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Abstract: Rotating machinery usually suffers from a type of fault, where the fault feature extracted
in the frequency domain is significant, while the fault feature extracted in the time domain is
insignificant. For this type of fault, a deep learning-based fault diagnosis method developed in the
frequency domain can reach high accuracy performance without real-time performance, whereas a
deep learning-based fault diagnosis method developed in the time domain obtains real-time diagnosis
with lower diagnosis accuracy. In this paper, a multimodal feature fusion-based deep learning method
for accurate and real-time online diagnosis of rotating machinery is proposed. The proposed method
can directly extract the potential frequency of abnormal features involved in the time domain data.
Firstly, multimodal features corresponding to the original data, the slope data, and the curvature data
are firstly extracted by three separate deep neural networks. Then, a multimodal feature fusion is
developed to obtain a new fused feature that can characterize the potential frequency feature involved
in the time domain data. Lastly, the fused new feature is used as the input of the Softmax classifier
to achieve a real-time online diagnosis result from the frequency-type fault data. A simulation
experiment and a case study of the bearing fault diagnosis confirm the high efficiency of the method
proposed in this paper.
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1. Introduction

Large-scale intelligent production processes are becoming more and more complicated, as they
are closely connected with each other. Mechanical equipment is a kind of key equipment for some
intelligent production processes, since it can effectively avoid causality accidents in intelligent
production processes [1–8]. However, real-time fault diagnosis with high accuracy for rotating
machinery is still a challenge for safety guarantee, since most existing methods use the Fourier
transform as preprocessing tool, which uses the frequency spectral as the source data.

In the most recent three decades, research on fault diagnosis of key equipment in intelligent
production processes has attracted extensive attention from academic and engineering researchers [6,9–13].
In general, three classes of fault diagnosis methods are now developed: fault diagnosis methods based
on a physical model, a fault diagnosis method based on knowledge, and a data-driven-based method.
However, precise physical model requirements limit its application in the field of fault diagnosis
for complex mechanical equipment, and the processing of a quantity of prior knowledge limits
its inference validation. Nowadays, data-driven techniques are widely applied in fault diagnosis
since only historical data is required for establishing a fault diagnosis model [14–16]. The principal
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component analysis (PCA), support vector machine (SVM), and artificial neural network (ANN) are
the most commonly used data-driven techniques for fault diagnosis [17–22]. However, methods based
on statistical feature extraction, such as PCA, have certain limitations, including a requirement for
statistical distribution of the data. For example, the PCA-based method can only detect faults but not
diagnose faults. Compared with the statistical feature extraction method, the machine learning-based
method has the advantages of high classification accuracy, strong robustness to noise, and fault
tolerance. As a machine learning method, SVM can be used for fault classification. Some scholars put
forward the use of signal processing feature extraction methods, combined with machine learning
methods for mechanical equipment fault diagnosis. Yang et al. [23] extracted frequency-domain
features as the data sources of SVM to detect mechanical faults. Although SVM performs well in binary
classification, it has low learning efficiency in multi-classification and large sample processing [24,25].
In addition, expert experience is required to choose suitable kernel functions and scale parameters.
The ANN has the characteristics of more accurate learning and stronger robustness when a large
number of training samples are available, and feature pre-extraction of ANN can be used to further
improve diagnosis efficiency [26–28]. Wang et al. [29] used wavelet packet transform (WPT) to extract
the non-stationary characteristics of the bearing’s vibration signal as the pre-extracted feature of
ANN, which has achieved good fault classification accuracy. However, it is difficult to effectively
extract features involved in high-dimensional and non-steady data by using shallow learning methods
that suffer the following deficiencies: (1) The convergence of ANN easily falls into a local optimum;
thus, it cannot effectively characterize the signal characteristics; (2) low efficiency of ANN learning
is another shortcoming of ANN. Compared with shallow learning, deep learning (DL) can perform
feature extraction well and effectively handle nonlinear big data [30–32]. Therefore, DL is a promising
tool for fault diagnosis [33–36].

As one of the most popular machine learning methods in the world, DL methods are widely used
in many fields [37]. Deep neural network (DNNs) are a kind of DL that is comprised by unsupervised
layer-by-layer greedy training and global parameter tuning based on the back propagation (BP)
algorithm, which can effectively avoid local optimal problems as well as extracting deep features
that are potentially involved in the data. In 2006, Science published Hinton’s article “Reducing the
Dimensionality of Data with Neural Networks” to further discuss DNNs, and DL has once again
become a hotspot research field. DNNs can obtain a more abstract high-level representation of the
input data by combining lower-level features, which are nonlinear transformations of its previous layer.
Attributed to this advantage, DNNs can extract complex nonlinear deep features without artificial
feature selection [38]. Due to its excellent feature extraction capabilities, DL quickly attracted the
attention of fault diagnosis researchers. Lu et al. used the good feature extraction ability of DNNs
to successfully diagnose unknown types of bearing faults timely and effectively [39]. Jia et al. [40]
used DNNs to detect the health status of rolling shaft bearings. The method that they developed
can adaptively extract potential fault characteristics from nonlinear and noise-polluted observation
data, so the accuracy of the diagnosis method is superior to other shallow learning-based methods.
Gan et al. [41] used wavelet packet decomposition to develop a hierarchical DNN-based fault diagnosis
method to more accurately diagnose faults in the time-frequency domain, since it can overcome
the overlapping problem caused by noise and other disturbances. However, the above-mentioned
DNN fault diagnosis methods do not take the data’s multimodal features into consideration.
Li et al. [42] proposed a multimodal deep support vector classification for gearbox fault diagnosis,
where Gaussian–Bernoulli Deep Boltzmann Machines (GDBMs) are used to extract the feature of the
vibration signal in the time domain, the frequency domain, and the wavelet domain separately and
then integrate them. However, the above methods are not real-time fault diagnosis methods, since
the Fourier transform or wavelet transform is used to obtain the frequency-domain data from a full
time domain. Pan et al. [43] proposed a LiftingNet to learn features adaptively from raw mechanical
data without prior knowledge, by adopting the idea of a convoluted neural network and a second
generation wavelet transform. In the case where considerable noise and randomness are involved in



