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Abstract: The future of Internet of Things (IoT) envisions billions of sensors integrated with the
physical environment. At the same time, recharging and replacing batteries on this infrastructure
could result not only in high maintenance costs, but also large amounts of toxic waste due to the
need to dispose of old batteries. Recently, battery-free sensor platforms have been developed that
use supercapacitors as energy storage, promising maintenance-free and perpetual sensor operation.
While prior work focused on supercapacitor characterization, modelling and supercapacitor-aware
scheduling, the impact of mobility on capacitor charging and overall sensor application performance
has been largely ignored. We show that supercapacitor size is critical for mobile system performance
and that selecting an optimal value is not trivial: small capacitors charge quickly and enable the node
to operate in low energy environments, but cannot support intensive tasks such as communication
or reprogramming; increasing the capacitor size, on the other hand, enables the support for
energy-intensive tasks, but may prevent the node from booting at all if the node navigates in a low
energy area. The paper investigates this problem and proposes a hybrid storage solution that uses
an adaptive learning algorithm to predict the amount of available ambient energy and dynamically
switch between two capacitors depending on the environment. The evaluation based on extensive
simulations and prototype measurements showed up to 40% and 80% improvement compared to
a fixed-capacitor approach in terms of the amount of harvested energy and sensor coverage.
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1. Introduction

Battery-free sensors gradually realize the vision of perpetual and maintenance-free sensing
applications [1]. The energy harvesting sensors extract energy from the environment and store it in
supercapacitors, which can operate forever without maintenance due to unlimited charge-discharge
cycles [2]. As the amount of harvested energy depends on the environment, the sensor node can no
longer be expected to operate continuously, but instead, will operate intermittently whenever energy
becomes available, for example when the node moves into a high energy area.

Small supercapacitors are attractive for mobile systems because they charge and boot the
battery-less sensor node in a matter of seconds whenever energy becomes available. This choice,
however, prevents the sensor node from performing energy-intensive operations, such as
communicating with a remote base station. Large capacitors, on the other hand, may take such
a long time to charge, that the node may leave a high energy area long before the capacitor gets
sufficient charge to start-up the node, let alone perform any useful task. Furthermore, as the node
leaves the high energy area, the partial charge in the large supercapacitor dissipates rapidly without
being used. Surprisingly, the design trade-offs in selecting an optimal storage capacity and the impact
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of mobility on the charging performance of intermittently-powered battery-less systems have not been
described in the literature.

The supercapacitors differ from traditional batteries by low energy density and high self-discharge
current: Once fully charged, the supercapacitors discharge at a much higher rate than a traditional
battery. Prior work focused on supercapacitor characterization [3], modelling and supercapacitor-aware
task scheduling [4]. The benefits of small capacitors for mobile applications and the capacitor-based
energy harvesting sensor platform were proposed by [5]. Recently, Hester et al. [1] developed
a federated energy storage concept, where each peripheral, such as radio, sensor or a microcontroller,
is assigned a dedicated capacitor for increased reliability so that faulty or misconfigured peripherals
do not affect the shared energy storage and thus the operation of the entire system. The paper
does not, however, address the impact of mobility on charging and the application performance of
battery-less sensors.

In this paper, we propose a novel dual capacitor energy storage platform that dynamically selects
an appropriate energy storage based on the amount of ambient energy. The dynamic switching is not
trivial since it requires tracking and predicting the amount of available energy in the environment.
We show that the hybrid approach allows meeting the otherwise contradictory requirements by
avoiding the design trade-offs present in traditional single-capacitor designs. We define a new
performance metric, which we call usable harvested energy, as the amount of energy directly available
to applications and show that it can be a fraction of total energy harvested by the node due to
supercapacitor self-discharge current and residual charge. Finally, we evaluate the proposed platform
through extensive simulations and a hardware prototype based on the PowerCast RF energy harvesting
development kit [6]. To the best of our knowledge, this is the first work to investigate the impact of
mobility on battery-less wireless sensors and to propose a working solution based on a novel energy
prediction algorithm.

The rest of the paper is structured as follows. Sections 2 and 3 contain a system model and describe
the proposed approach including a hardware platform and a learning algorithm. Sections 4 and 5
contain the results of simulation and prototype measurements, respectively. Section 6 reviews related
work on supercapacitor-based energy harvesting sensor systems, and finally, Section 7 concludes
the paper.

2. Energy Trade-Offs for Mobile Systems

Our system consists of mobile Radio Frequency (RF) energy harvesting sensor nodes deployed
over a large geographical area and powered by dedicated RF power transmitters deployed at strategic
locations. As the maximum transmit power of RF transmitters is limited by regulations, the charging
range is small relative to distance between RF power transmitters, and the resulting charging network
is assumed to be sparse. Whenever a sensor node approaches an RF power transmitter, it starts
charging and boots if a sufficient amount of energy is harvested. As the node leaves an area with an
RF power transmitter, it keeps operating until it uses up the available energy stored in the capacitor.
Each RF charging station modulates a charging signal to embed additional information, such as station
ID, which enables the mobile nodes to distinguish between different stations and therefore locations.

