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Abstract: Sparse representation (SR) has been verified to be an effective tool for pattern recognition.
Considering the multiplicative speckle noise in synthetic aperture radar (SAR) images, a product
sparse representation (PSR) algorithm is proposed to achieve SAR target configuration recognition.
To extract the essential characteristics of SAR images, the product model is utilized to describe
SAR images. The advantages of sparse representation and the product model are combined to
realize a more accurate sparse representation of the SAR image. Moreover, in order to weaken the
influences of the speckle noise on recognition, the speckle noise of SAR images is modeled by the
Gamma distribution, and the sparse vector of the SAR image is obtained from q statistical standpoint.
Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR)
database. The experimental results validate the effectiveness and robustness of the proposed
algorithm, which can achieve higher recognition rates than some of the state-of-the-art algorithms
under different circumstances.

Keywords: synthetic aperture radar (SAR); sparse representation (SR); product model; target
configuration recognition

1. Introduction

As one of the most popular application areas of synthetic aperture radar (SAR), SAR target
recognition has been deeply exploited due to its great importance in both civil and military areas.

SAR target recognition algorithms have been extensively studied in recent years [1–3].
The algorithms can be generally categorized into template-based ones and model-based ones [4].
Template-based algorithms [5,6] are relatively easy to comprehend, but they require a huge storage
space. Besides, the computation burden is heavy, especially when the size of the training sample
is large.

Owing to the multiple advantages like low storage and computation requirement, robustness to
noisy conditions, various model-based algorithms have been proposed for SAR target recognition.
Some model-based algorithms construct physical models of the targets (e.g., the scattering center
model [7,8], the attributed scattering center (ASC) model [9,10], and the high range resolution profile
(HRRP) [11,12]) which can achieve satisfying recognition results, but they heavily depend on the
accuracy of the construction of the target models. Besides, some of these algorithms need to estimate
the aspect angle of the target first, which is hard to realize [13]. Some other model-based algorithms
utilizing effective features of the target to realize target recognition, such as the geometrical properties
(e.g., the shadow of the target [14], the length of the target [15], the contour of the target [16]) and the
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mathematical features (e.g., the non-negative matrix factorization (NMF) [17], the complex wavelet
transform [18], the Krawtchouk moments [19], the Zernike moments [4], the scale invariant feature
transform (SIFT) feature [20]) have also been proposed. However, these algorithms heavily depend on
the effectiveness of feature extraction.

Deep learning algorithms [21–24] have been popular nowadays, and they have achieved exciting
recognition results [22–24]. However, not only is the parameter estimation of these algorithms complex,
but the computation complexity is heavy as well. Moreover, these algorithms usually suffer from local
minimum and overfitting problems [25,26].

Due to the natural discriminative power, sparse representation (SR) has been widely used
in pattern recognition fields [27–29]. Lots of SR-based algorithms have been proposed for SAR
target recognition ever since its first successful application to recognize targets in SAR images by
J. Thiagarajan, et al. [30]. Making use of the multi-view SAR images, a joint SR (JSR) algorithm has
been proposed by Zhang et al. [31], based on which some modified algorithms have subsequently
emerged [32,33]. A series of SR-based SAR target recognition algorithms have been presented utilizing
the monogenic feature of SAR images by Dong et al. [34–36]. Pan et al. proposed a reweighted sparse
representation algorithm to achieve airplane recognition in SAR images [37]. Recently, algorithms
combining other powerful techniques with SR have attracted increasing interest, such as the support
vector machine [38], the statistical model [39], the label information [40], and so on.

For SR-based recognition algorithms, a key point is to obtain the sparse vector of the SAR image.
In many presented SAR target recognition algorithms, the sparse vector is usually calculated through
convex optimization [34,36,41,42] or in a greedy way [30,31,38,39] just as the algorithms suitable for
the optical images based recognition [28,29]. However, different from the noise in optical images,
the speckle noise in SAR images is neither Gaussian nor additive [43]. Due to the coherent imaging
mechanism of SAR, the speckle noise in SAR images is multiplicative [44–47]. As a result, the product
model has been widely used to describe SAR images. Quite a few product model distributions
have been proposed in different application fields to improve the performance of the algorithms [46].
Motivated by these algorithms, in this paper, we describe SAR images by the product model to better
realize SAR target configuration recognition. For the distribution of the speckle component, the Gamma
distribution has been widely studied, and it can describe the essential characteristics of SAR images
very well [44–48]. So as to describe SAR images in a more accurate way and obtain the essential
characteristics of SAR images, in this paper, we describe SAR images by the product model [44–46]
and try to solve the sparse vectors from a statistical standpoint. The speckle noise of SAR images
is modeled by the Gamma distribution [44–48]. Fusing the advantages into SR, the discriminative
power can be further enhanced. A more accurate description of the SAR image will lead to better
recognition results.

