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Abstract: With the rapid development of smart grid technologies, communication systems are
further integrated in the existing power grids. The real-time capability and reliability of the power
applications are receiving increasing concerns. Thus, it is important to measure the end-to-end
delay in communication systems. The network calculus theory has been widely applied in the
communication delay measuring tasks. However, for better operation performance of power systems,
most power applications require synchronous data communication, in which the network calculus
theory cannot be directly applied. In this paper, we expand the network calculus theory such that it
can be used to analyze the communication delay for power applications in smart grids. The problem
of communication delay calculation for the synchronization system is converted into a maximum path
problem in graph theory. Finally, our theoretical results are compared with the experimental ones
obtained with the network simulation software EstiNet. The simulation results verify the feasibility
and effectiveness of the proposed method.

Keywords: smart grid; measurement and control system; performance analysis;
end-to-end communication

1. Introduction

With the development of modern communication, computing, network and control technologies,
the applications of information technology continue to expand. The combination of information and
energy technology has become an inevitable trend of the development for future power systems.
This combination has also spawned a new concept: smart grid, which is able to utilize advanced
information technology to improve energy management [1–4]. With smart grid technologies, we are
able to control energy flows in power systems more efficiently and precisely.

Communication networks play a key role in the operation and management of smart grids [5,6].
In the monitoring system of a smart grid, a large amount of data needs to be processed and analyzed
for the control and dispatch of power systems. The performance of the end-to-end communication
of network has an important impact on the real-time capability and reliability of the monitoring
system. The end-to-end performance of a communication network concerns both network transmission
performance and computational performance. In addition, based on the analysis of smart grid
wide-area monitoring cases in [7,8], the data synchronization performance is also one of the basic
requirements in smart grid monitoring systems.

The monitoring system for a smart grid is a typical network computing system [9]. For analysis,
the network computing system can be regarded as a service system. Stochastic queuing theory, which is
developed based on theories of Poisson process and Markov process, plays an important role in the
performance analysis of network service systems such as telephone and telegraph networks [10].
However, with the development of computer network systems, network structures and network
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applications have become more complicated and diverse. The traffic flow in communication networks
exhibits properties different from those of Poisson and Markov processes. Therefore, the stochastic
queuing theory would produce large deviations when applied to analyze the modern computer
networks [11]. On the other hand, the stochastic queuing theory can only provide limited performance
metrics, such as the average waiting time and variance of the service system. It cannot be used to
obtain the deterministic analysis of the system performance. In order to tackle more complicated
analysis of modern network service systems, network calculus theory was proposed [12,13].

The network calculus theory can be applied to the performance analysis for service systems. It can
be divided into two branches: deterministic network calculus theory and stochastic network calculus
theory; see, e.g., [12,14]. The deterministic network calculus theory can be used to calculate the upper
and lower bounds for different kinds of maximum performance of a service system. For example,
the maximum delay, the maximum backlog, etc. The stochastic network calculus theory is able to
provide the probability distributions for the performance boundaries of a service system, such as the
distribution of the maximum delay and the distribution of the maximum backlog. Within the field of
smart grids, there are also a number of related research outputs based on communication networks
and power grids [15–17]. In [18,19], network calculus theory is used to construct a reliability model
for a power system which consists of conventional power generation devices, loads and renewable
energy sources such as photovoltaic panels and wind power generators, achieving better utilization
of renewable energy in smart grids. In [20], network calculus theory is employed to calculate the
performance of communication systems in home area networks. Targeting at the operational stability
and security of power systems, a bounded model of communication delay is proposed based on
network calculus theory in [21].

Despite the great success in applications within smart grids, network calculus theory is
not able to handle the communication system with synchronous computing requirements [7].
Unfortunately, there are vast data synchronization requirements in smart grid applications. For a
communication system which requires synchronous computing, the end-to-end delay of the system
is not only related to the transmission delay, but also related to the difference of delay in different
channels, which is not considered in network calculus theory. Thus, deterministic network calculus
theory cannot be directly used to provide an estimation for the upper bound of the smart grid
monitoring system’s end-to-end delay.