Sensors 2018, 18, 3521 3 of 26

the observation data, the LiftingNet-based diagnosis method can achieve a reliable fault classification
result, since the size of the convolution kernel can be selected as different sizes. Zhao et al. [44]
proposed an improved deep residual network (DRN) with dynamically weighted wavelet coefficients
(DRN + DWWC) to use the frequency band containing the most potential fault information as the
dynamic weighting layer, of which weight is adjustable for more accurate feature extraction of different
faults. Experiment analysis shows that the DRN + DWWC-based method is superior to other methods.

Nevertheless, even the existing DNN-based method diagnosis method in the time domain is not
good for the Tennessee Eastman (TE) process [45], as it usually cannot obtain high fault diagnosis
accuracy for mechanical systems. The main reason is that most of the measured signals of rotating
machinery are vibration signals with fault features that are extracted from abnormal vibration signals
in the time domain are very small, and the fault feature extracted in the frequency domain is
significant [46–52]. In this paper, we call this type of fault a “frequency-type fault”. The existing
multimodal DL method considers the multimodality of features, but it cannot guarantee real-time
performance. Therefore, the accuracy of real-time diagnosis in the time domain cannot be guaranteed.
If such a fault cannot be diagnosed online in time, it can lead to faster machinery damage, which will
result in irreparable damage or serious safety incidents. Therefore, it is of much practical significance
to carry out research on the real-time diagnosis of frequency-type faults.

Remark 1. “Frequency-type fault” is only a conceptual description. It does not imply that a frequency fault
is added into the system. In this paper, it is defined as a type of fault, of which fault feature extracted in the
frequency domain is large, but a fault feature extracted in the time domain that is small. This type of fault can
thus be usually well diagnosed in the frequency domain, but accurate and real-time fault diagnosis for this type
of fault in the time domain cannot be guaranteed.

There are many zero-crossing values in the bearing data, since they are mostly vibration
signals [53]. This means that it is common for bearings to suffer frequency-type faults, and DNNs are
unsuitable for distinguishing frequency-type faults based on the amplitude value of the observation
data only, for the reason that multimodal differential features, such as slopes and curvatures,
are potentially involved in the vibration signal. On the other hand, the differential geometry feature of
the vibration signal, such as slopes and curvatures, can reveal the frequency-varying feature in the
time domain. Research on accurate and real-time fault diagnosis methods for bearing fault diagnosis
is required for developing an efficient multimodal feature fusion mechanism to fuse different trend
features involved in the amplitude signal, slope signal, and curvature signal. Thus, frequency-type
fault features characterized by different dynamic trends can be well extracted in the time domain.

To improve the efficiency of a DL-based method for online diagnosis of a frequency-type fault,
a multimodal differential geometric feature fusion-based DNN (DGFFDNN) fault diagnosis method
was developed to fuse the abnormal frequency feature extracted in the time domain by combining the
characterized dynamic trend features involved in multimodal differential geometric characteristics via
three separate DNNs corresponding to the amplitude signal, the slope signal and the curvature signal.
The fused multimodal features are then used as an input in the Softmax classifier to obtain an accurate
online frequency-type diagnosis result.

The remainder of this paper is organized as follows: Section 2 is a review of DL theory. In Section 3,
an online original DGFFDNN fault diagnosis method is developed. In Section 4, the validity of the
proposed fault diagnosis method is tested through experiments and simulation analysis. Section 5
contains conclusions and suggests future work.

2. Review of Deep Learning Theory

DL is a feature learning method that can transform data from the raw data space into a higher-level
feature space, and more abstract expressions of the data can be obtained through simple nonlinear
models. Very complex functions can also be learned with a combination of enough layers of conversion.
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At present, DL is widely used in many fields [37]. For example, convolutional neural networks have
achieved good performance in image processing. Recursive neural networks have significant effects in
serialization tasks such as financial data prediction.

DNNs are a kind of DL method and have now been used in fault diagnosis as well as image
processing and natural language processing. The training process of the DNN network shown in
Figure 1. The DNN can be simply constructed by stacking multiple Auto-Encoder (AE) layers.
The bottom-up unsupervised learning algorithm is used to roughly extract features layer-by-layer, and the
entire network parameters can be fine-tuned with a supervised learning algorithm. By multilayer
nonlinear transformation, low-level features are combined to form a more abstract high-level feature
expression, which can extract features that are involved in the data, without relying on manual feature
selection. Then, the DNN is fine-tuned by supervised learning to optimize the network parameters
of the feature extraction network. The training mechanism of DNN is an advantage for effectively
mining the fault features involved in vibration signals of the mechanical device.
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Figure 1. The structure of a deep neural network (DNN). 

The AE is a three-layer unsupervised neural network comprising an input layer, a hidden layer, 
and an output layer. The input layer and the hidden layer are connected by the coding network, while 
the hidden layer and the output layer are connected by the decoding network. As shown in Figure 2, 
the input layer equals to the output layer. The AE can convert the input data into a more abstract 
feature space via a coding network, and coded vectors can also be reconstructed via the decoding 
network as an approximation of the input data. 
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Figure 2. Auto-encoder on the first hidden layer of the DNN. 