Different from the traditional target recognition algorithms, which focus on the classification of
different types, the proposed algorithm tries to challenge a more severe case—target configuration
recognition. The configuration of a target indicates the tiny differences among the same target type (for
instance, the same target with/without machine guns or fuel barrels). Configuration recognition is of
crucial importance in fields which need detailed information capture of the targets, such as battlefield
interpretation, reconnaissance, and precise attacking [39,40].

This paper is organized as follows. In Section 2, the proposed product sparse representation (PSR)
algorithm is discussed in detail. In Section 3, the effectiveness and robustness of the proposed PSR
algorithm are tested on several target recognition experiments using the moving and stationary target
acquisition and recognition (MSTAR) database. In Section 4, some conclusions are drawn finally.
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2. Product Sparse Representation (PSR) for SAR Target Configuration Recognition

As is known, SAR images suffer from speckles due to the imaging mechanism of SAR.
Additionally, SAR images can be properly described by the product model. That is to say, for a
given sample y (SAR image after dimensionality reduction), we have [44–46]

y = R ◦ ε (1)

where R is the radar cross section (RCS) coefficients of the clutter, ε is the speckle components of the
SAR image, and the symbol “◦” represents the element multiplication. SAR images can be better
described by using the product model in theory [44–46].

SR has been proved to be powerful in pattern recognition fields including SAR target
recognition [27–40]. Considering the advantages of SR and the product model, we try to combine them
together to get a more accurate sparse description of the SAR image in this paper. The main idea of the
proposed method is to describe the SAR images as accurate as possible from a statistical standpoint,
and then to enhance the robustness to the speckle in SAR images.

Firstly, we divide the dictionary D consists of all the training samples containing various targets
into separated ones. Di(i = 1, 2, . . . , S) represents the ith dictionary whose samples all belong to
configuration i, S is the total number of target classes, and the total number of the samples is Ni.
Defining Ri = Diαi, αi is the corresponding sparse vector of the testing sample under dictionary Di,
Equation (1) can be rewritten as

y = Diαi ◦ εi (2)

where εi represents the speckle of the SAR image corresponding to Di.
Similar to all the SR-based recognition algorithms, the key point of the proposed algorithm

is to solve the sparse vector of the testing sample accurately. Different from the traditional
algorithms [30,31,34,36,38,39] in which the sparse vector is obtained by using the convex optimization
algorithms or in a greedy way, we try to get the representation from the statistical view to better
describe the SAR image and to enhance the robustness of the proposed algorithm to speckle. To realize
accurate SAR target configuration recognition, we expect the obtained αi can give a precise description
of the testing sample. From the statistical view, we would like to get the most probable sparse vector
of the testing sample. The objective function can be written as

Ji = argmax
αi

p(αi|y) (3)

Using the Bayesian rule, we have

Ji = argmax
αi

p(y|αi)p(αi) (4)

What follows is to model the likelihood function p(y|αi) and the prior function p(αi), respectively.
From Equation (2), we can tell that p(y|αi) shares the same distribution with the speckle. There are

several models that can be employed to describe the speckle component, among which the Gamma
distribution [44–48] has been widely used. In view of statistics, the speckle component n of the SAR
image can be given by [44–47]

P(n) =
ll

Γ(l)
· nl−1 · exp(−ln) (5)

where l is the number of looks of the SAR image, exp(·) represents the exponential function, and Γ(·)
represents the Gamma function.

Taking a d-dimensional testing sample y = [y1, y2, . . . , yd]
T as an example, the corresponding

speckle can be expressed by εi = [ni1, ni2, . . . , nid]
T , where T represents the matrix transposition.

