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Abstract: Purpose: Technology of reflectance spectroscopy incorporated with auto-fluorescence
spectroscopy were employed to increase the safety of epidural placement in regional anesthesia which
is generally used for surgery, epidural anesthesia, post-operative pain control and painless childbirth.
Method: Ex vivo study of auto-fluorescence spectroscopy was performed for the para-vertebral
tissues contained fat, interspinous ligament, supraspinous ligament and ligamentumflavum by
multimode microplate reader at wavelength 405 nm for the purpose of tissue differentiation.
A specially designed optic-fiber-embedded needle was employed to incorporate with both reflectance
and autofluorescence spectroscopies in order to probe the epidural space as double assurance
demands. In vivo study was carried out in a Chinese native swine weighted about 30 kg under
intubated general anesthesia with ventilation support. The reflective (405 nm) and autofluorescence
signals (λ and λ*) were recorded at 5 different sites by an oscilloscope during the needle puncture
procedure from skin to epidural space in the back of the swine. Results: Study of either
autofluorescence spectroscopy for tissue samples or ex vivo needle puncture in porcine trunk tissues
indicates that ligmentumflavum has at least 10-fold higher fluorescence intensity than the other
tissues. In the in vivo study, ligamentumflavum shows a double-peak character for both reflectance
and autofluorescence signals. The epidural space is located right after the drop from the double-peak.
Both peaks of reflectance and fluorescence are coincident which ensures that the epidural space
is correctly detected. Conclusions: The fiber-optical technologies of double-assurance demands
for tissue discrimination during epidural needle puncture can not only provide an objective visual
information in a real-time fashion but also it can help the operator to achieve much higher success
rate in this anesthesia procedure.
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1. Introduction

Epidural block is a widely used and low-complication-rate procedure which has been applied to
many fields of anesthesia such as epidural anesthesia [1–3], postoperative analgesia [4] and painless
labor [5,6]. It has been reported as an effective clinical technique with lower morbidity and mortality [7]
and better analgesia effect as compared to other analgesia methods [8,9].

Anesthesiologists are still looking for a new convenient, real-time and reliable tool for epidural
catheter placement to replace the old technique of loss-of-resistance (LOR) which was reported with
up to 10% of procedures failure rate due to incorrect epidural space recognition and wrong catheter
placement leading to low specificity [10–12]. The study in [12] also states that “Mehta and Salmon
observed that, in 17% of cases, the needle tip (visualized by the spread of contrast) was positioned
either partially or completely outside the epidural canal.”

A two-wavelength fiber-optical method has been developed according to the characteristic
reflectance spectra of the tissues during the needle insertion in order to localize the epidural space
(ES) [13–15]. In our previous animal studies [14], based on the fiber-optical technology [13], EScan be
successfully detected according to the characters of reflectance spectra of tissues on the way of needle
puncturing. A receiver operating characteristic curve (ROC) was reported up to 0.887 (95% confidence
interval (CI) 0.8131–0.9) in terms of the optimal cutoff values for signal amplitudes of 650-nm red laser
light [14]. However, if this technology is going to be applied to clinical use, it should provide more
convincing evidence in safety aspect.

Autofluorescence is the natural emission of light by cell structures such as mitochondria and
lysosomes when they have absorbed light [16]. Collagen and elastin contribute to auto fluorescence
because of the intrinsic properties of protein with increasing amount of the amino acids tryptophan,
tyrosine and phenylalanine [17]. Double assurance is an idea to this issue if additional technology that can
also identify the particular tissue nearby the epidural space. The candidate is ligamentumflavum (LF).

We have observed in our most recent study that LF shows more autofluorescent response to
the light of shorter wavelength than the other tissues on the back (para-vertebral tissues) in swine.
Longer visible wavelengths do not display noticeable autofluorescence. As a result, in this study,
we aim at assessing the feasibility of fluorescent signal as an additional sign for ES detection in addition
to reflectance spectrum. Our hypothesis is that these optical techniques can identify and differentiate
each tissue layer alone the trajectory of epidural needles in the range of skin to epidural space and
assist epidural catheter insertion by a porcine model.