Given an unlabeled dataset 1 2{ , , , }Rx x x x=  , where R is the number of the input neuron of 
the AE on the first layer of a DNN, the encoding process can be described as follows:  
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fθ  is the activation function used in the encoder network, 1W  is the weight matrix between 
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Figure 1. The structure of a deep neural network (DNN).

The AE is a three-layer unsupervised neural network comprising an input layer, a hidden layer,
and an output layer. The input layer and the hidden layer are connected by the coding network,
while the hidden layer and the output layer are connected by the decoding network. As shown in
Figure 2, the input layer equals to the output layer. The AE can convert the input data into a more
abstract feature space via a coding network, and coded vectors can also be reconstructed via the
decoding network as an approximation of the input data.
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Figure 2. Auto-encoder on the first hidden layer of the DNN.

Given an unlabeled dataset x = {x1, x2, · · · , xR}, where R is the number of the input neuron of
the AE on the first layer of a DNN, the encoding process can be described as follows:

h1 = fθ1(x) = σ(W1x + b1) (1)
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where fθ1 is the activation function used in the encoder network, W1 is the weight matrix between
the input layer and the hidden layer of AE1, b1 is the bias vector generated by the encoder network,
θ1 = [W1, b1] is the connection parameter between the input layer and the hidden layer and σ is the
sigmoid function and a common choice for the activation function, depicted in Equation (2):

σ(z) = 1/[1 + exp(−z)] (2)

Then, h1 is used as the input of AE2 to train the network parameter W2. The coded vector h2 is
obtained as the feature extracted on the second layer. This process is repeated until the Nth layer to
train the network parameter WN . Thus, hN can be obtained as the feature extracted on the Nth layer of
DNN. For convenience, we use W = [W1, W2, · · · , WN ], and b = [b1, b2, · · · , bN ] to denote the network
parameters of DNN, where Wn (n = 1, 2, · · · , N) denotes the weight matrix on the nth layer of DNN,
and bn (n = 1, 2, · · · , N) denotes the bias on the nth layer of DNN.

Similarly, the reconstruction process can be obtained via a decoder network as follows:

y1 = gθ1
T (h1) = σ(W1

Th1 + d1) (3)

where y1 is the reconstructed data generated by the decoder function gθ1
T , σ is the activation function

of the decoder process, W1
T represents the weight matrix between the hidden layer and the output

layer of the decoder network, h1 represents the output of encoding process, and d1 is the bias vector
generated by the decoder process.

The use of AE pre-training is to optimize the network parameters θ1 = [W1 b1] by minimizing the
reconstruction described in Equation (4):

J(x, y; W1, b1) =
1
M
‖y− x‖2 (4)

where x denotes the input of AE1 and y denotes the output of AE1, and M denotes the number of
training samples.

For the training of DNN, the gradient descent algorithm is used for parameter optimization,
and the network parameter-updating process can be formulated in Equations (5) and (6):

W1,l+1 = W1,l − α
∂

∂W1
J(x, y; W1, b1), l = 1, 2 · · · L (5)

b1,l = b1,l − α
∂

∂b1
J(x, y; W1, b1), l = 1, 2 · · · L (6)

where α is the learning rate, L is the maximum number of iterations for the back-propagation algorithm,
∂

∂W1
J(x, y; W1, b1) and ∂

∂b1
J(x, y; W1, b1) are the gradient descent direction.

The DNN pre-training process is completed through unsupervised training layer by layer, and the
features on each layer can be roughly extracted. A Softmax classifier is add to the top layer of DNN.
hN is used as the input, and the labeled data set {1, 2, . . . , S} is used as the output to train a Softmax
classifier. Given an observation sample x(m) = [x1(m), x2(m), · · · xR(m)] at time m, x(m) is used as
the input of DNN to obtain its feature hN(m) extracted on the Nth layer. hN(m) is then used as the
input of the well-trained Softmax classifier to obtain the category label of x(m) in Equations (7) and (8):

label(m) = argmax
s=1,2··· ,S

{p(label(m) = s|x(m); φ)} (7)

where p(lable(m) = s
∣∣x(m); φ) is the sth argument of the likelihood function vector hφ(x(m)) defined

in Equation (8):
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hφ(x(m)) =


p(label(m) = 1

∣∣x(m); φ)

p(label(m) = 2
∣∣x(m); φ)

...
p(label(m) = S

∣∣x(m); φ)

 =
1

∑S
s=1 eφT

s x(m)


eφT

1 x(m)

eφT
2 x(m)

...
eφT

S x(m)

 (8)

where, φ = [φ1, φ2, · · · , φS] is the model parameter of the Softmax classifier. The model parameters
can also be optimized by minimizing the cost function defined in Equation (9):

J(φ) = − 1
M

[
M

∑
m=1

S

∑
s=1

1{label(m) = s} log
eφT

s x(m)

∑S
s=1 eφT

s x(m)
] (9)

where 1{•} is the indicated function.
Third, we fine-tune the network parameter of DNN. Once the Softmax classifier is added to the

top layer of DNN, the labels of some observation samples can be used for reverse fine-tuning of DNN,
which are shown as Equations (10) and (11):

θ = θ − α
∂E(θ)

∂θ
(10)

E(θ) = min
1
M ∑ J(φ

∣∣hN ; L; θ) (11)

where L is the known label set, α is the learning rate of the reverse fine-tuning process, and θ can be
calculated by Equations (5) and (6).

