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Abstract: This work presents a study of the traction, normal and stall forces in a two-sided planar
actuator with orthogonal planar windings and a mover that comprises two cars magnetically coupled
to each other through two pairs of permanent magnets (PMs). There is no ferromagnetic armature
core because of the permanent magnets array in the mover and orthogonal traction forces can be
generated in order to move both cars jointly in any direction on a plane. The stall force is the minimal
force necessary to break up the magnetic coupling between the two cars. When one of the cars is
subjected to an external force through the x- or y-axis, the cars can become out of alignment with
respect to each other and the planar actuator cannot work properly. The behavior of the forces was
modelled by numerical and analytical methods and experimental results were obtained from tests
carried out on a prototype. The average sensitivity of the measured static propulsion planar force
along either axis is 4.48 N/A. With a 20-mm displacement between the cars along the direction of the
x-axis and no armature current, a magnetic stall force of 17.26 N is produced through the same axis in
order to restore the alignment of the two cars.

Keywords: stall force; planar actuator; ironless armature; orthogonal windings; analytical model

1. Introduction

A planar actuator can be described as a device that produces movement on a plane by provides
movement with a minimum of two degrees of freedom within an area of movement over that
plane [1]. Many electromagnetic linear and planar actuator topologies have been studied for different
applications. They can be formed by a stationary armature and movable permanent magnets or vice
versa. Different kinds of electromagnetic planar actuators have been designed and analyzed in recent
studies. The concept of a stationary two-layer coil electromagnetic actuator for planar motion was
presented in Reference [1]. An ironless synchronous permanent-magnet planar actuator was discussed
in Reference [2]. The study and characterization of the electromagnetic forces produced by linear and
planar electromagnetic actuators are based on analytical models generally. In Reference [3], the authors
present an overview of analytical models for the design of linear and planar motors. Analytical models
for computing the magnetic flux density and electromagnetic forces in linear motors were presented in
References [4,5]. In Reference [6], the authors proposed a design methodology for linear actuators; this
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study considered thermal and electromagnetic coupling with geometrical and temperature constraints.
A study of an induction planar actuator concept was discussed and analyzed in Reference [7].

The purpose of this paper is to present the studies on a double-sided moving-PM-type planar
actuator based on orthogonal planar windings that form an ironless armature. Its constructive
characteristics and principle of operation are presented. An analytical model is proposed in order
to analyze the behavior of the involved magnetic forces and of the magnetic flux density vector
distribution produced by the permanent magnets and by the current in the windings throughout the
actuator. A numerical model of the actuator based on 3D-finite elements was employed as one way to
validate the analytical model. Results of measurements are also presented, discussed and compared to
the theoretical ones. They provide information about de static performance of the device presented
in this paper. Applications such as printed circuit movers and NC systems present potential use for
that actuator.

The concept of the planar actuator analyzed in this paper was firstly presented in Reference [8].
Figure 1a illustrates its topology. Figure 1b shows details of Cars 1 and 2 where only the coils located
in between the cars are presented. Figure 1c,d present a view of prototype of the actuator and its
lower car, respectively. The device is based on a double-sided mover that uses two cars magnetically
coupled to each other through two pairs of permanent magnets (PMs). An ironless armature with two
orthogonal planar windings is placed between the two cars.
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Figure 1. (a) Picture of the planar actuator with ironless armature and a double-sided mover [8]; (b) 
details of Cars 1 and 2; (c) the prototype of the device where the upper car (Car 2) is highlighted; (d) 
the lower car (Car 1). 

The electromagnetic planar actuator has a mover mounted on a mechanical supporting system. 
The structure employs a set of linear guides and bearings that provides mechanical support for the 
cars in order to allow bi-directional movement along the x and y axes. The two cars are magnetically 
coupled to each other in a symmetrical form that holds them together. The lower car is the magnetic 
and mechanical mirror of the upper car. Each car has two permanent magnets with opposite 
magnetization and linked by a steel back iron, therefore forming a complete mover [8]. 

Figure 1. (a) Picture of the planar actuator with ironless armature and a double-sided mover [8];
(b) details of Cars 1 and 2; (c) the prototype of the device where the upper car (Car 2) is highlighted;
(d) the lower car (Car 1).

The electromagnetic planar actuator has a mover mounted on a mechanical supporting system.
The structure employs a set of linear guides and bearings that provides mechanical support for the
cars in order to allow bi-directional movement along the x and y axes. The two cars are magnetically
coupled to each other in a symmetrical form that holds them together. The lower car is the magnetic and
mechanical mirror of the upper car. Each car has two permanent magnets with opposite magnetization
and linked by a steel back iron, therefore forming a complete mover [8].
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The armature consists of multiphase windings that are arranged to form two sets of orthogonal
windings, that is, a group of six coils or phases assembled along the x-axis forming the x-axis multiphase
winding and a group of six coils or phases assembled on the y-axis forming the y-axis multiphase
winding. This configuration uses an ironless armature since the magnetic flux path crosses the air-gap
and the windings in between the two cars to form a closed magnetic circuit with the permanent
magnets. Table A1 in Appendix A presents the main characteristics of the actuator [8].

Since the cars are positioned over excited phases, a magnetic propulsion force parallel to the
surface of the armature is created on the cars and pushes them accordingly, that is, the planar force of
the actuator [8]. Depending on how the phases are fed with dc current in terms of value and direction,
the movement of the mover can take place along the x- and y-axis directions, or any direction on a
plane parallel to the armature and determined by the planar force.

2. Materials and Methods

The planar actuator was theoretically analyzed, designed, assembled and tested. The analytical
model was proposed in order to predict the behavior of the flux density distribution and the planar
force of the actuator under static conditions. Magnetic field equations were developed and computed
the distribution of the magnetic flux density in the air-gap. That led to the calculation of the forces
produced by the device. The analytical model represented a way to obtain the operation characteristics
of the actuator based on dimensions and materials characteristics. The model was employed also as a
design tool that could allow one to set the air-gap length, the dimensions of the permanent magnets,
the active volume of the coils and the number of turns of each phase.

Once the main dimensions of the planar actuator were defined, a numerical model was developed
to analyze the device. Its results were compared to the ones produced by the analytical model as a
way to validate the latter. The numerical results were obtained by a computational package using
the finite element method. The planar actuator was simulated by means of a 3D model. In the
simulations, the phases located in between the cars were excited with dc current in order to calculate
the forces [8]. The model generated has 315,000 elements in a volume that envelops the mover and
the corresponding phases. It was divided into regions, according the materials employed in the
real prototype. The four NdFeB permanent magnets were considered identical with respect of their
magnetic properties. The permanent magnet regions were characterized by the relative magnetic
permeability and the remanent magnetic flux density with its normal component. The back iron
regions were defined as magnetically nonlinear by means of the BH curve of the SAE 1045 steel. Only
two phases were represented in the model, that is, an x-phase and a y-phase, each one located between
the sets of permanent magnets of the two cars, similarly to the analytical model. The model was
immersed in an air region with magnetic permeability equal to µo.

Although the numerical analysis can be a process that demands a longer time for pre-processing,
particularly in 3D models, it allows the analysis of the magnetic field conditions in the ferromagnetic
materials. It helps to verify the level of magnetic saturation in those regions. This is particularly
significant in order to validate the analytical results since, in the analytical model, the ferromagnetic
material is considered infinitely permeable.