2. Materials and Methods

2.1. Study Design

This study was approved by the Institutional Animal Care and Use Committee of Taipei Veterans
General Hospital. The study was conducted in two phases- ex vivo and in vivo. We conducted the
first phase of our optical study in ex vivo porcine tissues. In the second part of our study, we applied
information from the ex vivo analysis to our anesthetized porcine model. We analyzed the optical
signal in two different applicable wavelengths in the reflective spectra. Wavelengths that provided
accurate information on the optical characteristics of the individual tissue in both the ex vivo and
in vivo phases of our studies were selected. Technical details are needed regarding the fiber optic
diameter and the needle size as well. We used a 17-gauge needle where the contained fiber optic is
with a diameter of 405 µm.

In the experiments, there was one pig of averaged 30 kg in weight for studies. The pig was
intubated after inducing general anesthesia and mechanically ventilated. In addition, the pig was
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placed in the left lateral position under the epidural needle puncturing. The needle was inserted ten
times for each of the experiments and the resulting numerical value associated with each experiment
was an average from ten-time recorded data. The conventional LOR technique was also used to
double confirm the effectiveness of the proposed technique. The placement of needle tip was also
confirmed by both ultrasound (Vivid e; GE Healthcare, London, UK) and radiography (KXO-50R;
Toshiba, Tokyo, Japan) using 5 mL of the contrast agent ioxitalamic acid. The pig was euthanized after
the procedures. We used the same probe throughout.

The studies of both phases adopted the same calibration procedure for the devices involved in
the experimental setup. All the instrumental parameters including the wavelengths, bandwidths and
detector gain were carefully set with varying degrees of repeatability as well as accuracy. The excitation
beam intensity was monitored in order to correct the measured fluorescence intensity as a result of
the light source intensity wavelength dependency and excitation wavelength selector transmittance.
Application of needle is distance traced and therefore all the obtained data were being reconstructed
for double confirmation and validation for its efficacy. The velocity of the needle placement has been
kept extremely slow to get appropriate results without the influence by needle movement related to
the fluorescence. The fluorescence can be a very good tool as the needle advancing is less affected by
blood flow.

2.2. Phase One—Ex Vivo Studies

2.2.1. Study Case 1

A piece of fresh trunk pork including vertebra (L5-L1) was purchased from butcher. It was
cut along the middle line of the back bone so that the tissue layers from skin to spinal cord
can be explicitly shown in Figure 1. Autofluorescence spectra of the dissected samples of fat,
muscle, interspinous ligament (IS), supraspinous ligament (SS) and ligamentum flavum (LF)obtained
from the pork were collected by a multimode microplate reader (Infinite 200 Pro, TECAN System,
Männedorf, Switzerland. Excitation wavelength was selected for the consequent study according to
the autofluorescence spectra of these various tissue samples in order to have the best beneficial for
tissue discrimination.
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Figure 1. A piece of fresh trunk pork including vertebra. Skin and fat layers are not shown. 

2.2.2 Study Case 2 

The way of obtaining fresh trunk pork was the same as that in the ex vivo study-1. The probing 
needle is similar to that used in our previous studies [13,14]. A schematic diagram for the 
experimental setup is shown in Figure 2. The needle used in our studies is a 17-gauge Tuohy needle 
(Arrow, Morrisville, NC, USA) containing the designed optical stylet. The optical signal from tissue 
contains wavelengths of primary excitation (λ) and autofluorescence (λ*). Both of which can be 
separated by a dichroic mirror and are further detected and amplified respectively. The light source 
was modulated by a 3-Hz clock generated by a control circuit [13]. This light beam was coupled into 
a single fiber of a fiber bundle, embedded in the stylet needle, by a relay lens [13]. A photodiode has 
been employed for laser-power monitoring, where a flat reflective mirror has been used for guiding 

Figure 1. A piece of fresh trunk pork including vertebra. Skin and fat layers are not shown.