3. Differential Geometric Feature Fusion-Based Deep Neural Network Fault Diagnosis Method

As introduced above, although a frequency-type fault can be well recognized in the frequency
domain, it is difficult to achieve online diagnosis, since the fault feature extracted in the time domain
is usually not significant. To ensure the accuracy of online diagnosis, it is necessary to diagnose
such faults in the time domain with an advanced feature extraction method. For this goal, abnormal
frequency feature should be characterized in the time domain by effectively mining the dynamic trend
information. This section first analyzes frequency-type faults, and then describes in detail the feature
extraction and fault diagnosis methods proposed in this paper.

3.1. Frequency-Type Fault Analysis

Since the bearing data is a periodic vibration signal, there are a large amount of zero-crossing
points in the abnormal signal defined by the difference between fault data and normal data.
These abnormal signals can be seen as a kind of frequency-type fault, since frequent zero-crossing
points appear in the abnormal signal, but the slopes or curvatures at these zeros-crossing points are not
zero, as shown in Figure 3. On the other hand, the diagnosis mechanism of most existing fault diagnosis
methods is to confirm whether the there is a non-zero difference between the feature extracted from
the fault data and the feature extracted from the normal data. Thus, it is difficult to achieve an accurate
online diagnosis of the frequency-type fault by only extracting the feature involved in the amplitude
data. Features extracted from the slope and curvature data can be helpful for abnormal detection at
zero-crossing points when the feature extracted from the amplitude data fails to achieve a satisfying
fault diagnosis result.
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As can be seen from Figure 3, points “A” and “B” are the zero-crossing points of fault signal 1,
called frequency-type faults. Both their amplitudes are 0, which makes the fault features involved in
these zero-cross points not well characterized in the time domain, and the diagnosis effect, when based
simply on the amplitude information, can hence be greatly reduced [27]. However, we can clearly
distinguish these two types of fault data by using the slopes of these two fault signals (1.73 and
3.73, respectively). Figures 4 and 5 illustrate the normal bearing data and the fault bearing data in
the time domain and in the frequency domain, respectively, as examples, where the blue solid line
represents the normal data, and the red dash-dotted line represents the fault data. It is obvious that,
with the significant fault feature in the frequency spectral, simply extracting the feature involved in
the frequency data can be used for effectively discriminating the health normal data and the fault data
in the frequency domain, rather than distinguishing the normal data and the fault data in the time
domain. Therefore, some scholars detect such faults through DL in the frequency domain. However,
the diagnosis in the frequency domain cannot guarantee real-time performance, which is the primary
requirement of the health monitoring of actual industrial systems. This real-time requirement of fault
diagnosis can minimize security risks, since it can provide necessary information for the remaining
useful life prediction of the mechanical device.
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Figure 5. Normal and fault data in the frequency domain.

Remark 2. From Figures 4 and 5, we can further understand the concept of a frequency-type fault: the fault
feature involved in the frequency spectra is similar to that extracted from the time-domain amplitude data.

In general, when the amplitude of the fault data and the normal data are equal but the slopes
are different, there must be a fault occurring. In this case, differential geometric properties, such as
the slope and curvature, can be used to characterize the dynamic trend, which is helpful for feature
extraction of the frequency-type faults. The DNN method based on the differential geometric feature
fusion proposed in this paper can provide an efficient means of online fault diagnosis by extracting
potential features involved in frequency-type fault data to achieve accurate and real-time diagnosis in
the time domain for frequency-type faults.

3.2. Differential Geometric Feature Fusion-Based Deep Neural Network-Based Online Fault Diagnosis Methods

This section is divided into three parts to introduce the DGFFDNN-based online fault diagnosis
method: multimodal differential feature extraction, multimodal feature fusion, and real-time online
diagnosis of the frequency-type fault. The complete DGFFDNN-based online fault diagnosis algorithm
is shown as follows.

3.2.1. Multimodal Differential Feature Extraction

The first step of the DGFFDNN-based online fault diagnosis algorithm proposed in this paper is
to extract multimodal differential features involved in the data by using a stacking AE. The multimodal
feature extraction algorithm is as follows:

Step 1: Obtaining data that characterize the differential geometric features of the raw data. Therefore,
the slope and curvature values of the historical raw data are calculated in Equations (12) and (13),
respectively:

x′(m) =
x(m + 1)− x(m)

T
, (m = 1, 2, · · ·M− 1) (12)

x′′ (m) =
x′(m + 1)− x′(m)

T
, (m = 1, 2, · · ·M− 2) (13)

where T is the sampling interval, and x, x′ and x′′ are the datasets corresponding to the raw magnitude
data, the slope data, and the curvature data, respectively.

Step 2: Training the DNN model using historical data x, x′ and x′′ .
Constructing three DNN networks with Equation (14), and initialize the training parameters of

DNN1, DNN2, and DNN3, respectively:
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
[Net, Tr] = f eed f orward(θ; H1, H2, . . . , HN1 ; x)
[Net′, Tr′] = f eed f orward(θ′; H1

′, H2
′, . . . , HN2

′; x′)
[Net′′ , Tr′′ ] = f eed f orward(θ′′ ; H1

′′ , H2 ′′ , . . . , HN3
′′ ; x′′ )

(14)

where “feedforward” is the MATLAB function to generate a multilayer neuron network; N1 is the
number of hidden layers of DNN1; Hn (n = 1, 2, · · · , N1) is the number of neurons in the nth hidden
layer of DNN1; θ = {W, b} is the network parameter, where W and b are the weight matrix and bias
vector of DNN1, respectively; Tr is the network parameter configuration. The number of input neurons
of DNN can be determined by Equation (15):

M = size(x, 2) (15)

The parameters of DNN1 are initialized by Equations (16) and (17):

W = rand(H, M) (16)

b = zeros(H, 1) (17)

where H = H1 + H2 + · · ·+ HN1 .
Unsupervised layer-by-layer feature extraction is implemented by the training process of DNN1

shown in Equation (18): 
h1 = fθ1

(x) = σ(W1·x + b1)

h2 = fθ2
(h1) = σ(W2·h1 + b2)

...
hN1 = fθN

(hN1−1) = σ(WN1 ·hN1−1 + bN1)

(18)

The feature hN1 on the top layer of DNN1 can be extracted by this layer-by-layer process, as shown
in Figure 2.