In this paper, based on network calculus theory and the analysis for delay of synchronous
communication system, it is shown that the problem to calculate the upper bound for end-to-end delay
in the synchronous communication system can be transformed to a general maximum/shortest path
selection problem in graph theory. Next, we propose a new method to provide an estimation for the
upper bound of the smart grid monitoring system’s end-to-end delay. To show the feasibility and
effectiveness of our proposed method, several numerical simulations are performed.

The importance and contributions of this paper are stated as follows:

(1) A class of typical communication model for the monitoring system is investigated in this paper.
The transmission network in the smart grid monitoring system is modeled as a transmission
service node, such that network calculus theory can be applied. In this sense, the analysis methods
proposed in this paper can be used under most scenarios of monitoring systems in the field of
smart grid.

(2) It is notable that due to the synchronous property of the smart grid applications, the original
network calculus theory cannot be directly applied in the delay analysis discussed in this
paper. Based on the network calculus theory, an upper bound for the end-to-end delay in
the synchronous communication system is derived. The simulations demonstrate the feasibility
of the proposed method. With the development of the smart grid systems, there will be more
applications based on the monitoring systems, and the theoretical results obtained in this paper
can be utilized to improve the reliability and efficiency of the smart grid systems.
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(3) In this paper, three theorems are proposed as our main results. In Theorem 1, the upper bound for
the transmission delay in a transmission service node with strict service curve is derived. The data
transmission delay in different time periods are discussed in detail. In Theorem 2, the formula
for upper bound of system’s delay with multiple times of data exchange is derived. In Theorem
3, a general upper bound for transmission delay in the considered system is proposed.

The rest of the paper is organized as follows: Section 2 introduces the considered synchronous
calculation model. Section 3 presents the theoretical analysis for the upper bound of the end-to-end
communication delay in the considered model. Section 4 provides several numerical simulations to
evaluate our main results. Finally, a conclusion is given in Section 5.

2. Typical Models for the Synchronous Communication Systems

Consider the synchronous calculation and transmission model in Figure 1. Such a model has
been extensively studied in [7], and it is a typical synchronous communication model for monitoring
systems in smart grids.
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Figure 1. Synchronous calculation and transmission service model for the monitoring system.

In Figure 1, R1(t) and R2(t) stand for the input of two sets of monitoring data, and the
corresponding arrival curves of the monitoring data are α1 and α2. Similar to the data arrival curves
proposed in network calculus theory [22], S1 and S2 represent for the equivalent transmission service
nodes where the monitoring data go through the control center, and the corresponding service curves
are denoted as β1 and β2. Here, the data arrival curve is the characteristic curve which is used to
describe the monitoring data. We denote S3 as an equivalent computing service node, with the scaling
function being S(n) and the calculation service curve being C. S4 is denoted as a follow-up service
model, with its the service curve denoted as β4. Before R1(t) and R2(t) enter into S3, they go through
a synchronous link which causes the equivalent transmission service curve changing. Let us denote β′1
and β′2 as the equivalent transmission service curves after the synchronization link. Here, β′1 and β′2
are functions of β1 and β2, i.e., β′1 = F1(β1, β2), and β′2 = F2(β1, β2).

The smart grid’s wide area measurement system has three components: power monitor unit
(PMU), communication network and controller. The operation parameters of the utility grid within
different regions are measured by PMU. Based on the time scale from the global positioning system,
such data is sent to the control center for analysis and procession. Let G1(t) and G2(t) be defined
as the amount of data that is generated by Sensor 1 and Sensor 2 with time scale t, respectively.
Then, we have:

R1(t) =
∫ t

0
G1(t)dt,

and:

R2(t) =
∫ t

0
G2(t)dt.

Next, the flow ratio is defined. Here, we assume that the sensor has a synchronous clock,
and the time scale of data is marked at the same time, i.e., if G2(t) 6= 0, then G1(t) 6= 0. We assume
that G2(t) 6= 0, and we define ρmax , max G1(t)

G2(t)
, and ρmin , min G1(t)

G2(t)
. The data arriving at S3 is

synchronized. The aggregate received data calculation service curve is C. Then, we have the minimal
computational service curve for R1, which is ρmin

1+ρmin
C. Similarly, for R2, the minimal computational

service curve is 1
1+ρmax

C.
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According to the above assumptions and calculation model of unified service transmission,
the equivalent end-to-end service model for monitoring data R1 is obtained as follows:

β′1 ⊗
ρmin

1 + ρmin

[
C⊗ S−1(β4)

]
= F1(β1, β2)⊗

ρmin
1 + ρmin

[
C⊗ S−1(β4)

]
, (1)

where the notation ⊗ stands for the convolutional operator. Similarly, the equivalent end-to-end
service model for monitoring data R2 can be obtained as follows:

β′2 ⊗
1

1 + ρmax

[
C⊗ S−1(β4)

]
= F2(β1, β2)⊗

1
1 + ρmax

[
C⊗ S−1(β4)

]
.