The amount of harvested energy depends on the distance to the charging station, transmit power
and the amount of time the sensor spends near the charging station. The available wireless RF power
on a receiving antenna of a sensor node is given by the Friis equation:

Pr = ηPtGtGr

( λ

4πR

)2
(1)

where Pt is the transmit power, Gt and Gr are antenna gains for the transmitter and receiving antenna,
respectively, λ is the wavelength, R is the distance between a charging station and a sensor node
and η is the charging efficiency, which depends on the frequency band and the RF power level. The
amount of harvested energy depends on the time the sensor node spends near the RF charging station;



Sensors 2018, 18, 3597 3 of 16

our experiments show that a 50-mF capacitor located at a distance of 3 m from a 3-W transmitter
charges within 29 s.

Figure 1 shows a block diagram of a battery-less RF energy harvesting system, which consists of
an RF to DC converter, a boost converter and a supercapacitor. As the capacitor voltage varies with the
amount of stored energy, a boost converter is used to supply a stable voltage necessary to the sensor
node. The amount of energy stored by a supercapacitor is given as:

E = CV2/2 (2)

Figure 1. Block diagram of RF energy harvesting sensor node.

It is important to note that not all of the stored energy is actually usable because the boost
converter requires a minimum voltage, Vmin, to start up. In fact, modern energy harvesting systems are
designed such that the voltage booster activates when the capacitor voltage reaches Vmax and keeps
operating until the voltage drops to Vmin, as shown in Figure 2. The hysteresis behaviour ensures that
there is sufficient energy to reliably boot the node [7], i.e., C(V2

max − V2
min)/2 > Eboot. At the same time,

it leads to loss of energy in mobile scenarios as explained in the section below.

Figure 2. The timing diagram of capacitor charging. The sensor activates when the capacitor voltage
reaches Vmax and keeps operating until the voltage drops to Vmin [6].

2.1. Charging Problem

As the amount of harvested energy depends on the environment, there is no guarantee that
the capacitor voltage will be charged to Vmax within one charging session. Due to mobility, a sensor
node may leave the charging station before a Vmax is reached, so any partial charge will gradually get
dissipated before the node finds another energy source due to relatively the high self-discharge currents
of capacitors, leading to energy wastage and inefficient operation. At Vmax = 1.25 and Vmin = 1.02, which
is the standard operating range for PowerCast RF, the partial energy loss Eloss = CV2

residual/2 represents
67%–100% of energy harvested by the capacitor. The exact figure depends on the node mobility pattern
with the worst case scenario in which all harvested energy is lost between the individual charging
sessions. While the loss is also linearly proportional to the capacitor value with larger capacitors
leading to more loss (2), the relationship is more complex, as the node may never boot when operating
on a large capacitor.
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2.2. Keeping the Charge

As the node boots, the most energy-efficient way to utilise the energy is to consume it straight away
to avoid energy loss due to capacitor leak current Eleak and the minimum energy needed to operate the
sensor node in the sleep mode Esleep. The supercapacitor energy level at time t is modelled as:

E(t + 1) = E(t) + Eharvested(t)− Eleak(t)− Eload(t) (3)

where Eload denotes energy consumed by the sensor node and depends on the sensor operating mode,
e.g., in case a sensor node is sleeping Eload = Esleep. However, using energy immediately is not
necessarily useful, as many sensor tasks require spreading the energy in time to maximise the utility,
e.g., sensor coverage or operating time. Reducing the duty cycle in an attempt to spread the energy
will lead to higher energy loss, Eleak, and consequently lower energy utilisation. Thus, the tasks that
require long operating time or sensor coverage would benefit from a larger capacitor, which conflicts
with the fast boot time requirement.

2.3. Task Size

Last but not least, the task size is an important factor in the design of the energy harvesting
system. Even the most basic applications require the ability to combine light tasks, such as sensing or
computation, with large tasks, such as communicating with other nodes or the base station. These tasks
are often separated in time with light tasks dominating most of the time and larger tasks executed
occasionally to upload sensed data or reprogram the node firmware. The light tasks may benefit from
a small storage to quickly start up the node and execute a task. On the other hand, energy-intensive
tasks require a larger storage, which again comes into conflict with the ability to boot quickly and
charging efficiency.

To summarise, the design of a battery-less energy harvesting systems is driven by a number
of trade-offs and sometimes contradicting requirements. The energy storage size is the key design
parameter, which has implications on the charging problem, keeping the charge and maximum task
size. In this paper, we argue that these challenges can be met by a hybrid storage solution, which
combines several capacitors of various sizes.

3. Approach

The proposed RF energy harvesting sensor platform contains a hybrid storage containing two
supercapacitors of various sizes. In mobile applications, where a node may have limited time passing
through the RF charging station, it is critical that the sensor is able to charge its capacitor fully before
it leaves the area. The small capacitor is used to boot quickly and perform at least a minimal task,
such as sensing or sending a beacon. The large capacitor accumulates energy in high energy areas
for energy-intensive tasks, such as communication with the base station. The proposed platform also
incorporates a switching hardware, an energy prediction based on the Kalman filter and a switching
algorithm, as described in the following subsections.

3.1. Hardware Platform

The proposed platform consists of an energy harvesting sensor node, two capacitors and
a switching circuit. The switching circuit consists of one bi-stable relay, two bipolar junction transistors
(BJT) and two resistors, as shown in Figure 3. The P1 relay is bi-stable single pole double throw relay,
which operates at 3 V and consumes 69 mW. The set and reset take 2 ms, which means it consumes
138 µJ energy per switch. The advantage of using a relay is that once set, it does not consume energy
and maintains its state across the reboots. This is particularly suitable for sparse charging networks
where the mobile node roams between high and low energy areas as the circuit does not consume
energy once it moves into a certain area. The circuit is controlled by sensor node’s General Purpose
Input Output (GPIO) ports using a switching algorithm as described in the following subsection.
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Figure 3. Smart switching circuit for supercapacitors.