2.1. Analytical Study of the Planar Actuator

The planar actuator was studied using an analytical 3D model. The magnetic field produced by
the permanent magnets was analyzed separately from the field produced by the winding currents.
Then both fields computed in that way were added. The magnetic circuit of the planar actuator
was divided into regions and boundaries where conditions for the field were imposed [8]. Figure 2a
represents the magnetic circuit used by the analytical model for the study of the magnetic field and
the forces when both cars were aligned. In the model, only the phases located in between the cars
and subjected to the air-gap flux density produced by the permanent magnetics are considered to
compute the static forces. In Figure 2b, the magnetic lines flux established through the magnetic circuit
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of the actuator by the PMs are presented and the directions of the current density, z-component of the
magnetic flux density and the planar propulsion force, when only one x-coil is excited with current.
Figure 2c shows a 3D-view of the mover with an x- and y-coils excited by dc current and the respective
direction of the components of the planar propulsion force vector.
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Figure 2. (a) Cut view of the model of the planar actuator for analyzing the magnetic field [8]; (b) cut
view with the magnetic flux lines established by the PMs; (c) perspective view of the mover with an x
and y-coils excited by current.

The spatial periodicity of the analytical model is equal to lt = 100 mm. The square area of the
analytical model is lt2. The magnetic air-gap length is represented by lg and it is equal to the distance
between the polar surfaces of the permanent magnets of Cars 1 and 2. Both windings, x and y, are
located in the air-gap. Still in Figure 2, lm is the thickness of each permanent magnet and wm is the side
of the polar area of each permanent magnet; 2ld is the distance between two permanent magnets of

the same car through x and y axes; lb is the thickness of each coil, lc = (l/2) − lb, lw = (l/2) + lb,
⇀
M is

the magnetization vector of the permanent magnets and
⇀
J is the current vector density in the phase

windings [8]. Figure 3 presents the three-dimensional characteristics of the magnetization in each pair
of permanent magnets. The back-iron material is considered to have infinite permeability ideally, that
is, µ f e → ∞. The latter is a valid approach because the magnetic flux density throughout the back iron
is well below the saturation of the material due to the permanent magnet strength and the dimensions
of the back iron and of the air-gap.
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Figure 3. Three-dimensional characteristic of the magnetization in each pair of permanent magnets on
the same car.

2.1.1. Magnetic Field Produced by Permanent Magnets

In the analysis of the magnetic field produced by the permanent magnets, a formulation of the
magnetic scalar potential was employed because all regions are free from current; the field produced by
the current in the windings is analyzed separately. Therefore, the regions between z = lc and z = lw,

where the coils are located, have the same properties as the air. The magnetic field
⇀
H was analyzed by

representing it as the negative gradient of the magnetic scalar potential ψ so that
⇀
H = −∇ψ. Taking into

account that∇·
⇀
B = 0 (

⇀
B is the magnetic flux density) and, in the air-gap,

⇀
B = µ0

⇀
H, one can obtain the

Laplace’s equation, in terms of the magnetic scalar potential in the air-gap ψg, given by∇2ψg = 0 [8,9].
There are two different regions that contain permanent magnets: one represents Car 1 and

the other, Car 2. In the permanent magnet regions, the relationship between vectors
⇀
B and

⇀
H is

given by
⇀
B = µ0

(
⇀
H +

⇀
M
)

[9]. Using the same procedure as in the air-gap, the Poisson’s equation

can be obtained in terms of the magnetic scalar potential in the permanent magnet regions so

that ∇2ψpm = ∇·
⇀
M [8,9]. In each permanent magnet region, the magnetization vector has only a

z-component, or
⇀
M = Mz

⇀
k and Mz is expressed as a double Fourier series. This is a function of x and

y and the periodicity is equal to lt = 8ld. Hence:

Mz =
∞
∑

n = 1, 3, . . .
m = 1, 3, . . .

[Mnm sin(κnx) sin(κmy)]

Mz = − 16Mo
(κlt)

2

∞
∑

n = 1, 3, . . .
m = 1, 3, . . .

[
(cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))

nm
× sin(κnx) sin(κmy)

] (1)

where κ = 2π/lt, Mo is the remanent magnetization of the permanent magnets and n and m are

integers. Using (1), it is possible to verify that ∇·
⇀
M = 0, so the Poisson’s equation ∇2ψpm = ∇·

⇀
M

assumes the form of the Laplace’s equation, ∇2ψpm = 0. The solution for both Laplace’s equations
involves the application of boundary conditions given by [8–10]:

• The magnetic scalar potentials are equal to zero on the planes x = −lt/2, y = −lt/2, x = 0, y = 0,
x = lt/2, y = lt/2, z = 0 and z = 2lm + lg.

• On the plane z = lm, the z-component of the magnetic flux density in the air-gap is equal to the
z-component of the magnetic flux density in the permanent magnet region of Car 1, Bgz = Bpm1z .
On the same plane, ψg = ψpm1.
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• On the plane z = lm + lg, the z-component of the magnetic flux density in the air-gap is equal to the
z-component of the magnetic flux density in the permanent magnet region of Car 2, Bgz = Bpm2z .
On the same plane, ψg = ψpm2.

By means of those conditions, the solution of the potential equations can be obtained [5].
The equations for the x, y and z-components of the magnetic flux density vector in the air-gap are
obtained from −µo∂ψg/∂x, −µo∂ψg/∂y and −µo∂ψg/∂z. They are given by [8]:

Bgx =
8µ0Mo

κlt2

∞

∑
n = 1, 3, . . .
m = 1, 3, . . .

 (cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))
γm ×(

k3eγz+k4e−γz

1−e−γ(4lm+2lg)

)
cos(κnx) sin(κmy)

, (2)

Bgy =
8µ0Mo

κlt2

∞

∑
n = 1, 3, . . .
m = 1, 3, . . .

 (cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))
γn ×(

k3eγz+k4e−γz

1−e−γ(4lm+2lg)

)
sin(κnx) cos(κmy)

, (3)

Bgz =
8µ0Mo

(κlt)
2

∞

∑
n = 1, 3, . . .
m = 1, 3, . . .