In real-world scenarios, the monitoring data is normally the same. Hence, ρmax = ρmin = 1.
In the above model, both sensors R1 and R2 reach the service node S3 simultaneously due to the
synchronization process. Thus, their processing time is also the same. After the calculation processing,
the data of sensor R1 and R2 go through the same service node S4 with the same time delay. This refers
to the so-called synchronization property; see, [7], and the references therein.

Based on the synchronous property, the end-to-end delay of the synchronization system can
be analyzed. We assume that the data of sensor R1 always arrives earlier than that of R2 during a
given time period [0, t]. This means that the data of R1 always waits for that of R2 in the section
of synchronization. As soon as the data of R2 arrives, it can be input into the service node S3.
Hence, regarding R2 the equivalent service curve is not changed via the synchronized transmission
link, and we have β′2 = F2(β1, β2) = β2. According to [7], the end-to-end service curve of R2 can be
expressed as:

β2 ⊗
1

1 + ρmax

[
C⊗ S−1(β4)

]
. (2)

According to the service theorems in network calculus theory [22] and the obtained public network
flow model, β2 and β4 can be obtained directly. We have the upper bound of the end-to-end delay of
R2 being:

h
(

α2, β2 ⊗
1

1 + ρmax

[
C⊗ S−1(β4)

])
. (3)

However, the equivalent transmission service curve of R1 has been changed, since the data of R1

cannot go through service node S3 until the arrival of the R2. Then, we have β′1 = F1(β1, β2) 6= β1.
In fact, due to the waiting time of data, the delay of R1’s data may increase. Then, we have β′1 ≤ β1.
According to the synchronization property, the end-to-end delay of R1 and R2 are the same, even if β′1
is unable to be obtained. The upper bound of the end-to-end delay of R1 can be expressed by (3).

The problem is that the conclusion of (3) was tenable, only if we assume that R1’s data always
arrives earlier than R2’s. If R1’s data arrives later than R2’s after time t∗, the expression of the
end-to-end service curve of R1 is presented as (4), which shall be investigated in Section 3:

β1 ⊗
ρmin

1 + ρmin

[
C⊗ S−1(β4)

]
. (4)

Although the data of R1 arrives later, most of the equivalent transmission curve of R1 has
already changed before t∗. So, the service curve of R1 cannot be β1, i.e., (4) cannot be the equivalent
transmission service curve to R1. In order to calculate the end-to-end delay in this case, the delay
theory of the suspension service system is discussed in Section 3.

3. Calculation of Equivalent Delay of Monitoring System

The main results of the equivalent delay calculation are provided as three theorems in this section.
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3.1. Delay Theorem of Suspension Service System

Theorem 1. Consider an input R(t) through a service node which has the strict service curve β(t). The system
does not provide any service during t1 < t < t2. We assume that R∗(t1) is known and time delay of the original
system is d(t). For t > t1, the delay is denoted as d′(t). Then, d′(t) satisfies the following inequality:

d′(t) ≤ d(t) ∨ [in f {τ ≥ 0, R(t)− R∗(t1) ≤ β(τ)}+ t2 − t], (5)

where ‘∨’ refers taking the maximum value.

The proof of Theorem 1 is given in Appendix A; see, Appendix A.1.
Before time t∗, data of R1 always arrives earlier than that of R2. But after time t∗, on the contrary,

R2’s data arrives earlier. The service received by R1 can be equivalent to a suspended service system,
and the suspended time period is d1(t∗) < t < d2(t∗), where d1(t∗) and d2(t∗) are obtained from (2)
and (4), respectively. Because of the synchronization, the data which was supposed to be processed in
d1(t∗) by R1 will not be completed until d2(t∗), and this is equivalent to the system being suspended
for R1.