DNN2 and DNN3 networks are similarly built, using Equations (15)–(18). The multimodal
differential features corresponding to the original data, the slope data, and the curvature data can be
extracted with Equation (19):

hN1 = f (x) = σ(WN1 hN1−1 + bN1)

hN2
′ = f (x ′) = σ(WN2

′hN2−1
′ + bN2

′)

hN3
′′ = f (x ′′ ) = σ(WN3

′′ hN3−1
′′ + bN3

′′ )

(19)

where hN1 is the deep feature of the raw magnitude data x; hN2
′ is the deep feature of the slope data x ′;

hN3
′′ is the deep feature of the curvature data x ′′ .

A Softmax classifier is then added to the top layer of DNN.
The training errors of DNN1, DNN2, and DNN3, corresponding to the magnitude data, slope data,

and the curvature data, are calculated with Equation (20):
J1(x, L; W, b) = 1

M‖P− L‖2

J2(x′, L′; W ′, b′) = 1
M−1‖P′ − L′‖2

J3(x′′ , L′′ ; W ′′ , b′′ ) = 1
M−2‖P′′ − L′′ ‖2

(20)

where P, P′ and P′′ are the predicted likelihood function values computed by Equation (8),
corresponding to DNN1, DNN2, and DNN3, respectively; L, L′ and L′′ are the known labels of
x, x′ and x′′ , respectively.

The gradient descent method is used for parameter optimization, and the specific updating process
of network parameters can be performed with Equations (5) and (6). When the reconstruction error
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reaches a minimum after the network parameters are fine-tuned, it means that the DNN parameter is
well trained, and hN1 , h′N2

and h′′N3
are the multimodal features extracted from the raw magnitude data,

the slope data, and the curvature data, respectively.

3.2.2. Multimodal Differential Feature Fusion

As illustrated in Figure 5, the slope of different fault data may also be equal; that is, we cannot
effectively classify the different faults by simply using the slope feature, which may be equal for
different fault data. Thus, fusing a multimodal differential feature to obtain a new fused feature is
necessary to mine the dynamic trend in the time domain, which is an essential step of feature extraction
for a frequency-type fault. In this paper, the multimodal differential feature is integrated to capture the
frequency feature of abnormal signal in the time domain and fused by a stacked form to obtain a new
fused feature with a higher dimension. The features hN1 , hN2

′ and hN3
′′ extracted from the above three

well-trained DNN models can be fused to obtain a new feature vector, F, with Equation (21):

F = [F1, F2, F3] (21)

where F1 = hN1 , F2 = hN2 and F3 = hN3 are the multimodal differential features extracted from DNN1,
DNN2, and DNN3, respectively.

The whole feature fusion process is shown in Figure 6.
A fused feature vector can be obtained by combining the multimodal features (slope, raw and

curvature features) extracted by these three DNNs, which is illustrated in Figure 7.
In the final step, we use the fused feature as the input, and the fault label of each sample as the

output, to train the Softmax classifier.

3.2.3. Online Diagnosis

Real-time diagnosis uses well-trained DGFFDNN parameters to identify the faults involved in
online data. The frame of DGFFDNN-based fault diagnosis for frequency-type faults is illustrated in
Figure 8.

The online fault diagnosis process is as follows:

Step 1: Extracting online multimodal differential features.

When the online observation at time k, denoted as xonline(k), is available, the well-trained DNN1

is used to extract the amplitude feature involved in the online raw data in Equation (22):

hN1,online(k) = G(Net, Tr, xonline(k)) (22)

where the function G is used to illustrate the fact that the online amplitude feature is the output of the
trained network DNN1 when xonline(k) is the input of the network.

Then, waiting for the observation at time k + 1 until xonline(k + 1) is available, the slope at time k
can be computed first in Equation (23):

x′online(k) =
xonline(k + 1)− xonline(k)

T
(23)

Similar to Equation (23), the slope feature can be extracted from the well-trained DNN2 in
Equation (24):

h′N,online(k) = G′(Net′, Tr′, x′online(k)) (24)

Waiting for the observation at time k + 2 until xonline(k + 2) is available, the curvature at time k
can be computed in Equations (25) and (26):

x′online(k + 1) =
xonline(k + 2)− xonline(k + 1)

T
(25)
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x′′online(k) =
x′online(k + 1)− x′online(k)

T
(26)

The curvature feature can also be extracted from the well trained DNN3 in Equation (27):

h′′N,online(k) = G′′ (Net′′ , Tr′′ , x′′ (k)) (27)

Step 2: Fusing multimodal differential features for online data.

The multimodal differential feature at time k is used to obtain the fused feature in Equation (28):

Fonline(k) = [F1,online(k), F2,online(k), F3,online(k)] (28)

where F1,online(k) = hN1(k), F2,online(k) = h′N2(k) and F3,online(k) = h′′N1
(k).
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frequency-type faults.

Step 3: Performing online diagnosis for frequency-type faults.