Using Equation (1), we have yc = ric · nic, where yc is the cth element of y, nic is the cth element
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of εi (c = 1, 2, . . . , d), and Ri = Diαi = [ri1, ri2, . . . , rid]
T . Following Equation (5), p(yc|αi) can be

established as

p(yc|αi) =
ll(yc)

l−1

Γ(l)
1

(ric)
l exp

(
−l

yc

ric

)
(6)

Additionally, p(y|αi) can be given by

p(y|αi) =

[
ll

Γ(l)

]d d

∏
c=1

(yc)
l−1

(ric)
l exp

(
−

d

∑
c=1

l
yc

ric

)
(7)

Here, we have obtained the likelihood function p(y|αi). In the following, we come to deduce
the prior function p(αi). To guarantee the sparsity of αi, p(αi) is constructed by the Laplace
distribution [49].

p(αi) ∝ exp(−η‖αi‖1) (8)

where η is a constant, which can be used as a regulator.
From the objective function shown by Equation (4), we can tell that we would like p(αi) to be large

enough to obtain an accurate sparse representation of the SAR image. From Equation (8), we know that
a large p(αi) will lead to a small ‖αi‖1. Meanwhile, a small ‖αi‖1 means that most entries of αi are
close to zero. Said another way, the sparsity of the representation is guaranteed by the prior function.

Substituting Equations (7) and (8) into Equation (4), the objective function can be expressed as

Ji = argmax
αi

p(y|αi)p(αi)

∝ argmax
αi

[ln p(y|αi) + ln p(αi)]

= argmax
αi

ln
{[

ll

Γ(l)

]d d
∏

c=1

(yc)
l−1

(ric)
l exp

(
−

d
∑

c=1
l yc

ric

)}
− η‖αi‖1

∝ argmax
αi

l
[

d
∑

c=1

(
ln 1

ric
− yc

ric

)]
− η‖αi‖1

(9)

Inspecting Equation (9), we can see that the objective function consists of two terms. The first
one ensures the accurate description of the SAR image and the other one guarantees the sparsity of
the description.

As is discussed for the SR-based algorithms, the most important point is to obtain the sparse
vector of the SAR image. We can get the sparse vector of the testing sample by optimizing Equation (9).
However, it is obvious that the problem of solving Equation (9) is not convex. We can solve it by using
the multi-stage convex relaxation method presented in Reference [50].

Implementing similar processing procedures expressed by Equations (2)–(9) to all the S
dictionaries, we can get S different sparse vectors. For all the S vectors, each one will give its
description to the testing sample. The one that best describes the testing sample will be the recognition
result. That is to say, we will identify the label of the testing sample y by finding the minimum
reconstruction error, which can be formulated as

L(y) = argmin
i
‖y−Diαi‖2 (10)

where L(y) represents the label of y. The flow diagram of the proposed algorithm is demonstrated in
Figure 1.
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Figure 1. The flow diagram of the proposed algorithm.

3. Experimental Results and Analysis

The standard MSTAR database [39,40] is used to test the performance of the proposed algorithm.
The SAR images collected with depression angles of 17◦ and 15◦ are used as the training datasets and
testing datasets, respectively. The datasets consist of 10 different types (the BMP2-tank, BTR70-armored
car, T72-tank, BTR60-armored car, 2S1-cannon, BRDM2-truck, D7-bulldozer, T62-tank, ZIL131-truck,
and ZSU23/4-cannon) with 14 configurations. All the acronyms of the targets represent different Soviet
equipment. The BMP2-tank stands for “Boyevaya Mashina Pekhoty”, both the BTR70-armored car
and BTR60-armored car stand for ”Bronetransporter”, the T72-tank and T62-tank are a family of Soviet
main battle tanks, the 2S1-cannon stands for “2C1 Carnation”, the BRDM2-truck stands for “Boyevaya
Razvedyvatelnaya Dozornaya Mashina”, the D7-bulldozer stands for “Doobi”, the ZIL131-truck stands
for “Zavod Imeni Likhachova”, and the ZSU23/4-cannon stands for “Zenitnaya Samokhodnaya
Ustanovka”. Detailed information on the training and testing samples is given in Table 1. From Table 1,
we can see that the BMP2 tank is comprised of three different configurations, which are BMP2-9563,
BMP2-9566, and BMP2-C21, respectively. The T72 tank is also comprised of three different
configurations, which are T72-132, T72-812, and T72-S7, respectively. The size of the original SAR
image is 128 pixels × 128 pixels, and the aspect angles of the targets lie between 0◦–360◦.

Table 1. The datasets descriptions.