2.2.2. Study Case 2

The way of obtaining fresh trunk pork was the same as that in the ex vivo study-1. The probing
needle is similar to that used in our previous studies [13,14]. A schematic diagram for the experimental
setup is shown in Figure 2. The needle used in our studies is a 17-gauge Tuohy needle (Arrow,
Morrisville, NC, USA) containing the designed optical stylet. The optical signal from tissue contains
wavelengths of primary excitation (λ) and autofluorescence (λ*). Both of which can be separated by a
dichroic mirror and are further detected and amplified respectively. The light source was modulated
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by a 3-Hz clock generated by a control circuit [13]. This light beam was coupled into a single fiber of a
fiber bundle, embedded in the stylet needle, by a relay lens [13]. A photodiode has been employed for
laser-power monitoring, where a flat reflective mirror has been used for guiding the light beam to the
photodiode [13]. The light reflected or backscattered from the tissue was received by a photomultiplier
tube (H5783-20, Hamamatsu, Japan) through the rest of the optic fibers of the bundle at the tip
of the stylet needle [13]. The signal of photomultiplier tube was amplified and displayed on the
screen of an oscilloscope. A personal computer has been used to simultaneously collect and store
the data for analysis [13]. The para-vertebral tissues contain skin, fat, interspinous ligament and
ligamentumflavum. The tissue was punctured by the fiber needle and only fluorescent light was
recorded by an oscilloscope.
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Figure 2. The fiber needle contains seven optical fibers. The one in the center (Fiber 1) which is marked
by red color is for light emission. The rest fibers marked in green color are for receiving optical signal
from tissues. Laser light with wavelength λ (405 nm) is coupled into Fiber 1. The reflective light from
tissue is guided to the dichroic mirror (Delta DCLP425) through Fiber 2. The reflective light is partially
transmitted with the same wavelength λ through the mirror into the air and partially reflected by the
mirror with fluorescent light of wavelength λ*. The λ* is a band of wavelengths which is greater than
wavelength (λ).

2.3. Phase Two—In Vivo Studies

A Duroc and Landrance, Chinese native swine with weight of about 30 kg, was used
in this study. The animal was intubated and ventilated after induction of general anesthesia,
where Tiletamine–zolazepam (5 mg/kg) was given intramuscularly. Anesthesia was then maintained
with an intravenous infusion of pentobarbital sodium (15 mg·h−1·kg−1) for the duration of the studies.
The procedure of needle puncture was similar to our previous reports in Reference [13,14] except that
only single wavelength light source was employed. The reflective signals (λ and λ*) were recorded by
an oscilloscope. All the studies used the same probe and it was disinfected every time an experiment
was done.

3. Results

3.1. Ex Vivo Studies

3.1.1. Study Case 1

Excitation wavelength 405 nm was selected as the autofluorescence intensity of LF was much
higher than those of the other tissues. Figure 3 shows the autofluorescence spectral profiles of these
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tissues recorded by the multimode microplate reader. In the profiles, the abbreviations of LF, IS and
SS represent ligamentumflavum, intraspinous ligament and supraspinous ligament, respectively.
The spectral wavelength range was set from 440 nm to 525 nm during recording. The ratio of average
magnitude for LF:IS:SS:fat:muscle within the wavelength range is about 58.2:1.4:10.3:2.8:1. This implies
that LF has relatively much higher autofluorescence intensity than the other tissues on the way of
needle puncture to probe the ES. We used the data obtained from Case 1 as a reference for the Case 2
as the experimental results of Case 1 are from separate tissue layers from skin to epidural space.
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Figure 3. Autofluorescence spectral profiles of fat, interspinous ligament and ligamentum flavum.
It should be noticed that the spectra were collected using the microplate reader.

3.1.2. Study Case 2

Once the needle is stabbed into tissue and further puncture is carried out on the ex vivo porcine
trunk, we can barely see a dim light emitted from the needle tip inside the tissue if the needle is not
stabbed too deep. At this moment, the tissue of the needle tip located, unlike the samples obtained
from the previous section that can be precisely identified, corresponding to the location in anatomy can
only be estimated. As a result, the measured fluorescence intensity in ratio for LF:IS (or SS):fat, which is
about 18.5:1.85:1, can be estimated. The results are fairly close to that obtained in the previous section.
The data from Case 2 can be used to confirm that our design is feasible by means of the comparison of
them with the data from Case 1 as the porcine trunk involved in Case 2 was intact as a whole.