According to the design of the Softmax classifier, the class that maximizes the likelihood function
is the online diagnosis result of the online samples xonline(k), shown in Equations (29) and (30):

hφ(xonline(k)) =


p(label(k) = 1

∣∣xonline(k); φ)

p(label(k) = 2
∣∣xonline(k); φ)

...
p(label(k) = S

∣∣xonline(k); ϕ)

 =
1

∑S
s=1 eφT

s xonline(k)


eφT

1 xi

eφT
2 xonline(k)

...
eφT

s xonline(k)

 (29)

result(k) = argmax
s=1,2···,S

{p(label(k) = s|hφ(xonline(k)); φ)} (30)

where result(k) is the fault diagnosis result of the online data xonline(k).
The flow chart of the proposed DGFFDNN-based fault diagnosis algorithm for the frequency-type

fault is shown in Figure 9.
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4. Experiment and Analysis

Rolling bearing plays a crucial role in rotating machinery, which commonly suffers frequency-type
faults. In this paper, a simulation study and a bearing case study were both illustrated to validate the
efficiency of the DGFFDNN-based fault diagnosis method. The proposed method was compared with
the DNN-based method without feature fusion.

4.1. Simulation Study

This paper aimed to effectively detect frequency-type faults in the time domain, which is
difficult for traditional DL methods to identify different types of online faults in a mechanical system.
This section validates the effectiveness of the proposed algorithm by simulating multiple sets of
different fault-type test data. Analyses of three typical experiment scenes are illustrated in detail:
different amplitudes with different frequencies, different amplitudes with the same frequency, the same
amplitude with different frequencies.

4.1.1. Description of Simulation Experimental Data

The simulation data generation scheme is shown in Table 1, different amplitudes with the same
frequency, the same amplitude with different frequencies). The generated observation data for case 1
(i.e., different amplitudes with different frequencies is shown in Figure 10 where the red line represents
the normal observation, and the blue dashed line represents the fault observation.

Table 1. Simulation of the data generation scheme.

Different Experimental Cases Sampling
Interval Normal Observation Fault Observation

Different amplitudes with
different frequencies 0.1 y1 = 5× sin(5× t) + awgn(k) y2 = 10× cos(10× t)+ awgn(k)

Different amplitudes with the
same frequencies 0.1 y1 = 6× sin(10× t) + awgn(k) y2 = 10× cos(10× t)+ awgn(k)

Different frequency with the
same amplitudes 0.1 y1 = 10× sin(4× t) + awgn(k) y2 = 10× cos(8× t) + awgn(k)

To reduce the influence of randomness, the experiment was repeated 10 times. The DNN training
uses a stochastic gradient descent method, and the maximum numbers of iterations of DNN in each
layer were 1000, 800, and 1000 times, respectively. DNN’s pre-training initialization parameters are
shown in Table 2.

Table 2. DNN model parameters.

Training Parameter DNN1 DNN2 DNN3

Hidden layers 6 4 5
Number of neurons 500/400/200/100/50/10 500/100/50/20/10 500/200/100/50/20/10

Max number of epochs 1000 1000 1000
Learning rate 0.01 0.02 0.01

4.1.2. Analysis of Simulation and Experiment Results

To verify the effectiveness of the algorithm, different types of simulation data were used
to illustrate the experimental result. Figure 11 shows the fault diagnosis results corresponding
to DGFFDNN, DNN, Differential geometry feature fusion-based back propagation (DGFFBP),
and back propagation (BP), respectively, for experiment case 1: different amplitudes with different
frequencies. The accuracies of DGFFDNN, DNN, DGFFBP, and BP are 98.4%, 94.24%, 92.36%,
and 90.86%, respectively.
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Figure 11. Simulation results for diagnosis of fault with different fault amplitudes and different fault
frequencies: (a) DGFFDNN, (b) DNN, (c) DGFFBP, and (d) BP. A red star represents the fault diagnosis
label of each online sample, and a blue circle represents the real label of each sample. At each sample
time, the coincidence of a red circle and a blue star means that the online observation at this sample
time is correctly diagnosed.

The generated observation data for case 2 (i.e., Different amplitudes with the same frequencies is
shown in Figure 12, where the red dashed line represents the normal observation, and the blue line
represents the fault observation.
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Figure 12. Normal and fault signals with different amplitudes and the same frequency and.

Figure 13 shows the fault diagnosis result corresponding to experiment case 2: different amplitudes
with the same frequency. The accuracies of DGFFDNN, DNN, DGFFBP and BP are 94.34%, 92.01%,
90.69%, and 87.04%, respectively.
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Figure 13. Simulation study for diagnosis of faults with the same frequency and different fault
amplitudes: (a) DGFFDNN, (b) DNN, (c) DGFFBP, and (d) BP. A red star represents the fault diagnosis
label of each online sample, and a blue circle represents the real label of each sample. At each sample
time, the coincidence of a red circle and a blue star means that the online observation at this sample
time is correctly diagnosed.

The generated observation data for case 3 (i.e., the same amplitudes with different frequency
is shown in Figure 14, where the red dashed line represents the normal observation, and the blue
line represents the fault observation. Figure 15 shows the fault diagnosis result corresponding to
experiment case 3: the same amplitudes with different frequencies. The accuracies of DGFFDNN,
DNN, DGFFBP, and BP are 93.06%, 73.54%, 62.87%, and 54.36%, respectively.
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It can be easily seen that the diagnosis accuracy of DGFFDNN is higher than the traditional DNN,
and the diagnosis accuracy of DGFFBP is higher than the traditional BP, which demonstrates that the
differential geometry feature fusion-based method is an efficient means for diagnosing a frequency-type
fault. It can also be concluded that DGFDNN is superior to the other three methods in real-time and
accurate diagnosis for a frequency-type fault.
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Figure 14. Normal and fault signals with the same amplitudes and different frequencies.