3.2. Switching Algorithm

The key to efficient dual capacitor operation is an intelligent switching algorithm that dynamically
switches between small and large capacitors depending on the situation. The amount of energy
harvested by the node near an RF charging station largely depends on collocation time τ, i.e., the time
the node spends near the station:

Erx =
∫ τ

0
Prdt (4)

where Pr is an instantaneous RF received power level.
In human- and animal-centric applications, the collocation time and the node mobility in general

are well known to exhibit strong statistical patterns [8,9], which have been widely studied and
exploited in the context of opportunistic routing protocols [10,11], mobility pattern [12] and social
network analysis [9,13]. Delay-tolerant routing protocols exploit network statistical patterns to identify
the next hop towards the destination, which is more likely to deliver the message. The work in social
network analysis uses patterns in collocation time to gauge the strength of the social links and analyse
users’ geographical preferences. This property of human- and animal-centric networks is also exploited
in this work.

The main idea of the proposed switching algorithm is to learn the amount of harvestable energy
in each location based on the average time the node spends near a charging station. This is based on
the observation that human mobility is not random and exhibits strong statistical patterns. Consider
for example a wearable application, where a mobile node charges from RF charging stations located
throughout a university campus. When a person enters his or her office, there is a high probability that
he or she will stay in that location for a longer period of time, τ1. However, when a user is passing by
a building entrance, it is more likely to be just a short encounter, i.e., τ1 > τ2.

The proposed algorithm works as follows. When a sensor node approaches a charging station,
it starts sampling an RF signal strength at fixed time intervals Ts and counts the total duration of
time when the signal is above a threshold PRF > Pthresh to estimate the node collocation time xA(t)
near the RF charging station A. The PRF is assumed to be constant during a timeslot Ts, which is
reasonable for sufficiently small values of Ts. The node then predicts the amount of available energy as
EA = Pthresh × xA(t). Since the energy is tracked only when the node is active and when the signal
strength is above threshold Pthresh, the predicted EA will slightly underestimate the amount of available
energy. This is not critical, as the priority is not to overestimate the available energy, which would
cause the node to switch to a larger capacitor and remain inoperable until it moves to an area with high
energy. The advantage of our collocation tracking technique is that it is simple and can be implemented
on real hardware.

Since collocation time is random and may change every time a user visits a certain location,
we use the Kalman filter to predict the future collocation time. The Kalman filter is computationally
lightweight and requires minimum processing power and storage [14], which makes it very suitable for
resource-constrained platforms. One of the main advantages of using the Kalman filter is that it does not
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require storing the entire history of past collocation times and instead uses a set of recursive equations
to make a prediction. The collocation time near a charging station is modelled as a linear process.

x(t) = ax(t − 1) + w(t) (5)

z(t) = hx(t) + v(t) (6)

where x(t) is a state estimate at time t, z(t) is the current measurement of the collocation time at
time t, a is a state transition model, h is a measurement matrix and w(t) and v(t) are a process and
measurement noise, respectively. For clarity, we dropped the subindex identifying the station ID
from x(t) with all future references of x(t) referring to the collocation time of a particular charging
station. As mentioned in the previous section, the node recognises a location by demodulating and
extracting a station ID embedded into a charging signal, a functionality supported by energy harvesting
development kits such as PowerCast [6]. The goal of the Kalman filter is to estimate a state x(t) from
noisy observations z(t).

The Kalman filter operates recursively in two steps. The first step predicts the future value of
collocation time x̂(t)− based on past collocation history:

x̂(t)− = ax̂(t − 1) + w(t) (7)

p(t)− = a2 p(t − 1) + Q (8)

After observing the actual measurement z(t), the filter corrects the prediction and updates the
model in an update step:

k(t) =
hp(t)−

h2 p(t)− + R
(9)

x̂(t) = ax̂(t)− + k(t)(z(t)− hx̂(t)−) (10)

p(t) = p(t)−(1 − hk(t)) (11)

where p(t), Q and R are a posteriori error covariance, process and measurement noise covariance
matrices, respectively; k(t) is a Kalman gain, which is the relative weight given to recent measurement
and the current state estimate. For the scalar Kalman filter, Q and R correspond to a variance of
the process and the variance of the measurement noise, respectively. We refer the reader to [14,15]
for a detailed description of Kalman filter operation. The detailed steps of the algorithm are shown
in Algorithm 1. Initially, the node boots on a small capacitor which enables it to operate in all
environments and switches to a larger capacitor only if sufficient energy is available. The predicted
amount of available energy is based on the expected collocation time x(t), and if it is sufficient to
charge a larger capacitor, i.e., if Pthresh × xi(t) ≥ CV2/2, it initiates a switch. The sensor node keeps
operating on a large capacitor after it moves away from the charging station until the voltage drops
below threshold Vlow, when it switches back to a small capacitor. As the capacitor voltage drops below
Vmin, the sensor node shuts down, and the residual energy in the capacitor is gradually dissipated.
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Algorithm 1: Switching algorithm.