 (cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))
nm ×(

k3eγz−k4e−γz

1−e−γ(4lm+2lg)

)
sin(κnx) sin(κmy)

, (4)

where µ0 is the magnetic permeability of the vacuum, γ = κ
√

n2 + m2 and k3 and k4 are given by [8]:

k3 = e−γ(5lm+2lg) − e−γ(lm+lg) − e−γ(3lm+2lg) + e−γ(3lm+lg), (5)

k4 = eγlm − e−γlm − e−γ(3lm+lg) + e−γ(lm+lg). (6)

2.1.2. The Equation of the Planar Propulsion Force

The propulsion force that acts on the mover and produces movement over the plane was obtained

by means of the Laplace’s force equation
⇀
F =

∫
V
(
⇀
J ×

⇀
B) dv [2–5]. This equation can be applied to the

analysis of the planar actuator [8]. This assumes that the resulting force vector on the mover is the
result of the interaction between the z-component of the magnetic flux density vector in the air-gap, Bgz

and the current density vector in the x-phases,
⇀
J Xw = Jy

⇀
j and between Bgz and the current density

vector in the y-phases,
⇀
J Yw = Jx

⇀
i . Therefore:

⇀
F P = −2

 l
2∫

lc

lt
2∫

0

lt
2 −ld∫
ld

(
Joy

⇀
j × Bgz

⇀
k
)

dv

+

 lw∫
l
2

lt
2 −ld∫
ld

lt
2∫

0

(
Jox

⇀
i × Bgz

⇀
k
)

dv


⇀
F P = 2

− l
2∫

lc

lt
2∫

0

lt
2 −ld∫
ld

(
Joy Bgz

)
dv

⇀
i +

 lw∫
l
2

lt
2 −ld∫
ld

lt
2∫

0

(
Jox Bgz

)
dv

⇀
j



⇀
F P =

∞
∑

n = 1, 3, . . .
m = 1, 3, . . .


32µ0lt Mo cos(κnld) cos(κmld)

π3κγ(nm)2
(

1−e−γ(4lm+2lg)
)×

[
−Joy cos(κnld)

[
k3

(
eγl/2 − eγ((l/2)−lg)

)
+ k4

(
e−γl/2 − e−γ((l/2)−lg)

)]⇀
i
]

+

[
Jox cos(κmld)

[
k3

(
eγ((l/2)+lg) − eγl/2

)
+ k4

(
e−γ((l/2)+lg) − e−γl/2

)]⇀
j





, (7)

where Joy is the current density in one phase of the x-winding and Jox, the current density in one phase
of the y-winding. When fed by current, the x-phases produce a propulsion force through the direction
of the x-axis and the y-phases, through the direction of the y-axis. In Equation (7), it is assumed that
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only one phase of the x-winding and of y-winding are fed by current and both are aligned with the
permanent magnets of the mover.

2.1.3. Magnetic Field Produced by Current in the Phases

The magnetic flux density vector produced by the winding current was obtained by employing
the formulation of the magnetic vector potential [11]. The magnetic field produced by x-coils were
analyzed separately of the magnetic field produced by y-coils. Therefore, in the model of Figure 2,
there are two regions free from currents: between z = 0 and z = lc and between z = l/2 and z = l, when
only the effect of the current in x-coils is taken in account. The effect of the magnetization of the
permanent magnets is not considered because the magnetic field produced by them was analyzed
separately in Section 2.1.1.

In the formulation of the vector magnetic potential, the magnetic flux density vector,
⇀
B , can

be expressed as the curl of
⇀
A, or

⇀
B = ∇×

⇀
A [4]. The curl of the magnetic field vector,

⇀
H, is equal

to the current density vector, that is, ∇×
⇀
H =

⇀
J . Consequently, the curl of

⇀
B results in ∇×

⇀
B =

∇×∇×
⇀
A = µ

⇀
J . The magnetic vector potential is obtained by means of the current density vector.

In an x-coil phase, the current density vector is expressed by a Fourier series given by:

⇀
J Xw = Jy

⇀
j =

4Joy

π

∞

∑
n=1,3,...

(
cos(κnld)

n
sin(κnx)

)
⇀
j . (8)

The magnetic field produced by an x-coil phase with current was calculated separately from the

magnetic field produced by a y-coil phase. In an x-winding phase, ∇×∇×
⇀
AXw = µ0 Jy

⇀
j , where

⇀
AXw is the magnetic vector potential in the x-winding region. After some manipulation, the equation
∇2 AXwy = −µ0 Jy is obtained, where AXwy is the y-component of AXw. This scalar equation is the

Poisson’s equation in terms of the vector magnetic potential
⇀
AXw [5]. Its solution is the result of the

sum of two terms: a homogeneous term that must satisfy the Laplace’s equation and a particular

term solved by the Poisson’s equation. In the regions with no current, the curl of
⇀
B assumes the

form of Laplace’s equation, ∇2 Ag1y = 0 and ∇2 Ag2y = 0, where Ag1y and Ag2y are the y-components
of magnetic vector potentials in the current-free space regions related to the current density in the
x-phase. The magnetic vector potential in the region between z = 0 and z = lc (air-gap 1) is represented
by Ag1y and between z = l/2 and z = l (air-gap 2), by Ag2y . The solution for both Laplace’s equation
and Poisson’s equation involves the application of boundary conditions given by [10,11]:

• The magnetic vector potentials are equal to zero on the planes x = −lt/2, y = −lt/2, x = 0, y = 0,
x = lt/2, y = lt/2.

• On the plane z = 0, the tangential component of the magnetic flux density vector in the air-gap 1,
Bg1x , obtained from −∂Ag1y /∂z, is equal to zero.

• On the plane z = 2lm + lg, the tangential component of the magnetic flux density vector in the
air-gap 2, Bg2x , is equal to zero.

• On the plane z = lc, the z-component of the magnetic flux density in the air-gap 1 is equal to the
z-component of the magnetic flux density in the x-coil region, Bg1z = BXw z. On the same plane,
the x-components of the magnetic field vector in the air-gap 1 and in the x-coil region are also
equal so that Hg1x = HXwx.

• On the plane z = l/2, the z-component of the magnetic flux density in the x-coil region is equal to
the z-component of the magnetic flux density in the air-gap 2, Bg2z = BXw z. On the same plane,
the x-components of the magnetic field vector in the x-coil region and in the air-gap 2 are again
equal so that Hg2x = HXwx.
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These conditions allow the solution of the potential equations. The equations for x and
z-components of the magnetic flux density vector in the air-gap 1, Bg1x and Bg1z , produced by the
current in the x-coil phase, are obtained from −∂Ag1y /∂z and ∂Ag1y /∂x.

For the y-winding phases, the current vector is represented by a Fourier series given by:

⇀
J Yw = Jx

⇀
i =

4Jox

π

∞

∑
m=1,3,...

(
cos(κmld)

m
sin(κmx)

)
⇀
i , (9)

and ∇×∇×
⇀
AYw = µ0 Jx

⇀
i , where

⇀
AYw is the magnetic vector potential in the y-winding region

and its x-component is represented by AYwx . Again, after some manipulation, ∇2 AYwx = −µ0 Jx is
obtained and its solution is the result of the sum of two terms: a homogeneous term that must satisfy
the Laplace’s equation and a particular term solved by the Poisson’s equation. In the regions with no
current, ∇2 Aa1x = 0 and ∇2 Aa2x = 0, where Aa1x and Aa2x are the x-components of magnetic vector
potentials in the current-free space regions limited by the planes z = 0 and z = l/2 (air-gap 1) and
by z = lw and z = l (air-gap 2). Both regions are related to the current in the y-winding. Analogous
boundary conditions are used on the planes that limit the regions. They allow solution of the potential
equations. The equations for y and z-components of the magnetic flux density vector in air-gap 1, Ba1y

and Ba1z , produced by the current in the y-coil phase, are obtained from ∂Aa1x /∂z and −∂Aa1x /∂y.
When the x and y-phases located between the permanent magnets of the cars are fed by current,

the resulting x, y and z-components magnetic flux density in air-gap 1 are given by [8]:

Bg1x = −
2µ0 Joy

κπ

∞

∑
n=1,3,...