3.2. In Vivo Studies

Figure 4 displays the time-trace profile of needle puncture from skin to epidural space. A total
of 5 different paravertebral sites for puncture were recorded. It is noted that the horizontal axis is
the time course but the appearance of the signal with respect to the time is needle stabbing speed
dependent. In our studies, we kept the needle advancing speed extremely low like general clinical
anesthesia procedure in order to not result in accidental puncturing. Since the needle advancing speed
has been extremely low, there was ignorable influence by needle movement related to the fluorescence.
One can see from the profile that neither the appearance of the double-peak does not occur at the same
time slot, nor its widths are the same. Similarly, their amplitudes are also different. In our experiments,
the signals of case #1 express the mostly smooth procedure among the 5 ones. It begins with a small
peak, which is the reflection from the skin, then moves straight forward to a double peak. In practical
meaning, the needle does not hit any obstacle, such as bone, on the way its placement. For case #2, it is
similar to case #1. In case #3, the puncture is much faster than the others and only shows a narrower
sharp single peak. For case #4, signals resulted from bone hitting creates a very large response which
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may be dependent on the impact force from the needle or the reflection from the periostem. The cause
of relative lower response in both reflectance and autofluorescence, when compared to the others,
is unknown. For case #5, the first sharp peak comes from bone hitting. The reason the double peak
portion shows a very wide duration is due to that the puncture speed was on purposely slowed down
in order to observe the clear M-shape character of the LF in response to the 405-nm excitation. These ES
confirmations were all examined by traditional catheter placement and saline injection.
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Figure 4. The time-trace profile of needle puncture from skin to epidural space. A total of 5 different
paravertebral sites for puncture were recorded. The reflection (Blue) and fluorescence (Cyanate) are
simultaneously measured for double assurance of ligamentum flavum detection. The puncture speed
is not a constant and consequently the time course should not be expressed as distance or thickness of
the tissues.

4. Discussion

Although LOR is commonly used in humans and reported with an accidental dural puncture
rate around 1–2% [18,19], it is not easy to perform in patients with anatomical difficulties such as high
body mass index [20], old age [21], spinal deformity [22] and after spine surgery [23]. The incident
of accident dural puncture rate in these patients will greatly increase to 6% and even higher [18,19].
For a new operator, especially the resident doctor of anesthesiology, the learning curve for LOR is
pretty long [24,25]. Many Investigators have tried to find a new method to replace LOR to help
anesthesiologist especially the residents to locate the ES in an easy and reliable way.

Fluorescence (λ*) is a character of some particular biological tissues or cells in response to
the stimulated light (λ). According to the ex vivo experiments (Figure 3), we can find that the
fluorescent intensity of ligamentumflavum is much higher than those of the fat and interspinous
ligament/supraspinous ligament (muscle) for the particular stimulus wavelength (λ). However,
the influence of HbO2 or Hb in blood should not be neglected as far as in vivo study is concerned.
Fortunately, the in vivo study (Figure 4) reveals that the fluorescent signal is simultaneously elevated
with the optical signal only on the punctured tissue of ligamentumflavum. The fluorescent signal is
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barely correlated to the fat and muscle. Compared to the fascia, the intensity of the optical signal is
about 3 folds on the ligamentumflavum and the same as the fluorescent one. Therefore, the technique
of both reflected and fluorescent lights measurement in double assurance can be achieved.

An interesting question is raised according to the results from our in vivo study, which is the
M-shape curve that particularly occurs at the LF for both reflectance and fluorescence signals while
needle puncturing. In anatomy, the LF can be separated into superficial LF (faces to ES) and deep
LF (connects to interspinous ligament [26]. They are firmly adherent to each other. The superficial
component has light yellow color and 2.5–3.5 mm in thickness. On the other hand, the deep component
possesses a thin layer of dark yellow structure and with thickness of about 1 mm. Examined by
multimode microplate reader (Infinite 200 Pro, TECAN) to the deep and superficial LF samples that
from L1 to L5, 405-nm light was selected as excitation wavelength. The deep component shows higher
fluorescence intensity than that of the superficial one except for the L5 (see Figure 5).
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 Case #1 Case #2 Case #3 Case #4 Case #5 
W 0.794 0.939 0.952 0.919 0.903 
M 0.995 0.971 0.979 0.978 0.962 

W-M 0.674 0.919 0.940 0.879 0.799 

Figure 5. Examined by multimode microplate reader (Infinite 200 Pro, Tecan Group Ltd., Switzerland)
to the deep and superficial LF samples that from L1 to L5, 405-nm light was selected as excitation
wavelength. The deep component showed higher fluorescence intensity than the superficial one except
for the L5.

It is also interesting issues about what the correlation coefficient is between the reflectance and
fluorescence whole signals exist throughout the time course and what is it only within the duration of
the M-shape or the part of the whole signal with the exclusion of the M-shape. We expected that both
signals coming from the tissues, except LF, would be as uncorrelated as possible. Table 1 indicates
the correlation coefficients obtained by the statistical method of Spearman Rank Order for the 5 cases
mentioned above. In the table, the letter W represents the whole signal, M is for M-shape and W-M
indicates whole signal with the exclusion of the M-shape. As indicated in Table 1, the correlations of
the duration with M-shape are always higher than those of the other two, particularly to the W-M.
This implies that the reflectance and the autofluorescence signals are highly correlated in the region of
LF and may not be interfered by the signals from other tissues.
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Table 1. Correlation coefficients examined by Spearman Rank Order between reflectance and
autofluorescence signals of whole time course duration (W), M-shape only duration (M) and M-shape
excluded duration (W-M) for case #1 to case #5.