Function switch_cap()
if current cap == SMALL_CAP then

if PRF > Pthresh and Pthresh ∗ xi(t) ≥ Clarge then
switch_large_cap();

end
else

if (Vc < Vswitch) then
switch_small_cap();

end
end

Function KF_predict()
xapriori=a*xaposteriori
papriori=a*a*paposteriori + Q
return (self.xapriori)

Function KF_update(z)
residual=z-h*xapriori
k=h*papriori/(h*h*papriori+R)
paposteriori=papriori*(1-h*k)
xaposteriori=xapriori+k*residual

while true do
if PRF > Pthresh then

xi(t) = KF_predict();
tracking = TRUE;

else
if (tracking == TRUE) then

KF_update(coloc_time);
end

end
switch_cap();
sleep(interval);

end

4. Simulations

The goal of the simulation is to evaluate the performance of the proposed approach for a typical
sensing application, where a mobile node roams within a large area from one charging station to
another and opportunistically senses data. To mimic practical scenarios, where RF charging stations
are placed along motion paths or its sojourn locations, the charging network is assumed to be sparse,
i.e., the charging range is much smaller than the distance between charging stations, and at any
moment of time, the node can harvest energy from one RF station only. Whenever a node reaches
a charging station, it rests for a fixed amount of time and then moves towards a randomly selected
charging station with a fixed velocity. A fraction of charging stations is selected as home stations where
a node sojourns for a longer time. The sensor duty cycle is set to be equal to the amount of harvested
energy, i.e., the sensor operates in energy-neutral mode [16].

The proposed method has been evaluated using a custom simulator written in Python. The sensor
node is implemented as an object with the following core methods: charge(), leak(), runTask(),
setCapLarge(), setCapSmall(), getVoltage(), monitorColoc(), switchCap(). At every time step, the node
moves towards a random waypoint, then charges, leaks, detects and tracks collocation and performs
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a task with available energy. The simulation parameters such as charging power, leakage and capacitor
sizes have been initialised based on prototype measurements described in the following section.

The performance is evaluated through measuring the total amount of usable harvested energy,
sensing coverage measured by successful sensor activations and the number of served locations.
The performance is compared with a baseline approach, where a fixed capacitor of either a small or
large value is used. The simulation parameters are given in Table 1.

Table 1. Simulation parameters.

Parameter Value

area 3000 m × 3000 m
avg speed 1.38 m/s ± 0.28 m/s

rest time, home station 600 s
rest time, charging station 5 s

leak current 4 µA
sleep current 4 µA

RF power output 3 W
RF min distance 1.5 m

Vmax 1.25 V
Vmin 1.02 V

4.1. Usable Harvested Energy

In mobile scenarios, the node may leave the RF charging station before the capacitor voltage
reaches Vmax required to boot the node, and any residual charge will start to gradually dissipate until
the node visits another RF station. In the most extreme scenario, when the node always leaves the RF
station before the capacitor is fully charged, all harvested energy will be dissipated between successive
partial charges.

We define usable harvested energy as the total amount of harvested energy less the amount of
energy spent on charging a capacitor prior to node startups, ignoring the energy harvested while
Vcap < Vmax. In other words, usable harvested energy is the total amount of harvested energy that is
actually available at an application layer, when the device is already active and ready to operate and
until the capacitor voltage stays above Vcap > Vmin. In the experiment below, we show that usable
harvested energy may constitute only a fraction of total harvested energy due to losses, which increase
with the capacitor size.

The first experiment demonstrates the impact of capacitor size on the total usable harvested
energy. The hybrid configuration combined a small 10-mF capacitor with a larger capacitor in the
10–100 mF range. Figure 4 demonstrates that increasing the capacitor size from 10 mF to 100 mF
reduces the amount of usable harvested energy by 40%. The hybrid approach in contrast shows
consistent performance for various capacitor sizes. The usable harvested energy reduces slightly due
to the time needed for an initial capacitor charge when the node switches to a large capacitor near
a home station.

4.2. Sensor Coverage

In this experiment, we measure sensor coverage, i.e., a proportion of unique locations where
a sensor was able to boot and execute a task, i.e., represents a geographical coverage. The task run
by a sensor node can be supported by a small 10-mF capacitor. For a fixed capacitor configuration,
the coverage depends on the duty cycle, as shown in Figure 5, with maximum coverage achieved by
the lowest duty cycle. Increasing the fixed capacitor size from 10 mF to 100 mF reduces the coverage
by 42% at 0.1% duty cycle. Stepping up the duty cycle to 1% further reduces coverage by up to 80%
compared to the 10-mF configuration. However, increasing the duty cycle beyond 1% does not have
a significant effect on the coverage. The hybrid configuration provides a consistent near 100% coverage
at all capacitor sizes. In hybrid configuration, the node boots on a small capacitor, which enables it to



Sensors 2018, 18, 3597 9 of 16

boot at all locations. The performance of hybrid configuration does not depend on the larger capacitor
size, as it performs the switch only when the available energy is sufficient to charge the larger capacitor.

4.3. Sensor Activations

Finally, Figure 6 shows sensor activations defined as the proportion of all (non-unique) locations
where a node was able to boot and execute a task. In other words, multiple visits to the same location
are counted as separate activations. This represents sensing applications, where the node needs to
maximise the total amount of collected data irrespective of locations. It can be seen that a capacitor
size has a drastic effect on sensor activations, reducing it by up to 90%. The hybrid configuration is
not affected by a capacitor size and consistently achieves 100% activations. The number of sensor
activations for hybrid configuration does not depend on the larger capacitor size, as it performs the
switch only when the available energy is sufficient to charge the larger capacitor.