[
A1

cos(κnld)
n2

(
eκnz − e−κnz) sin(κnx)

]
, (10)

Ba1y =
2µ0 Jox

κπ

∞

∑
m=1,3,...

[
B1

cos(κmld)
m2

(
eκmz − e−κmz) sin(κmy)

]
, (11)

Bg1z + Ba1z =
2µ0

κπ


∞
∑

n=1,3,...

[
A1 Joy

cos(κnld)
n2 (eκnz + e−κnz) cos(κnx)

]
+

−
∞
∑

m=1,3,&

[
B1 Jox

cos(κmld)
m2 (eκmz + e−κmz) cos(κmy)

]
, (12)

where A1 and B1 are given by [8]:

A1 =

[(
1

eκnlc−e−κnlc−eκn(2l+lc)+eκn(2l−lc)

)( e2κnlc − e2κnl + e2κn(l−lc) − 1− eκn(l/2+lc)+

+eκn(l/2−lc) + eκn((3l/2)+lc) − eκn((3l/2)−lc)

)]
, (13)

B1 =

[(
1

eκml/2−e−κml/2−e5κml/2+e3κml/2

)( 2eκml − 1− eκm(l/2+lw) + e−κm(l/2−lw) − e2κml+

−eκm(3l/2−lw) + eκm(5l/2−lw)

)]
. (14)

The total magnetic flux density vector in air-gap 1,
→
BT1, is the vector sum of the magnetic flux

density vectors produced by the permanent magnets and by the current through the x and y-phases.
Its components are obtained from BT1x = Bgx + Bg1x , BT1y = Bgy + Ba1y and BT1z = Bgz + Bg1z + Ba1z .

2.1.4. The Equation of the Normal Force

In the planar actuator, a normal attraction force is produced between Cars 1 and 2. This is mainly
due to the magnetic field produced by the permanent magnets. The magnetic field produced by the
phase currents is smaller when compared to the permanent magnet field. Therefore, its effects on
the production of the normal force are not significant. The effect of the normal force produced by
the permanent magnet field is the magnetic attraction between Cars 1 and 2 and that keeps them

magnetically coupled. In the analysis of the normal force, a Maxwell Stress Tensor,
⇀
T , was used [12].
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The vector force is related to the Maxwell tensor by
⇀
F = 1

µ

∮
S

⇀
TdS. In order to calculate the normal

attraction force between the cars, a closed surface of integration is used for Car 1. The lower surface
is located on y = −∞, where the magnetic field is considered equal to zero and, on the lateral sides,
the integration over the terms of the tensor related to these sides cancel each other [5]. On the upper
surface, located on the plane z = lm, the integration is made over the tensor term Tzz = Bz

2 − 1
2 |B|

2.
In this way, the normal force on the Car 1 is calculated from [8]:

⇀
F N = 2

2µo

lt
2∫

0

lt
2∫

0

〈
(BT1z

2 − BT1x
2 − BT1y

2)
〉

xy
dxdy

⇀
k

⇀
F N = 4

lt2 µo



∞
∑

n = 1, 3, . . .
m = 1, 3, . . .


[

Mo(cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))
1−e−γ(4lm+2lg)

]2
×[

γ2(k3eγlm−k4e−γlm)
2−κ2(n2+m2)(k3eγlm+k4e−γlm)

2

(κ2γnm)
2

]
+

 lt4

2(κπ)2


∞
∑

n=1,3,...

(
A1 Joy cos(κnld)

n2

)2
+

∞
∑

m=1,3,...

(
B1 Jox cos(κmld)

m2

)2






⇀
k

, (15)

where the subscript T1 in
(

BT1z
2 − BT1x

2 − BT1y
2
)

indicates total values of the components of the
magnetic flux density vector that results of the vector sum of the magnetic flux density vectors
produced in air-gap 1 by the permanent magnets and by the current in the x and y-phases.

2.1.5. Decoupling Forces

The stall force is the minimum force necessary to break the magnetic coupling between the upper
and the lower cars. When one car is subjected to an external force through the x- or y-axis, the cars can
become out of alignment with respect to each the other and the planar actuator cannot work properly.
In order to analyze the decoupling force, a set of equations was developed to calculate the values of
the planar force produced between the cars when one of them suffers a displacement with relation to
the other. An external force applied to one car can break the magnetic coupling when it is higher than
the attraction forces that tend to keep the cars magnetically coupled [8].

In the decoupling model, the spatial periodicity, lt, shown in the model represented by Figure 2,
is increased to become higher than 100 mm, resulting in 400 mm, in order to allow the analysis of
the displacement of one car with respect to the other, according to Figure 4. The equations produce
the values for the attractive planar force between the cars when there are displacements ∆x and ∆y
between them, where ∆x is the displacement through the x-axis and ∆y through the y-axis [8]. In the
analytical model, the position of the Car 2 is kept at the same coordinates while the displacement is
applied to the Car 1.
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Figure 4. Cut view of the model of the planar actuator for analyzing the magnetic field when there is
a displacement ∆x between the cars.
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The magnetization expression of Car 2 is given by (1) and Car 1 is represented by:

M1z = −
16Mo

(κlt)
2

∞

∑
n = 1, 3, . . .
m = 1, 3, . . .

[
(cos(κn(ld+wm))−cos(κnld))(cos(κm(ld+wm))−cos(κmld))

nm
× sin(κn(x± ∆x)) sin(κm(y± ∆y))

]
. (16)

Following the same steps presented in Section 2.1.1, the equations for the components of the
magnetic flux density vector produced by the permanent magnets as a function of the displacement of
Car 1 with respect to Car 2 can be obtained. For the air-gap, those components are [8]:

Bgx = − 8µ0 Mo

κlt2

∞
∑

n = 1, 2, . . .
m = 1, 2, . . .

[
M1

mγ
(

1−e−γ(4lm+2lg)
) ((Sx1C1 + Sx2C2)eγz + (Sx1C3 − Sx2C2)e−γz)

]
, (17)

Bgy = − 8µ0 Mo

κlt2

∞
∑

n = 1, 2, . . .
m = 1, 2, . . .

[
M1

nγ
(

1−e−γ(4lm+2lg)
) ((Sy1C1 + Sy2C2

)
eγz +

(
Sy1C3 − Sy2C2

)
e−γz)], (18)

Bgz = −
8µ0 Mo

κ2lt2

∞
∑

n = 1, 2, . . .
m = 1, 2, . . .