Case #1 Case #2 Case #3 Case #4 Case #5

W 0.794 0.939 0.952 0.919 0.903
M 0.995 0.971 0.979 0.978 0.962

W-M 0.674 0.919 0.940 0.879 0.799

The attenuation of used fiber has been measured for the signal from the fiber. The results including
the bend loss are negligible. Both the attenuation and bend loss were used for calibration on the receiver
side in order to obtain correct tissue data. The probe is inside the needle, after we reached the ES,
the probe was removed and insert the catheter, so the fiber probe will never be used “with” the
catheter, instead, they both used “with” the epidural needle. For more verification, we will design the
experiments in the future.

5. Conclusions

It has been shown that patient positioning, the use of a midline or paramedian approach and
the method used for catheter fixation can all influence the success rate for catheter placement [27].
In Reference [27], failure rates of 32% for thoracic and 27% for lumbar epidural were described.
In addition to the LOR technique mentioned, ultrasound does not provide adequate resolution to
distinguish the tissue layers that the needle travels through or to specifically identify the epidural
space and consequently the failure stemming from sonographic-assisted neuraxial placement is still
reported [28]. The pressure sensor instantiation in the catheter positioning is the hanging drop
technique [27]. As stated in Reference [29], it depends on negative pressure within the epidural space.
Recent experimental evidence suggests that negative pressure is poor at reliably detecting the epidural
space and if at all, the hanging drop technique is useful only in the sitting position [29]. The OCT
has drawn lots of attention recently due to its unbeatable advantage of high imaging resolution [29].
However, the cost of building its system makes it almost impossible to be popularized. In addition,
there is still a lack of clinical trials for further evaluation.

In view of the drawbacks, we have presented in this paper a new method to increase the safety of
epidural anesthesia. The approach is based on the addition of fluorescence mode to our previously
described method based on reflectance spectroscopy. This so-called “double assurance” is able to
enhance the specificity for epidural space detection. In this research, the ex vivo and in vivo studies
in porcine model of fluorescent responses from the various para-vertebra tissues have demonstrated
feasibility to provide valuable information for epidural space detection. It can differentiate between
the epidural space and the spinal cord tissue. While combining with our previous technology of
reflectance spectroscopy, the procedure in epidural placement with double-assurance provides much
safer demand than the traditional techniques. It has been proven that each of the wavelengths we have
studied has its advantage. The 405-nm light has been experimentally demonstrated in Reference [30]
that it is superior to the others in identifying dense connective tissue which is the major constituent
of ligamentum flavum. Despite the advantage of proposed technique, we still have few issues to be
addressed prior to realistic clinical scenarios. The first limitation of this study is the ex vivo experiments.
In the experiments, the porcine spinal tissues were purchased from a local market. Another concern is
that the pigs are common size in our in vivo experiments (the used small piglets weight around 25
kgs). For the 405-nm wavelength, it has been shown recently that it will be affected by red blood cell,
blood lipid and hemoglobin Reference [31]. It has also been indicated that the hand shaking can be a
variable affecting the puncturing performance [32]. In view of this, we have been paying particular
attention to the movement speed and keeping the speed extremely low in order to minimize the effect.
Fortunately, the proposed design using 405-nm wavelength can be less affected by the blood flow [33].
In addition, for the results we obtained in Figure 4, there are peaks in the data traces (for some of
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which there is clear correlation between fluorescence and reflectance), providing potential for false
positive results. To address the concern, spectrally-resolved fluorescence measurements will be used.
Such techniques are able to provide more specific detection of LF.

Moreover, because the ES detection is based purely on manual observation of the intensity versus
time traces in Figure 4. The decision depends on the correlations of the duration with M-shape and
correlation coefficients obtained by the statistical method of Spearman Rank Order. More investigations
into the decision “threshold” is necessary for clinical applications. In summary, our results show
promising steps towards clinical practice. Future human trial is still needed to see if this technology can
improve procedure success, reduce complication rates, and/or reduce number of needle puncturing.
Efforts are underway to evidence the technique by means of more experiments considering the issues
mentioned above. It is believed that by combining 532-nm, 650-nm and 405-nm beams rather than
using only single reflectance spectra alone, we can dramatically improve the overall performance.
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