0
5

10
15

Capacitor size, Farad

En
er

gy
, j

ou
le

s

●

●

●

●

●
● ●

● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

● fixed cap
hybrid

Figure 4. The amount of usable harvested energy in the fixed capacitor configuration decreases with
capacitor size due to self-discharge losses between intermittent charges. The hybrid configuration
minimizes the losses by using a small capacitor in low energy areas.
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Figure 6. The number of sensor activations near charging stations in the fixed capacitor configuration
drops rapidly with capacitor size as the node is less likely to boot on a larger capacitor.

4.4. Available Energy

Table 2 shows the peak usable energy for hybrid mode within a high energy zone. Combined
with the results in Sections 4.1–4.3, it demonstrates that the sensor node can achieve efficient energy
harvesting with high coverage and activations while supporting a large energy storage, which allows
a sensor to execute an energy-intensive task whenever required.

Table 2. Peak usable energy in energy storage near home stations.

Hybrid Capacitor, F 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Energy, mJ 12.84 25.60 38.44 51.28 64.12 76.95 89.79 102.63 115.47 128.31

5. Prototype

To validate the proposed design experimentally, a hybrid RF node design has been implemented
based on the PowerCast P21XXCSR-EVB RF Energy Harvesting development kit (Powercast,
Pittsburgh, PA, USA), which can harvest energy from six frequency bands and store energy in a built-in
50-mF capacitor or an external capacitor, connected through an extension port; see Figure 7. The
868-MHz ISM band has been selected as it has 865.6–867.6 MHz sub-band, which allows 3-W EIRP
transmission in the UK [6]. The 868-MHz RF charging signal has been generated by a Rohde&Schwarz
SMC 100 (Rohde&Schwarz, Munich, Germany) A signal generator with an AML 32210 Amp and
a 6-dBi transmitting antenna. The board harvests energy from −15 to 15 dBm, provides three output
voltage levels of 3.3 V, 4.1 V and 4.2 V and delivers up to 50 mA. With this setup, the board can
harvest the energy from a 3-W 866-MHz source at a distance of 11 m. The purpose of this section is to
demonstrate that the concept is practical and can be implemented using off-the-shelf hardware with
minimum costs rather than reproducing and comparing with large-scale simulation experiments. This
is because deployment and measurements within an RF energy harvesting environment over a large
geographical area would be extremely challenging in terms of resources and logistics. Developing
a case study, where RF energy harvesting platform is used for a real application, and reporting the
results are potential future work.

The XLP 16-bit development kit (Microchip Technology, Chandler, AZ, USA) used as the sensor
node consists of a PIC24F16K102 microcontroller, the temperature sensor MCP9700 and a MiWi



Sensors 2018, 18, 3597 11 of 16

MRF24J40MA short-range low power transceiver. The MCP9700 is a low power thermistor operating
at 6 µA. The sensor node is powered through an RF energy harvesting P21XXCSR-EVB board and
can change its energy storage through a low power switching circuit that we have designed, based
on the P1 bi-stable V23026 relay, operating on 3 V. The algorithm has been implemented in MPLAB X
IDE using the C 30 compiler, which produces a 51-kB HEX file with 81% of programming memory
allocated for code and 24% of data memory for data. The impact of RF energy prediction on the overall
energy consumption has been evaluated by measuring the energy consumption of the basic sensing
application and then measuring the energy consumption of the same sensing application, but with the
algorithm implemented. The energy consumption was measured by connecting an oscilloscope to the
jumper 9 of the XLP development kit and the connecting 22-Ohm shunt resistor in the socket. The
energy consumed for the basic sensing task in which the sensor was programmed to sense periodically,
save data to flash and sleep was measured as 7.93 × 10−5 J; whereas when the sensor node executed
the RF sensing with energy prediction, the task energy cost increased to 9.2 × 10−5 J, which represents
only a 16% increase due to the need to sense Received Signal Strength (RSSI). Table 3 shows the
measured power consumption in different modes. Figure 8 shows the energy profiles of a simple
sensing application (a) and a sensing application with an implemented RF prediction algorithm.

Figure 7. Measurement setup.

 

Figure 1: Energy used by sensor node in different modes when running a simple application 

The energy consumption of the sensor node is measured by myDAQ (data acquisition device) from 
national instruments as oscilloscope. A simple application, waking up in every 5s sensing temperature 
and saving the value in the EEPROM, consumed 7.93X10-5 J as shown in Fig.1 

(a) Sensing application

 

Figure 2: Energy consumed by the sensor node when running our algorithm 

Our algorithm consumed 9.2X10-5 J as shown in Fig. 2  

(b) Sensing application with RF prediction

Figure 8. Oscilloscope screenshot for the energy profile of a simple application and the prototype.
The oscilloscope was set at 20 mV/div with a timebase of 10 ms/div.

5.1. Charging Time

The goal of the first experiment was to demonstrate the performance of a simple RF energy
harvesting application, the impact of capacitor size and the distance on the charging time of a sensor
node running a simple application, where a sensor node simply boots and transmits a packet to a base
station. The interval between packets is taken as the charging time of the supercapacitor. The upper
and lower threshold voltages were set to 1.23 V and 1.02 V, respectively. Figure 9 compares the charging
time as a function of distance for 50-mF and 200-mF capacitors. As expected, the amount of time to
charge a large capacitor was significantly longer. The amount of time to fully charge a large capacitor
at a 3-m distance was 110 s, whereas it took only 29 s for a small capacitor. The figures also compare
the experimental results with the theoretical values obtained through the following model [17].
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Figure 9. The charging time duration for 50-mF and 200-mF supercapacitors increases exponentially
with charging distance. Practical applications that require longer charging range would thus require
a very small capacitor.