3.2. Synchronization System Delay Analysis

Since the data sent by sensors is in accordance with a fixed sampling interval, we denote the time
scale of such data as T1 < T2 < T3 < · · · < Tn. Then, we have:

R1(t) =
m(Tm≤t<Tm+1)

∑
k=1

G1(Tk), and R2(t) =
m(Tm≤t<Tm+1)

∑
k=1

G2(Tk).

Let us introduce the following definitions.

Definition 1. Let us denote β1
R1, β2

R1, β1
R2, β2

R2 as service curves of flow R1 and flow R2 before and after the
synchronous link, respectively, then we have β1

R1 = β1, β1
R2 = β2, and:

β2
R1 =

ρmin
1 + ρmin

[
C⊗ S−1(β4)

]
, β2

R2 =
1

1 + ρmax

[
C⊗ S−1(β4)

]
.

Definition 2. Denote dx
i (t) as the delay upper bound calculated by the equivalent service model using flow i,

after the data arrival sequence changes for the x-th time. Denote Di(t) as the upper bound of the system delay
before time t, when the data arrival order has already changed i times. Then, we have:

D0(t) = d0
1(t) ∨ d0

2(t),

D1(t) = d1
1(t) ∨ d1

2(t),

· · ·

Dn(t) = dn
1 (t) ∨ dn

2 (t).

We assume that the flow arrival curves for R1 and R2 are α1 and α2, respectively, and data of
R1 always arrives earlier than that of R2 at the synchronization service node no later than time Tx1 .
The flow delay of R2 is d0

2(t). If there is no synchronization mechanism, flow delay of R1 is d0
1(t).

Since R1’s data always arrives earlier than R2’s, the system delay should be R2’s delay which is d0
2(t).

According to network calculus theory, we have d0
2(t) = h(α2, βR2).

After time Tx1 , R2’s data arrives earlier than R1’s at the synchronization service node. Thereafter,
the delay of R1 should be taken as the system delay. However, due to the waiting time of flow R1,
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the original system delay βR1 has changed. According to the analysis in Section 3.1, the equivalent
time period of flow R1 is obtained as follows:

Tx1 + d0
1(Tx1) < t < Tx1 + d0

2(Tx1). (6)

Flow R1 can be seen as the output of the suspensive service β2
R1 which comes from service β1

R1
first. The suspension time for service β2

R1 is the length of the time period given in (6). Assume that the
data from flow R1 passes by β1

R1, the output is R1
1(t) at time t, and the data from flow R1 reaches the

synchronization link at time t′. Obviously, R1
1(t
′) = R1(t).

Since the considered system is a periodic sampling monitoring system, data can only be
transmitted in a fixed time period. The delay of the data transmission needs to be taken into
consideration only when data is transmitted. Let us define t = Tm.. Thus, t′ defined above stands for
the time when data with time scale Tm reaches the synchronize link.

Assuming that the output of flow R1 by service β1
R1, synchronization and service β2

R1 at time Tm

is R∗1(t), then, for the suspended starting point Tx1 + d0
1(Tx1), we have:

R∗1
(

Tx1 + d0
1(Tx1)

)
=

x1

∑
k=1

G1(Tk).

Discussions for the value of m in Tm is given in Appendix A; see, Appendix A.2.
Let us assume that after time scale Tx2 , data R1 arrives the synchronization node before data R2

with the same time scale. R2’s traffic can be seen as the output of the suspensive service β1
R2 which

gets through service β2
R2 first. The suspension time is:

Tx2 + d0
2(Tx2) < t < Tx2 + d1

1(Tx2).

Therefore, Tm > Tx2 , the upper bound of data delay be expressed as:

d2
2(Tm) = d0

2(Tm) ∨ d1
1(Tm) ∨

[
ϕ(m, Tx2 , 2) + d1

1(Tx2) + Tx2 − Tm

]
.

In accordance with the discussion of above, when Tω ≥ Tx1 :

d1
1(Tω) = d0

1(Tω) ∨ d0
2(Tω) ∨

[
ϕ(ω, Tx1 , 1) + d0

2(Tx1) + Tx1 − Tω

]
.

If d1
1(Tx2) = d0

2(Tx2), then the equivalent model of the service is not suspended, so (Tm) = d0
2(Tm).