Training Set (17◦) Testing Set (15◦)

Target Number of Images Target Number of Images

BMP2
9563 233

BMP2
9563 195

9566 232 9566 196
C21 233 C21 196

T72
132 232

T72
132 196

812 231 812 195
S7 228 S7 191

BTR70 233 BTR70 196
BTR60 256 BTR60 195

2S1 299 2S1 274
BRDM2 298 BRDM2 274

D7 299 D7 274
T62 299 T62 273

ZIL131 299 ZIL131 274
ZSU23/4 299 ZSU23/4 274
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Firstly, a 60 pixels × 60 pixels sub-image is extracted from the center of each image. Then the
intensity of the extracted sub-image is normalized. Dimensionality reduction is realized by adopting
the independent and identically distributed Gaussian random matrix [29]. The parameter η in
Equation (8) is chosen from the set

{
10−2, 10−1, 100, 101, 102} by using the 5-fold cross-validation.

We will test the performance of the proposed algorithm by the following experiments. Firstly, we will
test its performance by type recognition just as with the existing algorithms. Then, we will further
verify the effectiveness of the proposed algorithm on configuration recognition with comparisons to
some of the state-of-the-art algorithms.

3.1. Type Recognition

3.1.1. 3-Type Recognition

In the beginning, we test the proposed algorithm on 3-type recognition [31,32,38], which include
the BMP2 tank, BTR70 armored car, and T72 tank. For the targets with more than one configurations
(BMP2 and T72), only the BMP2-9563 and T72-132 are chosen to be the training samples, and all the
3 configurations are selected to be the testing samples. The classic k nearest neighbor (k-NN) [51]
and support vector machine (SVM) [52] algorithms are used as competitors. Besides, the SR-based
algorithm [29], and some of its modifications (MSR [34], JSR [31] and the label-dependent sparse
representation (LSR) [40]) are also used to compare the performance of the proposed algorithm.
Recognition results under different algorithms are tabulated in Table 2.

As can be seen from Table 2, the SR-based algorithms perform much better than the traditional
k-NN and SVM, which verifies the advantages of sparse representation. As for the other algorithms,
MSR utilizes the monogenic signal as the feature to realize recognition. JSR makes use of multi-view
samples to improve performance. Finally, LSR achieves recognition by combining the sparse
representation and the Gaussian mixture distribution. In LSR, SAR images are described by the
additive model, and the residual error term is modeled by the Gaussian mixture distribution. As can
be seen, all the SR-based algorithms can obtain satisfying results. As for the proposed PSR, thanks
to the precise descriptions and the essential characteristics of the SAR images captured by using the
product model, the SAR images are described more accurately than by using the additive model.
Moreover, the influences of the speckle can be effectively weakened through the utilization of the
Gamma distribution. Satisfying recognition results are obtained by using the proposed algorithm.
It can get the best recognition results from all the competitors. The proposed algorithm can achieve an
average accurate recognition rate of 96.92% for 3-type recognition, which is 18.97%, 14.14%, 6.08%,
3.44%, 2.63%, and 1.17% better than the competitors. Furthermore, comparing the results of LSR and
PSR, we can see that more accurate descriptions of the SAR images lead to better recognition.

Table 2. The recognition results for the 3-type recognition.

Algorithm BMP2 BTR70 T72 Average

k-NN (%) 72.74 83.67 81.27 77.95
SVM (%) 77.17 90.31 85.91 82.78

SR (%) 85.69 94.39 94.85 90.84
MSR (%) 90.46 96.94 95.36 93.48
JSR (%) 90.97 98.47 96.22 94.29
LSR (%) 92.16 100 97.94 95.75
PSR (%) 93.87 100 98.97 96.92

3.1.2. 10-Type Recognition

What follows is to realize 10-type recognition, which is much more difficult than 3-type recognition.
Similar to the 3-type recognition, different algorithms are utilized as competitors to compare the
performance of the proposed algorithm. The BMP2-9563 and T72-132 are chosen to be the training
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samples for BMP2 and T72, respectively. All the testing samples of BMP2 and T72 demonstrated in
Table 1 are used for testing. The corresponding recognition results are given in Table 3.