5.2. Sensor Node Lifetime

The goal of the second experiment was to demonstrate the lifetime of a node running a simple
application, which wakes up to sense temperature and then sleeps every 5 s. In this experiment,
the harvester board with a 50-mF capacitor is first charged to 1.25 V by a 33-dBm 866-MHz source and
then connected to a sensor node with the lower threshold voltage set to 1.02 V. The experiment has
been repeated with a 200-mF capacitor. The voltage across the Vout and GND terminals of the board
have been measured with a multimeter. As can be seen from Figure 10, the maximum sensor lifetime
was measured as 3 s and 7 s with 50-mF and 200-mF capacitors, respectively. The experiment was
conducted for a single capacitor configuration.

 

        
               

 

    

   

    

   

    

 
  

  
   
  
  
   
  

                     
                    

Figure 10. Node lifetime.
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Table 3. Sensor node power consumption in different modes. The node lifetime increases with capacitor size.

Mode Current, mA Voltage, V Power, mW

sleeping 1 × 10−3 3.3 3.3 × 10−3

active 3.34 3.3 11.022
transmitting 35.587 3.3 117.44

5.3. Dynamic Capacitor Switching

In the final experiment, we demonstrate the practical feasibility of the hybrid dual-capacitor
configuration for a simple sensing and data collection application, which senses a temperature reading,
saves it to a flash storage and transmits wirelessly to the base station. To evaluate the dynamic
switching storage, a sensor node was periodically moved from a distance of 3 to 1 m from the RF
charging station to emulate low and high energy areas, respectively. The RSSI threshold was set
to 2 dBm representing a distance of approximately 2 m, while the sojourn time near the charging
station has been set to 40 s. In practice, these parameters are application dependent and can be tuned
depending on the mobility of the node and transmit power of charging stations. The sensor node
was configured to use the small capacitor at the initial boot. Whenever the node sensed that RSSI
as higher than threshold value, it estimated the collocation time and saved it into a flash memory
after each visit. After the third visit, the node was able to predict correctly that the collocation time
within the high energy area would be sufficient to switch to a large capacitor, and after completing
the switch, the node successfully sent the collected data to the base station. When moved out of the
high energy area, the node waited until the large capacitor voltage dropped below 1.045 V to switch
back to the small capacitor and resume the sensing task. The experiment has been repeated in a single
fixed-capacitor configuration of either 50 mF and 200 mF by varying the sojourn time between 40 s and
10 s. With a 40-s sojourn time, both small and large capacitors were able to boot the node; however,
only the large one was able to support the transmit operation. When the sojourn time was reduced
to 10 s to mimic environments with lower energy, the node has never been able to boot on a large
capacitor, but booted successfully on a small one.

6. Related Work

Supercapacitors have become an attractive option for energy storage due to high power
density, fast charge time and virtually unlimited charge/discharge cycles. The main limitations
of supercapacitors are low energy density and relatively high self-discharge current compared to
conventional chemical batteries. As the classical conventional supercapacitor circuit model mostly fails
to explain its behaviour, [2] proposed an equivalent model, which consists of multiple nonlinear RC
branches and explains self-discharge current as electric charge redistribution between slow and fast
RC branches. The model shows that the charging has to be long enough to charge the capacitor in the
slowest RC branch, as otherwise, even though the supercapacitor appears to be charged, the electric
charge from the fastest branch will flow into other branches, which will appear as leakage current from
outside. The work in [18] proposed ladder, three-branch, four-branch models. The work in [19,20]
proposed an energy iteration model, which explains self-discharge as the only reason for the terminal
voltage drops, but ignores the effect of charge-redistribution.

Task scheduling: The resulting models have been used by researchers for optimizing task
scheduling. The work in [20] adapted the duty cycle for sensor nodes to evade the working of
the supercapacitor in high leakage current regions. The work in [4] investigated the effect of charge
redistribution on power management and established that the knowledge of supercapacitor state
helps to select a task scheduling policy that makes full use of stored energy. Although the capacitor
models can be quite accurate in estimating the behaviour of supercapacitors, they can be quite
complex to parameterize due to the need for extensive measurements and model fitting using
numerical optimization techniques. The proposed dual capacitor approach does not require the
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knowledge of the equivalent circuit model and simply relies on the fact that the energy stored in
the supercapacitor gradually dissipates. RF energy harvesting: Battery-less systems utilize a variety
of energy sources, such as solar, vibration, temperature difference and wireless power transfer. RF
energy harvesting is a relatively new technique, which harvests power from RF sources and can power
devices in the environments where light, vibration and temperature difference are not available. The
RF energy harvesting systems can scavenge ambient RF energy, such as Wi-Fi, or TV, or radio broadcast
signal [21], or obtain energy radiated by dedicated RF transmitters. In [22], a battery-less RF sensor
has been designed to monitor the quality of packed vegetables by observing their temperature and
humidity. Such sensors receive a stable flow of energy from a nearby RFID reader for the entire duration
of measurement, which is sufficient to complete the sensing and communication task. In contrast,
the proposed approach uses sensors that are autonomous and that opportunistically collect energy
from charging stations located in strategic positions, and therefore need to be able to extract and utilize
tiny amounts of energy, wherever it is available. The work in [23,24] proposed an RF energy harvesting
system that powers low power devices from medium wave radio signals and that can operate forever
within relatively large geographical areas, but only in the proximity of a powerful MW radio station.
The hybrid approach proposed in this paper however is suitable for any area instrumented by relatively
inexpensive and low power custom transmitting stations. The work in [25] analysed the network
connectivity problem in a wirelessly-powered battery-less sensor network, which arises from the
fact that the nodes are powered intermittently, leading to connectivity problems, and proposed an
approach based on dividing time into separate harvesting and communication periods. Similarly
to [22,23], the approach relies on the stable and predictable energy flow from the source.