[
M1

nm
(

1−e−γ(4lm+2lg)
) ((Sz1C1 + Sz2C2)eγz − (Sz1C3 − Sz2C2)e−γz)

]
, (19)

where C1 = e−γ(5lm+2lg) − e−γ(3lm+2lg), C2 = e−γ(3lm+lg) − e−γ(lm+lg) and C3 = eγlm − e−γlm . M1, Sx1,
Sx2, Sy1, Sy2, Sz1 and Sz2 are given by:

M1 = −[(cos(κn(ld + wm))− (cos(κnld)))× (cos(κm(ld + wm))− (cos(κmld)))], (20)

Sx1 = cos(κn(x± ∆x)) sin(κm(y± ∆y)), Sx2 = cos(κnx) sin(κmy), (21)

Sy1 = sin(κn(x± ∆x)) cos(κm(y± ∆y)), Sy2 = sin(κnx) cos(κmy), (22)

Sz1 = sin(κn(x± ∆x)) sin(κm(y± ∆y)), Sz2 = sin(κnx) sin(κmy). (23)

When the cars are misaligned with respect to each other, the attractive planar force tends to realign
them and it can act through the x or y-axis or any other direction on the plane, if the displacement

occurs in the x or y coordinates or in both. The equations for the attractive planar force
⇀
F dp that tend

to keep the cars magnetically coupled were obtained by means of the Maxwell Stress Tensor [8,9].
The planar force has x and y-components and can be computed from [8]:

⇀
F dp = Fdpx

⇀
i + Fdpy

⇀
j

⇀
F dp = 1

2µo

 lt
2∫

0

lt∫
0

〈
Bgx Bgz

〉
xydx dy

⇀
i +

lt
2∫

0

lt∫
0

〈
Bgy Bgz

〉
xy

dxdy
⇀
j

 (24)

Fdpx =
l2
t

8µ0

∞

∑
n = 1, 2, ..
m = 1, 2, .

A1 A3[(B1B4 − B2B3) sin(κn(±∆x)) cos(κm(±∆y))], (25)

Fdpy
=

l2
t

8µ0

∞

∑
n = 1, 2, ..
m = 1, 2, .

A2 A3[(B1B4 − B2B3) cos(κn(±∆x)) sin(κm(±∆y))], (26)
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where A1 = −8 µo Mo M1
alt2κγm

, A2 = −8 µo Mo M1
alt2κγn

, A3 = −8 µo Mo M1

a(ltκ)
2nm

, a = 1− e−γ(4lm+2lg)

B1 = C1eγlm + C3e−γlm , B2 = C2

(
eγlm − e−γlm

)
, B3 = C1eγlm − C3e−γlm and B4 = C2

(
eγlm + e−γlm

)
C1 = e−γ(5lm+2lg) − e−γ(3lm+2lg), C2 = e−γ(3lm+lg) − e−γ(lm+lg) and C3 = eγlm − e−γlm [8].

2.1.6. Displacement between the Mover and an Excited Phase

In Figure 5a, an excited phase of the x-winding is aligned with relation to the magnetic flux density
produced by the PM’s. In this situation, the x-component of the propulsion force vector presents the
higher value for a given current. When there is a displacement between the PMs and an excited phase,
as shown in Figure 5b, the propulsion force is smaller since the displacement is force. Ideally, when
the displacement is higher than 2ld, the propulsion force will be produced in the inverse direction in
relation to that produced when the displacement assumes values between 0 and 2ld. Consequently,
if the mover must develop a continuous movement in one direction, coils must be excited sequentially,
according to the position and speed of the mover, to produce movement and avoid the inversion of the
direction of the force.
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Figure 5. (a) Excited coil of the x-winding centralized with relation to the magnetic flux density
produced by the PM’s; (b) displacement ∆dx between the PM’s and the excited coil.

In Figure 5b, the magnetic flux density of the PMs has a displacement ∆dx along the x-axis with a
relationship to the excited coil. Taking into account displacements along the x- and the y-axis, ∆dx and

∆dy, the equation of the planar propulsion force,
⇀
F Pd, produced on the mover can be obtained from

the Laplace’s force and is computed from:

⇀
F Pd = −2

 l
2∫

lc

lt
8∫

0

ld+wm∫
ld

(
Joy

⇀
j × Bgz

⇀
k
)

dv

+

 lw∫
l
2

ld+wm∫
ld

lt
8∫

0

(
Jox

⇀
i × Bgz

⇀
k
)

dv



⇀
F Pd =

∞
∑

n = 1, 3, . . .
m = 1, 3, . . .



16µ0 Mo M1

κ4(nmlt)
2γa
×

[
−Joy [cos(κn(ld + wm − ∆dx))− cos(κn(ld − ∆dx))][cos(κm(lt/8))− 1]×[
k3

(
eγl/2 − eγ((l/2)−lb)

)
+ k4

(
e−γl/2 − e−γ((l/2)−lb)

)] ]
⇀
i

+

[
Jox [cos(κn(lt/8))− 1]

[
cos
(
κm
(
ld + wm − ∆dy

))
− cos

(
κm
(
ld − ∆dy

))]
×[

k3

(
eγ((l/2)+lb) − eγl/2

)
+ k4

(
e−γ((l/2)+lb) − e−γl/2

)] ]
⇀
j




. (27)

When there is a displacement between the mover and an excited phase, a normal force is also
present due to the interaction between the current and the magnetic field produced by PMs. The effect
of this force is quite different of that one analyzed in Section 2.1.4. The direction of normal force that
acts on the mover depends on the direction of the current in the excited phase. It can act on the mover
in the positive or negative direction of z-axis. When the displacement between the mover and an
excited phase is zero, this kind of normal force is ideally zero. This is the reason why in Section 2.1.2,
only the propulsion force was presented. The normal force is obtained from:
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⇀
F Pd = −2

 l
2∫

lc

lt
8∫

0

ld+wm∫
ld

(
Joy

⇀
j × Bgx

⇀
i
)

dv

+

 lw∫
l
2

ld+wm∫
ld

lt
8∫

0

(
Jox

⇀
i × Bgy

⇀
j
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

. (28)

2.2. Tests of the Planar Actuator

The planar actuator was tested in order to compare its behavior with the results from the analysis.
A test rig was designed. Measurements of magnetic flux density were carried out in the air-gap
between the cars using a Gauss meter. For the tests, two cases were taken into account: measurement
with no current in the armature phases; then with 3.0 A applied to phases located in between the
permanent magnets. The results for the driving current were obtained by means of a digital ammeter.
To guarantee correct correlation between magnetic flux density and current, a data acquisition system
controlled by catman®Easy data acquisition software was employed providing good accuracy and
correct triggering of the instruments. Figure 6a shows the set up for measuring the magnetic flux
density and Figure 6b, a photograph with details of the process of measurement. A plastic template
was employed to allow accurate placement of the Hall Effect probe on the coordinates defined for
measurement of the magnetic flux density. The forces that act over the mover also depend on the
distribution of flux density in the air-gap and that distribution is determined by the permanent magnet
operation points and by the armature reaction.
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2.2. Tests of the Planar Actuator 

The planar actuator was tested in order to compare its behavior with the results from the 
analysis. A test rig was designed. Measurements of magnetic flux density were carried out in the 
air-gap between the cars using a Gauss meter. For the tests, two cases were taken into account: 
measurement with no current in the armature phases; then with 3.0 A applied to phases located in 
between the permanent magnets. The results for the driving current were obtained by means of a 
digital ammeter. To guarantee correct correlation between magnetic flux density and current, a data 
acquisition system controlled by catman®Easy data acquisition software was employed providing 
good accuracy and correct triggering of the instruments. Figure 6a shows the set up for measuring 
the magnetic flux density and Figure 6b, a photograph with details of the process of measurement. A 
plastic template was employed to allow accurate placement of the Hall Effect probe on the 
coordinates defined for measurement of the magnetic flux density. The forces that act over the 
mover also depend on the distribution of flux density in the air-gap and that distribution is 
determined by the permanent magnet operation points and by the armature reaction. 