Similarly, we can see that the SR-based recognition algorithms are much more powerful than
k-NN and SVM. All the SR-based algorithms can achieve the recognition rate of more than 90%.
The proposed PSR still performs the best in this experiment. It can achieve an average recognition rate
of as high as 95.54%, which is 20.58%, 14.87%, 5.37%, 3.31%, 2.56%, and 1.19% higher than k-NN, SVM,
SR, MSR, JSR, and LSR, respectively.

Table 3. The recognition results for 10-type recognition.

Algorithm BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4 Average

k-NN (%) 61.50 82.14 70.79 79.49 64.96 85.04 90.15 73.26 83.94 81.75 74.96
SVM (%) 67.63 88.27 77.32 84.62 69.71 91.97 94.89 76.56 88.32 89.42 80.67
SR (%) 80.92 96.94 89.69 94.87 86.50 92.34 97.45 91.58 92.34 93.43 90.17

MSR (%) 81.94 97.45 89.86 96.41 94.89 95.26 97.81 94.14 95.62 95.99 92.23
JSR (%) 82.62 97.45 90.03 96.92 96.72 95.62 98.54 95.97 96.35 97.08 92.98
LSR (%) 83.82 98.98 90.72 97.95 99.64 98.54 99.27 97.44 98.18 97.45 94.35
PSR (%) 85.86 100 92.61 98.97 99.64 98.91 99.64 98.53 98.91 98.91 95.54

3.2. Configuration Recognition

3.2.1. 3-Configuration Recognition

From this part, we come to discuss what we focus on most in this paper—configuration recognition.
Different from the traditional SAR target recognition algorithms [31,32,38], in which misjudging
one configuration of one type into another configuration of the same type is regarded as a right
judgment, the proposed algorithm aims to distinguish the tiny differences within the same target
type. In other words, different configurations within the same type will be regarded as different
targets in this experiment. Configuration recognition is much more challenging than type recognition.
All the training and testing samples of BMP2 and T72 demonstrated in Table 1 are utilized for BMP2
configurations and T72 configurations, respectively. Figure 2 demonstrates the optical images and the
corresponding SAR images of BMP2 configurations and T72 configurations. In Figure 2, each column
represents a certain target with different target aspect angles. Since SAR images are sensitive to target
aspect angles owing to the shadowing effects, the interaction of the signature with the environment,
the projection of a three-dimensional (3D) scene onto a slant plane, and other reasons related to
the aspect dependence of RCSs, they appear quite different with different target aspect angles [4].
Taking any target as an example, e.g., BMP2-9563 in Figure 2a, we can see that the differences of
the SAR images are very explicit along the column direction. However, we can see that differences
among different configurations with the same target aspect angle are very small (along the row
direction). In this challenging experiment, only the well performed SR-based algorithms are utilized to
realize recognition.

Recognition results under different algorithms for BMP2 configurations are displayed in Table 4
with feature dimensionalities 64, 128, 256, 512, and 1024, respectively. The corresponding recognition
results for T72 configurations are given in Table 5. As can be seen, with the increasing of the feature
dimensionality, the performance of all the algorithms gets better accordingly. This is due to the
fact that more useful information is kept by a larger feature dimensionality. From the experimental
results, we can see that all the algorithms can achieve the best recognition rates with the 1024 feature
dimensionality. The proposed PSR can achieve the average accurate recognition rate of 91.99% for
BMP2 configurations, which is 7.83%, 4.43%, 3.40%, and 1.70% better than the competitors, respectively.
As for the T72 configurations, the recognition rate of the proposed PSR is 97.94%, which is 4.98%,
4.64%, 3.44%, and 1.38% better than the competitors, respectively. The accurate recognition rates
of each target under the 1024 feature dimensionality are displayed in Tables 6 and 7 for BMP2
configurations and T72 configurations, respectively. The probability of recognition error versus feature
dimensionality for BMP2 configurations and T72 configurations under different algorithms are shown
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in Figure 3a,b, respectively. The probability of a recognition error of the proposed algorithm is the
lowest for both BMP2 configurations and T72 configurations in all the dimensionalities. As can be
seen, the performance of the T72 configurations is much better than that of BMP2 configurations
for all the given dimensionalities. This is due to the fact that the BMP2 configurations are much
more similar to each other with respect to the T72 configurations [53]. Still, we focus on the BMP2
configuration recognition which is more difficult. We can tell that from Figure 3a, only LSR and PSR
can achieve an accurate recognition rate of nearly 90% with feature dimensionality 512. Although MSR
and JSR can achieve much better performance than SR, they lose competitiveness with respect to the
statistical model based recognition algorithms. This further verifies the fact that taking the essential
characteristics of SAR images into consideration is helpful for recognition. The comparison between
LSR and PSR demonstrates that better descriptions of the SAR image and the noise component lead to
better recognition results.