It can be seen in Figures 11a, 13a and 15a that if the fault size is large in both a time domain and
frequency domain, even a traditional shallow learning method can be used for a relatively satisfactory
diagnosis result. In the case when the fault size was only large in amplitude, the traditional DNN
can be used to achieve a relatively satisfactory diagnosis, which the traditional BP cannot. As for
the case of the frequency-type fault, that is, the fault size is large in frequency but very small in
amplitude, the accuracy of the traditional shallow learning method is only 54.36% which cannot
meet the engineering requirement, and even the DNN can only achieve a diagnosis accuracy of
73.54%. However, the method proposed in this paper can greatly improve the diagnosis accuracy
to a higher value of 93.06%, showing that DGFDNN is an efficient online diagnosis method for
a frequency-type fault.

Table 3 lists the fault diagnosis accuracy of the four fault diagnosis methods in three different
experiment cases. It can be seen from Table 3 that the DGFFDNN method with an accuracy
improvement of about 20% for experiment case 3 is greatly superior to other machine learning
methods for the real-time diagnosis of typical frequency-type faults.

Table 3. Simulation study on accuracies of different fault diagnosis methods.

Data DGFFDNN DNN DGFFBP BP

Different amplitudes with different frequencies 98.40 94.24 92.36 90.86
Same frequency with different amplitudes 94.34 92.01 90.69 87.04

Same amplitudes with different frequencies 93.06 73.54 62.87 54.36
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Figure 15. Simulation study for diagnosis of faults with different frequencies: (a) DGFFDNN, (b) DNN,
(c) DGFFBP, and (d) BP. A red star represents the fault diagnosis label of each online sample, and a blue
circle represents the real label of each sample. At each sample time, the coincidence of a red circle and
a blue star means that the online observation at this sample time is correctly diagnosed.

4.2. Case Study

To further verify the algorithm’s validity in engineering practice, the bearing experimental
platform established by our research team and a benchmark rolling bearing test data set provided by
Case Western Reserve University (CWRU) were both used to verify the effectiveness of DGFFDNN.
We carried out an algorithm test on two datasets: (1) different fault diameter with the same fault type;
and (2) different fault types with same fault diameters.

4.2.1. Description of the Experimental Platform

The experimental dataset was the bearing data collected from our fault diagnosis test platform.
Figure 16 displays the experimental platform established by the data-driven research team of Henan
University. The experimental platform was comprised of a motor, three defective bearings, two normal
bearings, a gearbox, a shaft, a rotating disc, and four sensors. Vibration data were collected using
accelerometers, which were attached to the platform with magnetic bases.
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Figure 16. Experiment platform of bearing in Henan University.
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The normal bearing installed on the shaft was replaced by a defective bearing with a given fault
diameter to simulate different bearing faults, such as an inner race fault, an out race fault, and a ball
fault. The normal gear installed in the gearbox was replaced with a defective gear with a given number
of broken teeth to simulate a gearbox fault. Adjusting the stress balance on the rotating disc was used
to simulate the shaft fault. In this paper, the only bearing fault data with no other concurrent fault was
collected for the DGFFDNN algorithm test. The sampling frequency was 48 kHz.

Remark 3. Single-point bearing faults with given fault diameters of 0.007 inches, 0.014 inches and 0.021 inches
were provided by a sail company, Kun Long Jia Chen. A convenient bearing replacing was required to simulate
with different bearing fault data.

Remark 4. There was no special unit, such as an additional motor, to simulate the experiment of load changing,
so the vibration data was collected in the case when load was 0 horsepower (hp). Although the gearbox can be
seen as a load, it is very small. According to the engineering criteria of Kun Long Jia Chen Company, varying
loadings only affects the amplitude of the abnormal signal, and cannot affect the frequency of the abnormal signal.
Therefore, the efficiency of the DGFFDNN-based frequency-type fault diagnosis method was not influenced.

4.2.2. Case Study Result Analysis

The DGFFDNN method proposed in this paper was applied to bearing fault diagnosis. There were
4500 samples under each data type, and four different data types to characterize the frequency fault
types of rotating mechanical systems.

Three fault datasets and a normal dataset with 40,000 samples were collected to test the algorithm,
with 40,000 samples for the DGFFDNN training, 2000 samples for the test. The fault data corresponded
to the inner race fault with different fault sizes in the case when load was 0. The fault diameters of the
defective bearing were 0.007 inches, 0.014 inches, and 0.021 inches, respectively. Four experiment cases
were chosen with these data types having similar amplitude features but different frequency features.

Figure 17 shows the diagnostic results of experiment case 1: the same fault size with different fault
types. The accuracies of DGFFDNN, DNN, DGFFBP, and BP are 98.26%, 91.32%, 87.06%, and 80.28%,
respectively. The DGFFDNN diagnosis result (Figure 17a) can distinguish different fault sizes well and
is better than the other three methods, which provides very useful information for failure prediction
maintenance and is effective in the fault diagnosis of the engineering application field.

Figure 18 shows the diagnostic results of experiment case 2: the same fault size with different fault
types where the used fault size was only 0.007 inches. The accuracies of DGFFDNN, DNN, DGFFBP,
and BP are 97.52%, 88.50%, 86.34%, and 76.29%, respectively, demonstrating the DGFFDNN diagnosis
method is better than the other three methods in effectively distinguishing different fault types when
multiple faults occur in the rotation mechanical equipment.
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Figure 17. Case study results for diagnosis for different fault sizes: (a) DGFFDNN, (b) DNN, (c) DGFFBP,
and (d) BP.
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Figure 18. Case study for diagnosis of different types of fault with the same size of 0.007 inches:
(a) DGFFDNN, (b) DNN, (c) DGFFBP, and (d) BP.
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4.2.3. Benchmark Dataset Testing

In this section, data from the CWRU Bearing Data Center as a benchmark dataset were used to test
this DGFFDNN diagnosis algorithm, since most studies use this dataset for fault diagnosis algorithm
testing [54]. The experiment platform is shown in Figure 19. The CWRU Bearing Data Center provides
free access to download bearing data from the following website [54].
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Figure 19. Experimental platform of the bearing from Case Western Reserve University (CWRU) [54].

