load are dynamically selected as the
forwarding node, which alleviates the congestion degree, so the network traffic is relatively balanced.
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(2) Energy Balance

For the three different algorithms, the comparison of the energy variance EV and the node survival
rate NSR are given in Figures 10 and 11, respectively. Among them, the EV curve of the FAF-EBRM
algorithm has the highest volatility, and the energy balance is worse than the other two algorithms. The
energy balance of FLEOR is improved compared with FAF-EBRM, this is because FLEOR considers the
energy balance of the forward neighbor, and prefers the forward neighbor with larger residual energy
as next hop. However, the network lifetime of FLEOR is shorter than FAF-EBRM, and the first node
death appears in around 320 rounds. In this paper, the ESRA algorithm can sense the node loads in
some way, which can optimize the routing of the next data round and rebalance the energy distribution.
Therefore, the EV curve has the smallest fluctuation and the node survival rate is maintained at a
highest level at all times. Simultaneously, according to the rounds of the first dead node, its network
lifetime is about 80% and 150% longer than FAF-EBRM and FLEOR respectively, which means that the
network can maintain a longer effective working time. In addition, when all nodes in FAF-EBRM have
died, ESRA has not yet appeared the death of first node, showing a good network performance.
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5. Conclusions

In order to reduce the transmission energy consumption, and balance the node load to achieve
the purpose of extending the lifetime of wireless sensor networks, this paper proposes an equilibrium
strategy based routing optimization algorithm for wireless sensor networks (ESRA). Considering
the residual energy, single-hop energy consumption and path hops, the algorithm firstly establishes
a minimum routing graph. Then, an edge-cutting strategy is adopted to balance the node load
on the topology of the minimum routing graph. The simulation results show that our proposed
algorithm can prolong the network lifetime, balance the node traffic and residual energy, and also
reduce the transmission delay and packet loss rate. In the future work, we will focus on how to
jointly utilize the energy-harvesting technology and routing optimization algorithm to enhance the
network performance.
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