 
 

(a) (b) 

Figure 6. (a) Set-up for measurement of the z-component of the magnetic flux density vector; (b) 
details of the process of measurement. 

Figure 6. (a) Set-up for measurement of the z-component of the magnetic flux density vector; (b) details
of the process of measurement.

Measurements of the propulsion planar and normal forces under static conditions and of the
attractive forces produced between the cars when they are misaligned, were taken using load cells [8].
Figure 7a presents the set-up for measurement of the static propulsion force that acts on the mover
when the cars are aligned. As shown, each load cell is aligned horizontally with one car and is attached
to it. Two load cells are presented in the picture with the aim of showing how each component of
propulsion planar force is measured. However, each component can be measured using only one load
cell at a time, according to Figure 7b that presents a photograph related to Figure 7a. In the last two
figures, the polar surfaces of the four permanent magnets are aligned with one coil of each winding.
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When the x-coil is fed by current, a propulsion force tends to push the car through the x-axis. Hence,
the mover applies a compressive force upon an S-type load cell. The rated capacity of the latter is 5 kgf.
The output terminals of the load cell are connected to a signal conditioner. An ammeter measures the
current in each coil. The output terminals of both instruments are connected to a computer. Again,
catman®Easy data acquisition software was employed. For measurement of the total propulsion force
that acts when one phase of each winding is fed by current, the load cell was positioned with its axis
diagonally forming an angle of 45◦ with x-axis and y-axis, according to what is showed in Figure 7c [8].
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set-up of measurement of the resulting propulsion planar force when x and y-coils are fed by the 
same current simultaneously [8]. 

Figure 7. (a) Set-up for propulsion planar force; (b) photograph of the set-up with one load cell;
(c) set-up of measurement of the resulting propulsion planar force when x and y-coils are fed by the
same current simultaneously [8].

The same set-up shown in Figure 7a can be used to measure the propulsion force when there is a
displacement between the mover and an excited phase.

For measurement of the normal force, Figure 8a, the load cell is aligned vertically between the
upper car and a metallic plate rigidly attached to the suspension structure. Therefore, the car cannot
develop movement during the tests. The S-type load cell is subjected to a traction force through the
z-axis due to the attractive force between the permanent magnets of Cars 1 and 2. The rated capacity
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of that load cell is 30 kgf. In both tests, measurements of propulsion and normal force were carried out
within a current range from 0 to 3 A [8]. Figure 8b shows a photograph of the set-up for measurement
of the normal force.
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The stall force is measured by means of an S-type load cell attached to the upper car and aligned 
horizontally with it through the x-axis. Linear displacements through the x-axis are applied to the 
lower car with respect to the upper car and the resulting values of force that act on the upper car are 
measured by means of the load cell. Figure 9a presents the set-up of measurement of the linear 
decoupling force and, in Figure 9b, the respective photograph. In Figure 9b, Cars 1 and 2 are 

Figure 8. (a) Set-up for measurement of normal force; (b) photograph of the set-up.

The stall force is measured by means of an S-type load cell attached to the upper car and aligned
horizontally with it through the x-axis. Linear displacements through the x-axis are applied to the lower
car with respect to the upper car and the resulting values of force that act on the upper car are measured
by means of the load cell. Figure 9a presents the set-up of measurement of the linear decoupling
force and, in Figure 9b, the respective photograph. In Figure 9b, Cars 1 and 2 are misaligned, the
displacement between them is equal to 12.5 mm and the armature windings are removed.
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3. Results 

Figure 10 shows the graph of the z-component of the magnetic flux density in the air-gap as 
measured on points of the plane z = 20 mm along the diagonal line when current in the phases is zero 
and the cars are aligned. Analytical results were obtained by means of (4). The horizontal axis of the 
graph represents the diagonal position in x and y-coordinates at each point, taken from position 0. 

Figure 9. (a) Set-up of measurement of the linear stall force; (b) in the photograph, Cars 1 and 2 are
misaligned accordingly [8].

3. Results

Figure 10 shows the graph of the z-component of the magnetic flux density in the air-gap as
measured on points of the plane z = 20 mm along the diagonal line when current in the phases is zero
and the cars are aligned. Analytical results were obtained by means of (4). The horizontal axis of the
graph represents the diagonal position in x and y-coordinates at each point, taken from position 0.
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how the components of the vector acts when different displacements are applied to one car in 
relation to the other. Figure 12a–d present the graphs of the z-component of the magnetic flux 
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mm and 40 mm, respectively. All graphs were calculated for points on the plane z = 16 mm and with 
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of the magnetic flux density were taken. The analytical values of the z-component of magnetic flux 
density vector are calculated using (19). At the side of each graph, the picture shows the magnetic 
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Figure 10. Z-component of magnetic flux density in the air-gap vs. the diagonal line when current in
the phases is zero. The red lines in the actuator figures indicate the planes where values were taken.

Figure 11a shows a 3D plot of the distribution of the z-component of the magnetic flux density
vector measured in the air-gap on the plane z = 9.5 mm with zero current in the armature phases
when the cars are aligned. Figure 11b presents the same plotting when an x-phase located between the
permanent magnets of Cars 1 and 2 is fed by a current of 3 A.
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Figure 11. 3D plotting of the z-component of the magnetic flux density: (a) with null current in the
armature phases; (b) one x-phase is fed by a current of 3 A.

The theoretical study of behavior of the magnetic flux density vector gave understanding of how
the components of the vector acts when different displacements are applied to one car in relation to
the other. Figure 12a–d present the graphs of the z-component of the magnetic flux density vector in
the air-gap as a function of the distance for displacements equal to 0 mm, 20 mm, 30 mm and 40 mm,
respectively. All graphs were calculated for points on the plane z = 16 mm and with zero current in
the phases. The red lines in the actuator figures indicate the planes where the values of the magnetic
flux density were taken. The analytical values of the z-component of magnetic flux density vector are
calculated using (19). At the side of each graph, the picture shows the magnetic flux lines.
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density vector on the plane z = 20 mm related to Figure 10. Table 2 shows the same quantity related 
to the graphs of Figure 12 as function of that displacement between the cars. Positive and negative 
peak values of Bgz are presented for the same displacement. 

Figure 12. Graphs of the z-component of the magnetic flux density vector in the air-gap as a function
of displacements between the cars and equal to: (a) 0 mm; (b) 20 mm; (c) 30 mm; and (d) 40 mm with
null current in the phases.

Table 1 presents the measured and theoretical values of the z-component of the magnetic flux
density vector on the plane z = 20 mm related to Figure 10. Table 2 shows the same quantity related to
the graphs of Figure 12 as function of that displacement between the cars. Positive and negative peak
values of Bgz are presented for the same displacement.



Sensors 2018, 18, 3526 18 of 23

Table 1. Measured and theoretical values of the z-component of the magnetic flux density vector on
the plane z = 20 mm related to Figure 10.