To see the details of how the target is recognized, confusion matrices under different algorithms
with the 1024 feature dimensionality for BMP2 configurations and T72 configurations are shown
in Figures 4 and 5, respectively. Here, we give a brief discussion about the information shown by
these matrices. In Figures 4 and 5, the horizontal axis represents the predicted label and the vertical
axis represents the actual label. Taking BMP2 as an example, in Figure 4a, the big matrix consists of
nine small boxes, the left-top one shows that the rate of recognizing the BMP2-9563 sample into the
BMP2-9563 category (the accurate recognition rate) is 80.00%, the middle-top one shows that the rate of
recognizing the BMP2-9563 sample into the BMP2-9566 category is 6.67%, and the right-top one shows
that the rate of recognizing the BMP2-9563 sample into the BMP2-C21 category is 13.33%. We can see
that the summation of these rates is 100%. In other words, the values lay along the diagonal direction
display the accurate recognition rates under a certain algorithm. Among all the matrices obtained by
using different algorithms, the proposed one, i.e., Figure 4e, can achieve the best recognition results.Sensors 2018, 18, x FOR PEER REVIEW  9 of 16 
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Table 4. The recognition results for configurations of BMP2.

Feature Dimensionality 64 128 256 512 1024

SR (%) 37.65 62.52 76.32 82.79 84.16
MSR (%) 42.42 67.63 78.36 85.69 87.56
JSR (%) 43.44 68.82 78.88 86.37 88.59
LSR (%) 47.70 74.96 83.13 89.27 90.29
PSR (%) 48.72 76.66 84.16 89.78 91.99

Table 5. The recognition results for configurations of T72.

Feature Dimensionality 64 128 256 512 1024

SR (%) 44.85 68.56 81.44 89.69 92.96
MSR (%) 45.19 69.59 82.47 90.72 93.30
JSR (%) 45.88 70.45 82.99 91.24 94.50
LSR (%) 52.92 76.63 88.49 94.50 96.56
PSR (%) 54.30 79.04 89.69 96.39 97.94
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3.2.2. Configuration Recognition with Random Corruption

In this part, we come to test the robustness of the proposed algorithm under noisy conditions.
The SAR images are corrupted in the following way with different corruption percentages. In the
beginning, a percentage of pixels of the image are randomly picked out, and then the corresponding
positions are filled with independent and identically distributed samples which obey a uniform
distribution [29]. The experimental datasets are exactly the same as what is used in Section 3.2.1.
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The probability of a recognition error under different algorithms for BMP2 configurations is given in
Figure 6a, whereas the corresponding results for the T72 configurations are displayed in Figure 6b.
From the results, we can see that the performance of all the algorithms will deteriorate with the increase
of the corruption percentage from 0% to 15%.

Firstly, we come to see the robustness of the algorithms in the following way for both of the
datasets. We calculate the increment of the recognition error with each 5% increase of the corruption
percentage. For BMP2 configurations, the recognition error increment of SR is 4.94%, 7.84%, and 14.82%
for each 5% increase. The recognition error increment of MSR is 3.23%, 6.30%, and 9.88% for each
5% increase. The recognition error increment of JSR is 6.65%, 6.98%, and 10.73% for each 5% increase.
The recognition error increment of LSR is 0.85%, 3.07%, and 6.13% for each 5% increase. The recognition
error increment of the proposed PSR is 0.51%, 1.70%, and 5.11% for each 5% increase.

For T72 configurations, the recognition error increment of SR is 6.19%, 9.45%, and 13.92% for each
5% increase. The recognition error increment of MSR is 3.26%, 6.19%, and 7.39% for each 5% increase.
The recognition error increment of JSR is 6.70%, 7.39%, and 9.28% for each 5% increase. The recognition
error increment of LSR is 1.37%, 3.61%, and 3.95% for each 5% increase. The recognition error increment
of the proposed PSR is 0.86%, 2.58%, and 3.09% for each 5% increase.