The work in [1] described a federated energy storage concept, where each peripheral, such as radio,
sensor or a microcontroller, is assigned a dedicated capacitor for increased reliability so that faulty or
misconfigured peripherals do not affect the shared energy storage and thus the operation of the entire
system. The platform contains a first-stage capacitor, which powers the microcontroller, an array of
peripheral capacitors, and allows for faster charging by setting capacitor sizes for specific peripherals
and controlling the charging priority to individual capacitors. In subsequent work, the authors
described a reconfigurable federated energy storage, where an engineer can assign charging priorities,
capacitor sizes and voltage thresholds in both compile and run-times. The main limitation of federated
energy storage is that it requires the first-stage capacitor to be charged to power the microcontroller
and the peripheral capacitors. Once the first-stage capacitor is depleted, the microcontroller shuts
down, and the energy stored in peripheral capacitors cannot be used and will be slowly dissipated.
Similarly to a fixed capacitor design, there is a dilemma in that the first-stage capacitor needs to be
small to charge quickly, but large enough to operate an MCU when the node moves to a low energy
area, which presents a problem for mobile battery-less applications. In contrast, the proposed hybrid
platform is powered by a single capacitor at any moment of time. When the node detects a high energy
area, it switches to a bigger capacitor, which enables it to accumulate available energy and use it when
the node moves into a low energy area.

7. Conclusions and Future Work

Battery-free energy harvesting sensors provide a promising solution for a maintenance-free and
perpetual sensor operation. We have proposed a novel approach for hybrid energy storage, which is
able to adapt and reconfigure energy storage depending on the environment and resolve an important
trade-off between fast start-up time and amount of stored energy. The evaluation based on simulations
and the hardware implementation on the PowerCast RF energy harvesting kit have demonstrated that
the hybrid platform can operate in environments where fixed capacitor nodes can fail. In particular,
the proposed hybrid approach showed up to 40% and 80% performance improvement over a fixed
capacitor design in terms of usable harvested energy and the sensor coverage, respectively. We have
demonstrated that a traditional single fixed-capacitor design is not suitable for certain RF energy
harvesting applications in sparse mobile networks. While we have used a dual-capacitor configuration
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as an example of a hybrid storage concept, extending the proposed scheme to three or more capacitors
may provide applications with more fine-grained control over energy storage. As a typical sensor
node has a limited number of output pins for addressing individual capacitors, this would require
modifications to the switching circuit and would lead to higher switching cost due to the increased
number of relays and other components. Investigating the design trade-offs for various numbers of
energy storage devices is a potential future work.

Author Contributions: Conceptualization, B.M. and V.D.; Investigation, B.M. and V.D.; Resources, V.D.;
Supervision, V.D.; Writing—V.D and B.M.; Writing—review & editing, V.D.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Jon Hitchcock and the anonymous reviewers for their
valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hester, J.; Sorber, J. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, Delft, The Netherlands, 6–8 November 2017; p. 13.

2. Merrett, G.V.; Weddell, A.S. Supercapacitor leakage in energy-harvesting sensor nodes: Fact or fiction?
In Proceedings of the 2012 Ninth International Conference on Networked Sensing (INSS), Antwerp, Belgium,
11–14 June 2012; pp. 1–5.

3. Zhang, Y.; Yang, H. Modeling and characterization of supercapacitors for wireless sensor network
applications. J. Power Sources 2011, 196, 4128–4135. [CrossRef]

4. Yang, H.; Zhang, Y. Analysis of Supercapacitor Energy Loss for Power Management in Environmentally
Powered Wireless Sensor Nodes. IEEE Trans. Power Electron. 2013, 28, 5391–5403. [CrossRef]

5. Gummeson, J.; Clark, S.S.; Fu, K.; Ganesan, D. On the Limits of Effective Hybrid Micro energy Harvesting on
Mobile CRFID Sensors. In Proceedings of the 8th International Conference on Mobile Systems, Applications,
and Services, San Francisco, CA, USA, 15–18 June 2010; ACM: New York, NY, USA, 2010; pp. 195–208.

6. Powercast. P21XX Powerharvester Chipset Reference Design Evaluation Board; Powercast: Pittsburgh, PA, USA,
2018; pp. 1–11.

7. Merz, C.; Kupris, G.; Niedernhuber, M. Design and optimization of a radio frequency energy harvesting
system for energizing low power devices. In Proceedings of the 2014 International Conference on Applied
Electronics, Pilsen, Czech Republic, 9–10 September 2014; pp. 209–212.