Z-Component of the Magnetic Flux Density Vector

Average Value (T) Difference (%) Peak Value (T) Difference (%)

Measured 0.13 - 0.30 -
Analytical 0.12 −7.69 0.30 0
Numerical 0.14 7.69 0.31 3.33

Table 2. Theoretical values of the z-component of the magnetic flux density vector at plane z = 16 mm,
shown in Figure 1, in between Cars 1 and 2, as a function of the displacement between Cars 1 and 2.

Displacement (mm)
Peak Values

Bgz (T) −Bgz (T)

Analytical

0 0.33 −0.33
20 0.26 −0.26
30 0.22 −0.23
40 0.17 −0.23

Numerical

0 0.35 −0.35
20 0.28 −0.28
30 0.21 −0.23
40 0.11 −0.14

Figure 13 shows the graph of the measured static propulsion force when only the x-phase located
in between the permanent magnets of Cars 1 and 2 are fed with current. Figure 14 shows the respective
normal force. In both graphs, numerical and analytical values are also presented. Numerical values
were obtained by means of the 3D finite element model. Analytical results were calculated using
(7) and (15), respectively. Table 3 shows a comparison between the theoretical and measured results of
the normal force and of the average sensitivity calculated for the propulsion force.

Table 3. Theoretical and measured results of propulsion and normal forces.

Propulsion Force Normal Force

Sensitivity
(N/A)

Difference
(%) I = 0 Difference

(%) I = 3 A Difference
(%)

Measured 4.48 - 34.9 - 37.9 -
Analytical 4.31 −3.79 34.3 −1.72 34.5 −8.97
Numerical 4.78 6.70 37.8 8.31 37.9 0
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Measured 20 17.26  
Analytical 22 18.15 5.16 
Numerical 25 18.78 8.81 

Figure 14. Normal force vs. current in the x-phase located in between the permanent magnets of Cars
1 and 2.

Figure 15 presents the results from tests of the linear force when the cars are misaligned from
each other. Values of the linear force that acts through the x-axis to align the permanent magnets of
the Cars 1 and 2 are presented as a function of the displacement between both cars through the x-axis.
Analytical and numerical results are presented. The analytical results are calculated using (25). Table 4
shows the results of the linear force related to Figure 15.
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Figure 15. Stall force that acts through the x-axis to align Cars 1 and 2 as function of the displacement
between them.

Table 4. Theoretical and measured results of the maximum linear force that acts through the x-axis to
align Cars 1 and 2 as function of the displacement between them.

Displacement (mm) Maximum Linear Force (N) Difference (%)

Measured 20 17.26
Analytical 22 18.15 5.16
Numerical 25 18.78 8.81

The behavior of the x-component of the propulsion force is presented in Figure 16. This acts on
the mover when there is a displacement through the x-axis between the mover and a phase current of
3 A. The theoretical values are also shown. The analytical results were obtained from (27).
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4. Discussion and Conclusions

With the analysis and measurement of the magnetic flux density vector in the air-gap, it is possible
to predict and understand the behavior of the electromagnetic forces. When both cars of the mover
are aligned to each other, the magnetic flux density vector has a symmetric distribution in the air-gap
when the windings are not fed by current. At plane z = 20 mm, the average measured z-component
of Bgz is 0.13 T and the respective peak value 0.30 T. The difference between the average measured
and average analytical values of Bgz and between the average measured and average numerical values
is 7.69 %. There is no significant difference between measured and numerical peak values of Bgz; the
difference between the measured and analytical peak values is 3.33%. Hence, understood that these
results can be considered in good agreement and, as such, they validate the analytical and numerical
models. When the armature phase windings are excited, a non-uniform distribution of the magnetic
flux density is observed, this is due to armature reaction.

The magnetic field produced by the armature winding currents is smaller when compared to the
one produced by the permanent magnets, due to the long air-gap, that is, 24 mm and the maximum
allowable value of the current, that is, 3 A. From the measured results shown in Figure 11, it is possible
to observe the effect of the magnetic field produced by the armature windings on the distribution of
the magnetic flux density in the air-gap. In Figure 11a, with no current in the armature phases, the
distribution of the magnetic flux density in the air-gap is produced only by the permanent magnets
on the mover and presents a symmetrical behavior with relation to the central line of the permanent
magnets. The z-component of the magnetic flux density vector in the air-gap is equal to zero at x = 0
and y = 0 for any z-coordinate. When a phase located between the permanent magnets of Cars 1 and
2 is fed by current, the z-component of its magnetic flux density vector changes with relation to the
z-component of the magnetic flux density vector produced by the permanent magnets. The resulting
z-component in the air-gap does not have a symmetrical distribution with respect the central line of
the permanent magnets; additionally, it presents a value different of zero at x = 0 and y = 0 for any
z-coordinate within the air-gap. The distortion of the magnetic flux lines could provoke the magnetic
saturation of one side of the ferromagnetic material of the back irons. However, due to the large air-gap
and the rated value of the current, the magnetic field produced by the armature reaction is not enough
to produce magnetic saturation in the ferromagnetic material of the actuator.

On the plane z = 9.5 mm, the value of Bgz measured at a point that corresponds to the magnetic
axis of the permanent magnets is 0.48 T when the current in a phase located between the permanent
magnets of Cars 1 and 2 is 3 A. With no current, Bgz is measured at the same point and is 0.47 T.
For a diagonal line at plane z = 9.5 mm, which similar to the line in Figure 10, the average measured
value of Bgz is 0.19 T with no winding current and 0.18 T when the current in a x-phase located
in between the cars is 3 A. For the same plane, numerical and analytical results of Bgz gave good
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agreement in relation to the measured results: the differences are 5.84% and 5.41% for the average of
analytical values, with 0 and 3 A current, respectively. With respect to the average numerical results,
the differences are 1.05% and 11.19%, for the same values of current.

When the cars are aligned, the measured sensitivity of the propulsion planar force, with only the
x-phase fed by current, is 4.48 N/A. For a 3-A current, the propulsion planar force that acts on the
mover through an axis is 13.44 N. As shown in Table 3, the theoretical and measured results show
good agreement with each other. These results also validate the analytical and numerical models for
propulsion force calculation. The same can be said for the normal force, since numerical and analytical
results present differences smaller than 10%. The measured values of normal force are equal to 34.9 N
(I = 0) and 37.9 N (I = 3 A) when there is only an x-phase current. The mechanical support, provided
by a set of linear guides and bearings was designed using the total attractive normal force that acts
between the cars when phases of x and y-windings are excited.

The misalignment between the cars causes a non-uniform distribution of the magnetic flux density
in the air-gap. This can be verified in Table 2; the longer the displacement between the cars, the higher
the difference between the positive and negative peaks of Bgz. In Figure 12b–d, it is possible to observe
the significant distortion of the magnetic flux lines in the air-gap due to the displacement between the
cars. In Figure 15, the x-component of the linear force that tends to align the cars is presented as a
function of the displacement. The maximum measured value of this force is equal to 17.26 N when
the displacement is equal to 20 mm. From this result, it is possible to conclude that the linear force
necessary to produce the magnetic decoupling between the cars must be higher than 17.26 N. It can
also be concluded that the propulsion planar force produced when only one phase winding is excited
is not sufficient to cause a misalignment of the cars with respect to each other. The propulsion force
produced, when a phase is fed by 3 A, is equal to 13.44 N. When both windings, x and y, are fed with
3 A, the resulting propulsion force in a diagonal line over the plane is equal to 19 N and the maximum
linear force that tends to keep the cars coupled is equal to 24.41 N.