Fault simulation experiments were conducted using a 2-hp reliance electric motor, and acceleration
data were measured at locations that were near or remote from the motor bearings. Motor bearings
were seeded with faults using electro-discharge machining (EDM). Faults with diameters ranging from
0.007 inches to 0.040 inches were introduced separately at the inner raceway, rolling element (i.e., ball),
and outer raceway. Faulted bearings were reinstalled into the test motor, and vibration data were
recorded for the motor load range of 0 hp to 3 hp (motor speeds ranging from 1720 rpm to 1797 rpm).

Figure 20 shows the diagnostic results of experiment case 1: the same fault size with the different
fault types. The fault diameter was 0.07 inches, which was rather small. The accuracies of DGFFDNN,
DNN, DGFFBP, and BP are 97.73%, 89.2%, 86.37%, and 60.24%, respectively. It can be clearly seen that
the DGFFDNN diagnosis method (Figure 20a) is better than other three methods in distinguishing the
fault size, which is very helpful for fault prognosis and maintenance.

Figure 21 shows the diagnostic results of experiment case 2: the same fault type with different fault
sizes. The accuracies of DGFFDNN, DNN, DGFFBP, and BP are 98.06%, 89.52%, 87.73%, and 73.56%,
respectively, demonstrating the DGFFDNN diagnosis method (Figure 21a) can effectively diagnose
multiple faults occurring in the rotation mechanical equipment.

From the above comparison, it can be concluded that the differential geometry feature
fusion-based DNN method can be validated by the simulation study as well as the case study. Table 4
lists the diagnosis accuracy for the case study. It can be seen from Table 4 that the diagnostic accuracy
of the proposed method is an effective fault diagnosis method for rotation mechanical equipment.

Table 4. Case study: accuracies of different fault diagnosis methods. (The unit of the fault diameter is
in inch).

DGFFDNN DNN DGFFBP BP DNN with FFT

Henan University Bearing Platform
Different fault diameters (0.007, 0.014, 0.021, 0) 98.54% 90.14% 88.16% 80.13% 99.37%

Different fault types (inner race, ball, out race, normal) 97.63% 89.53% 86.42% 70.84% 99.24%
Case Western Reserve University Bearing Platform

Different fault diameters (0.007, 0.014, 0.021, 0) 97.73% 89.52% 86.37% 60.24% 99.16%
Different fault types (inner race, ball, out race, normal)

Online diagnosis
98.06%

Yes
89.52%

Yes
87.73%

Yes
73.56%

Yes
99.22%

No
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Figure 20. Benchmark test for the diagnosis of different fault types with the same size: (a) DGFFDNN,
(b) DNN, (c) DGFFBP, and (d) BP. The number of samples used in the experiment was 487,384.
To visualize the classification results, only part of the experimental results were displayed. The experiment
used a normal dataset and three fault datasets. The three sets of fault data were the cases where the
inner ring fault sizes were 0.007 inches, 0.014 inches, and 0.021 inches, respectively, when the load was
3 hp.
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Figure 21. Benchmark test for the diagnosis of the same fault with different sizes: (a) DGFFDNN,
(b) DNN, (c) DGFFBP, and (d) BP.
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Literature [40] studied the DNN-based fault diagnosis method for rolling bearing in the frequency
domain. For the purpose of performance comparison, the diagnosis result of the algorithm proposed
in [40] is also shown in Figure 22; the window size of FFT was set to be 500 samples. Table 4 list the
comparison of DGFDNN algorithm and the algorithm proposed in [40].
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Figure 22. DNN diagnostic results using FFT as a preprocessing tool. (a) DGFFDNN, (b) DNN,
(c) DGFFBP, and (d) BP.

Remark 5. Although the “fault classification” accuracy is higher than 99%, it is still not a suitable method in
the engineering field of fault diagnosis, since fast Fourier transform (FFT) is required as a preprocessing tool that
leads to a non-real time diagnosis method. In this paper, the frequency-type fault is diagnosed online in the time
domain, and the diagnosis accuracy is higher than 97.63%, which is suitable for engineering applications.

5. Conclusions and Future Work

In real-time and accurate are the primary performance requirements of the fault diagnosis
method for safety security for key machinery in an automatic system. However, the DNN with
FFT as a preprocessing tool is unable to achieve an online real-time fault diagnosis, since frequency
spectra rather than observation at a sample time is the input of DNN. The main innovation of this paper
is to develop a good dynamic trend capturing method in the time domain by using the methodology
of DNN feature fusion to extract more accurate fault features, and fusing multimodal dynamic
differential features.

Compared with the DNN-based fault diagnosis method, the proposed DGFFDNN method with
higher accuracy in achieving an online real-time diagnosis for rotating machinery has been well
presented and experimentally validated using the diagnosis of the rolling bearing case study as well as
the simulation study.



Sensors 2018, 18, 3521 24 of 26

On a basis of the current work, further research can be dedicated to online diagnosis of early
concurrent faults. A residual useful life prognosis based on early diagnosis of rotating machinery is
another promising research direction.
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