Thanks to the accurate descriptions of SAR images, LSR and PSR can achieve much better
recognition results than the competitors. From the results, we can tell that due to the better
descriptions of the SAR images and the use of the Gamma distribution to model the speckle component,
the recognition error increments of the proposed PSR is much lower for both of the two datasets,
which further proves the robustness of the proposed PSR under noisy conditions.
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3.2.3. Recognition of Eight Different T72 Configurations

To further validate the effectiveness and advantage of the proposed algorithm, we have conducted
another challenging experiment, in which eight different T72 configurations (T72-A04, T72-A05,
T72-A07, T72-A10, T72-A32, T72-A62, T72-A63, and T72-A64) are recognized. This case is very difficult
to realize since all the T72 targets are quite similar to each other except for some tiny differences,
such as with/without spotlights, splash guard, etc. The datasets description of the eight different T72
configurations is displayed in Table 8. The same as other experiments, the samples with the depression
angle of 17◦ are used as the training samples, whereas the ones with the depression angle of 15◦ are used
as the testing ones. Corresponding recognition results under various algorithms are given in Table 9.
As can be seen, in this severe situation, the performance of all the algorithms will drop dramatically.
The algorithms deduced from the statistical view (LSR and PSR) can obtain better results than other
SR-based algorithms. From the results, we can tell that taking the characteristics of SAR images into
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account will contribute to better recognition results. As for the proposed algorithm, it still outperforms
all the competitors. Thanks to the better description of the SAR image, essential characteristics of the
samples can be obtained. Fusing the advantage into SR technique, the discriminative power has been
further enhanced. We can tell that the proposed algorithm can achieve an average recognition rate
of 86.43%, which is 5.71%, 3.84%, 2.56%, and 1.28% better than SR, MSR, JSR, and LSR, respectively.
In LSR, the SAR images are modeled by the additive model, whereas they are described by the product
model by the proposed PSR. The experimental results further demonstrate the fact that SAR images
can be better described by the product model than the additive model.

Table 8. The dataset descriptions of the eight T72 configurations.

Configuration
T72 T72 T72 T72 T72 T72 T72 T72

A04 A05 A07 A10 A32 A62 A63 A64

Testing set (17◦) 299 299 299 296 298 299 299 299
Testing set (15◦) 274 274 274 271 274 274 274 274

Table 9. The recognition results of the eight T72 configurations under different algorithms.

Algorithm
T72 T72 T72 T72 T72 T72 T72 T72

Average
A04 A05 A07 A10 A32 A62 A63 A64

SR (%) 72.26 79.20 69.71 90.41 87.59 87.23 79.93 79.56 80.72
MSR (%) 73.36 79.93 75.18 91.88 88.69 89.05 81.02 81.75 82.59
JSR (%) 74.45 80.29 77.37 92.62 89.42 90.88 82.48 83.58 83.87
LSR (%) 76.28 81.75 79.56 94.10 90.51 91.61 83.58 83.94 85.15
PSR (%) 78.83 83.21 82.12 94.46 90.88 92.34 84.31 85.40 86.43

4. Conclusions

In this paper, a PSR algorithm is proposed for SAR target configuration recognition. The SAR
images are described by the product model and the essential characteristics of SAR images can be
captured. Besides, the sparse representation and the product model are combined together, leading
to a more accurate sparse description of the SAR image. What is more, the Gamma distribution is
employed to model the speckle noise of SAR images and the sparse vector is obtained in the statistical
view, which can enhance the robustness of the proposed algorithm under noisy conditions.

The effectiveness of the proposed PSR algorithm is validated on the standard MSTAR database.
The accuracies are compared with some advanced recognition algorithms. Satisfying recognition results
are obtained. From the experimental results, we can draw the following conclusions. (1) Exploiting the
essential characteristics of SAR images and modeling them accurately will lead to exciting recognition
rates; (2) The proposed algorithm can achieve satisfying recognition rates in both SAR target type
recognition and configuration recognition; (3) The proposed algorithm is robust to noise due to the
utilization of the statistical model.

In addition, more advanced statistical models are still in research, how to fuse the advantages
into the proposed algorithm is well worth working on.

Moreover, in this paper, we view all the targets in SAR images from the MSTAR database as
targets without the consideration of false alarms. In practice, when we aim to recognize the targets
in SAR images with much more complicated backgrounds, more factors such as the correct rejection
probability should be taken into consideration, since they will highly affect the final recognition results.
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