Figure 16 shows the behavior of the propulsion planar force as a function of the displacement
between the mover and an excited phase for a current of 3 A. As expected, the force tends to zero,
when the displacement tends to 25 mm. A displacement that is higher than this value causes the
inversion of the direction of the force.

The numerical analysis and the analytical model are good tools for simulating the static behavior
of the planar actuator with respect to the magnetic flux density and the forces that act on the cars.
The theoretical results show good agreement with the measurements. According to what was reached
in the results for the magnetic flux density, the analytical and the numerical models produced results
with some perceptual differences between them and with relation to the measured values. In Table 1,
the analytical and measured peak values of the z-component of the magnetic flux density vector are
similar, while the numerical value is 3.33% higher than the measured one. In the same table, analytical
and numerical average values of Bgz present a higher difference. By means of Figure 10, it is possible
to observe that theoretical and measured shapes of the distribution of the magnetic flux density are in
good agreement in the region between Cars 1 and 2. In the points out of this region, there is a slight
divergence between the shapes. Where there is a predominance of the air in the path of the magnetic
flux, the theoretical models can present results of magnetic flux density with major errors, principally
the analytical model. That effect can be seen in Figure 12. The longer the displacement between the
cars, the bigger the differences in the numerical and analytical shapes of the distribution of magnetic
flux density, because the path of the magnetic flux involves a higher quantity of air. That characteristic
can have influence on the measurement of forces, since they depend on the distribution of the magnetic
flux density produced by the permanent magnets and by the current in the windings, mainly in the
analysis of the stall force. In Figure 15, the difference in the results of the stall force is higher with
the increasing displacement of the cars since the analytical model depends on a more widespread
magnetic path through the air that can be troublesome to set. In general terms, the results present a
good agreement and are adequate to aid the analysis, the design and the operation the planar actuator.
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Appendix A

Table A1 presents the main characteristics of the double-sided moving-PM-type planar actuator
based on orthogonal planar windings [8].

Table A1. Characteristics of the planar actuator [8].

Item Feature

air-gap length, lg
winding number

24 mm
2 (x- and y-windings)

number of phases per winding 6

number of coils per phase 1

number of turns per phase 280

coil width, lb 4 mm

armature area 150 (L) × 150 (W) mm

coil resistance 26.6 Ω

rated current 3 A

back iron material SAE 1045 Steel

pole pitch 50 mm

PM number 4

PM material NdFeB

PM dimensions 25 (wm) × 25 (wm) × 8 (lm) mm

PM remanence 1.19 T

PM intrinsic coercitivity 1018 kA/m

PM normal coercitivity 883 kA/m

distance on xy-plane between two permanent magnets of the
same car through x and y-axes, 2ld

25 mm

distance along z-direction between the two back irons, l 40 mm

distance along z-direction between the back iron of Car 1 and
the x-winding, lc

16 mm

distance along z-direction between the back iron of Car 1 and
the y-winding, lw − lb

20 mm

References

1. Arora, N.M.; Khan, U.; Petit, L.; Prelle, C. A planar electromagnetic actuator based on two layer coil assembly
for micro applications. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Besancon, France, 8–11 July 2014.



Sensors 2018, 18, 3526 23 of 23

2. Boeij, J.; Lomonova, E.; Vandenput, A. Modeling ironless permanent-magnet planar actuator structures.
IEEE Trans. Magn. 2006, 42, 2009–2016. [CrossRef]

3. Jansen, J.W.; Smeets, J.P.C.; Overboom, T.T.; Rovers, J.M.; Lomonova, E.A. Overview of analytical models for
the design of linear and planar motors. IEEE Trans. Magn. 2014, 50, 8206207. [CrossRef]

4. Allag, H.; Yonnet, J.-P.; Latreche, M. 3D analytical calculation of forces between linear halbach-type
permanent-magnet arrays. In Proceedings of the 8th International Symposium on Advanced Electromechanical
Motion Systems & Electric Drives Joint Symposium (ELECTROMOTION), Lille, France, 1–3 July 2009.

5. Silveira, M.A.; Marques, L.D.; Flores Filho, A.F.; Treviso, F. Development of an analytical method to predict
the behaviour of the magnetic field in PM linear motors with Halbach array. J. Microw. Optoelectron.
Electromagn. Appl. 2017, 1, 132–153. [CrossRef]

6. Eckert, P.R.; Flores Filho, A.F.; Perondi, E.; Ferri, J.; Goltz, E. Design methodology of a dual-Halbach array
linear actuator with thermal-electromagnetic coupling. Sensors 2016, 16, 360. [CrossRef] [PubMed]

7. Treviso, F.; da Silveira, M.A.; Flores Filho, A.F.; Dorrel, D.G. Theoretical and Experimental Analysis of
an Induction Planar Actuator with Different Secondaries—A Planar Driver Application for Metallic Surface
Inspection. Sensors 2016, 16, 407. [CrossRef] [PubMed]

8. Susin, M.; da Silveira, M.A.; Flores Filho, A.F.; Dorrell, D.G. Modeling, Design and Testing of a Planar
Actuator with an Ironless Armature and Orthogonal Windings. In Proceedings of the 18th International
Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Lodz,
Poland, 14–16 September 2017.

9. Trumper, D.L.; Williams, M.E.; Nguyen, T.H. Magnet Arrays for Synchronous Machines. In Proceedings of
the IEEE Industry Applications Society 28th Annual Meeting, Toronto, ON, Canada, 2–8 October 1993.

10. Melcher, J.R. Continuum Electromechanics, 1st ed.; MIT Press: Cambridge, MA, USA, 1981; Volume 1,
ISBN 0-262-13165-X.

11. Binns, K.J.; Lawrenson, P.J.; Trowbridge, C.W. The Analytical and Numerical Solution of Electric and Magnetic
Fields, 1st ed.; John Wiley & Sons: West Sussex, UK, 1992; ISBN 0-471-92460.

12. Gieras, J.F.; Jacek Mews, J.; Splawski, P. Analytical calculation of electrodynamic levitation forces in
a special-purpose linear induction motor. IEEE Trans. Ind. Appl. 2012, 48, 106–116. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMAG.2006.877712
http://dx.doi.org/10.1109/TMAG.2014.2328556
http://dx.doi.org/10.1590/2179-10742017v16i1878
http://dx.doi.org/10.3390/s16030360
http://www.ncbi.nlm.nih.gov/pubmed/26978370
http://dx.doi.org/10.3390/s16030407
http://www.ncbi.nlm.nih.gov/pubmed/27007377
http://dx.doi.org/10.1109/TIA.2011.2175881
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Analytical Study of the Planar Actuator 
	Magnetic Field Produced by Permanent Magnets 
	The Equation of the Planar Propulsion Force 
	Magnetic Field Produced by Current in the Phases 
	The Equation of the Normal Force 
	Decoupling Forces 
	Displacement between the Mover and an Excited Phase 

	Tests of the Planar Actuator 

	Results 
	Discussion and Conclusions 
	
	References