8. Calabrese, F.; Diao, M.; Lorenzo, G.D.; Ferreira, J.; Ratti, C. Understanding individual mobility patterns from
urban sensing data: A mobile phone trace example. Transp. Res. Part C Emerg. Technol. 2013, 26, 301–313.
[CrossRef]

9. Ellwood, S.; Newman, C.; Montgomery, R.; Nicosia, V.; Buesching, C.; Markham, A.; Mascolo, C.; Trigoni, N.;
Pasztor, B.; Dyo, V.; et al. An active radio frequency identification system capable of identifying co locations
and social structure: Validation with a wild free ranging animal. Methods Ecol. Evol. 2017, 8, 1822–1831.
[CrossRef]

10. Musolesi, M.; Mascolo, C. CAR: Context-Aware Adaptive Routing for Delay-Tolerant Mobile Networks.
IEEE Trans. Mob. Comput. 2008, 8, 246–260. [CrossRef]

11. Lindgren, A.; Mascolo, C.; Lonergan, M.; McConnell, B. Seal-2-Seal: A delay-tolerant protocol for contact
logging in wildlife monitoring sensor networks. In Proceedings of the 2008 5th IEEE International Conference
on Mobile Ad Hoc and Sensor Systems, Atlanta, GA, USA, 29 September–2 October 2008; pp. 321–327.

12. Noulas, A.; Scellato, S.; Lathia, N.; Mascolo, C. Mining User Mobility Features for Next Place Prediction in
Location-Based Services. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining,
Brussels, Belgium, 10–13 December 2012; pp. 1038–1043.

13. Hristova, D.; Noulas, A.; Brown, C.; Musolesi, M.; Mascolo, C. A multilayer approach to multiplexity and
link prediction in online geo-social networks. EPJ Data Sci. 2016, 5, 24. [CrossRef]

14. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME J. Basic Eng.
1960, 82, 35–45. [CrossRef]

http://dx.doi.org/10.1016/j.jpowsour.2010.11.152
http://dx.doi.org/10.1109/TPEL.2013.2238683
http://dx.doi.org/10.1016/j.trc.2012.09.009
http://dx.doi.org/10.1111/2041-210X.12839
http://dx.doi.org/10.1109/TMC.2008.107
http://dx.doi.org/10.1140/epjds/s13688-016-0087-z
http://dx.doi.org/10.1115/1.3662552


Sensors 2018, 18, 3597 16 of 16

15. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB; Wiley-Blackwell:
Hoboken, NJ, USA, 2008.

16. Savanth, A.; Bellanger, M.; Weddell, A.; Myers, J.; Kauer, M. Energy neutral sensor system with micro-scale
photovoltaic and thermoelectric energy harvesting. J. Phys. Conf. Ser. 2018, 1052, 012069. [CrossRef]

17. Mishra, D.; De, S.; Chowdhury, K.R. Charging Time Characterization for Wireless RF Energy Transfer.
IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 362–366. [CrossRef]

18. Faranda, R. A new parameters identification procedure for simplified double layer capacitor two-branch
model. Electr. Power Syst. Res. 2010, 80, 363–371. [CrossRef]

19. Zhu, T.; Zhong, Z.; Gu, Y.; He, T.; Zhang, Z.L. Leakage-aware Energy Synchronization for Wireless Sensor
Networks. In Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services,
Krakow, Poland, 22 June 2009; ACM: New York, NY, USA, 2009; pp. 319–332.

20. Zhu, T.; Zhong, Z.; He, T.; Zhang, Z.L. Energy-synchronized computing for sustainable sensor networks.
Ad Hoc Netw. 2013, 11, 1392–1404. [CrossRef]

21. Alneyadi, F.; Alkaabi, M.; Alketbi, S.; Hajraf, S.; Ramzan, R. 2.4 GHz WLAN RF energy harvester for passive
indoor sensor nodes. In Proceedings of the 2014 IEEE International Conference on Semiconductor Electronics
(ICSE2014), Kuala Lumpur, Malaysia, 27–29 August 2014; pp. 471–474.

22. Le, G.T.; Tran, T.V.; Lee, H.S.; Chung, W.Y. Long-range battery-less RF sensor for monitoring the freshness of
packaged vegetables. Sens. Actuators A Phys. 2016, 237, 20–28. [CrossRef]

23. Ajmal, T.; Dyo, V.; Allen, B.; Ivanov, I. Design and optimisation of compact RF energy harvesting device for
smart applications. Electron. Lett. 2014, 50, 111–113. [CrossRef]

24. Dyo, V.; Ajmal, T.; Allen, B.; Jazani, D.; Ivanov, I. Design of a ferrite rod antenna for harvesting energy from
medium wave broadcast signals. J. Eng. 2013, 2013, 89–96. [CrossRef]

25. Mekikis, P.V.; Antonopoulos, A.; Kartsakli, E.; Alonso, L.; Verikoukis, C. Connectivity Analysis in
Wireless-Powered Sensor Networks with Battery-Less Devices. In Proceedings of the 2016 IEEE Global
Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1742-6596/1052/1/012069
http://dx.doi.org/10.1109/TCSII.2014.2387732
http://dx.doi.org/10.1016/j.epsr.2009.10.024
http://dx.doi.org/10.1016/j.adhoc.2010.11.005
http://dx.doi.org/10.1016/j.sna.2015.11.013
http://dx.doi.org/10.1049/el.2013.3434
http://dx.doi.org/10.1049/joe.2013.0126
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Energy Trade-Offs for Mobile Systems
	Charging Problem
	Keeping the Charge
	Task Size

	Approach
	Hardware Platform
	Switching Algorithm

	Simulations
	Usable Harvested Energy
	Sensor Coverage
	Sensor Activations
	Available Energy

	Prototype
	Charging Time
	Sensor Node Lifetime
	Dynamic Capacitor Switching

	Related Work
	Conclusions and Future Work
	References