Otherwise, we can obtain:

d2
2(Tm) = d0

2(Tm) ∨ d0
1(Tm) ∨

[
ϕ(m, Tx1 , 1) + d0

2(Tx1) + Tx1 − Tm
]

∨
[
ϕ(m, Tx2 , 2) + d0

1(Tx2) + Tx2 − Tm
]

∨
[
ϕ(m, Tx2 , 2) + ϕ(Tx2 , Tx1 , 1) + d0

2(Tx1) + Tx1 − Tm
]
.

The problem is that the time of x1 and x2 cannot be obtained with the existing theory in network
calculus [22]. The maximum of:

d1
1(Tω) = d0

1(Tω) ∨ d0
2(Tω) ∨

[
ϕ(ω, Tx1 , 1) + d0

2(Tx1) + Tx1 − Tω

]
.

is the bound of the system, which is:

Max1≤x1,x1+2≤ω

[
ϕ(ω, Tx1 , 1) + d0

2(Tx1) + Tx1 − Tω

]
.
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So, for Tx2 ≥ Tω ≥ Tx1 ,

d1
1(Tω) ≤ d0

1(Tω) ∨ d0
2(Tω) ∨Max1≤θ,θ+2 ≤ω

[
ϕ(ω, Tθ , 1) + d0

2(Tθ) + Tθ − Tω

]
≤ d0

1(Tω) ∨ d0
2(Tω) ∨Max1≤θ ≤ω

[
ϕ(ω, Tθ , 1) + d0

2(Tθ) + Tθ − Tω

]
.

Furthermore, for Tm > Tx2 :

d2
2(Tm) ≤ d0

2(Tm) ∨d0
1(Tm)

∨Max1≤θ1≤m
[

ϕ
(
m, Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
∨Max1≤θ2≤m

[
ϕ(m, 2) + d0

1
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤m

[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
.

Given θ1 = θ2, according to (A1), we have:

Max1≤θ1=θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
=

Max1≤θ1≤m
[
ϕ
(
m, Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
.

So, for Tm ≥ Tx2 , we have:

d2
2(Tm) ≤ d0

2(Tm) ∨ d0
1(Tm) ∨Max1≤θ2≤m

[
ϕ
(
m, Tθ2 , 2

)
+ d0

1
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤m

[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
.

For Tm > Tx2 , the upper bound of the system delay is d2
1(Tm). For Tx2 ≥ Tω ≥ Tx1 , the upper

bound of the system delay is d1
2(Tω). For Tx1 ≥ Tϕ, the upper bound of the system delay is d0

1
(
Tϕ

)
.

Then, we have:

d2
1(Tm) ≤ Max1≤θ2≤m

[
ϕ
(
m, Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
∨

d0
2(Tm) ∨ d0

1(Tm),

And:
d1

2(Tω) ≤ d0
1(Tω) ∨ d0

2(Tω) ∨Max1≤θ ≤ω

[
ϕ(ω, Tθ , 2) + d0

1(Tθ) + Tθ − Tω

]
.

Therefore, we have

D1(Tω) = d1
1(Tω) ∨ d1

2(Tω) ≤ Max1≤θ≤ω

[
ϕ(ω, θ, 1) + d0

2(Tθ) + Tθ − Tω

]
∨

Max1≤θ≤ω

[
ϕ(ω, θ, 2) + d0

1(Tθ) + Tθ − Tω

]
∨ d0

1(Tω) ∨ d0
2(Tω),

and:
D2(Tm) = d2

1(Tm) ∨ d2
2(Tm) ≤ d0

2(Tm) ∨ d0
1(Tm)∨

Max1≤θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ d0

1
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
∨

Max1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
.

If θ1 = θ2, according to formula (A1), we have:

Max1≤θ1=θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − t

]
=

Max1≤θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ d0

1
(
Tθ2

)
+ Tθ2 − t

]
,

Max1≤θ1=θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − t

]
=

Max1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − t

]
.
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So:

D2(Tm) ≤ Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
∨

d0
2(Tm) ∨ d0

1(Tm).

3.3. Synchronization System Delay Upper Bound Theorem

Theorem 2. The system’s delay upper bound of the n-th exchange of data arrival sequence before time Tm can be
expressed as:

Dn(Tm) = dn
1 (Tm) ∨ dn

2 (Tm),

where dn
1 (Tm) and dn

2 (Tm) have different expressions, which are determined by the property of n.
If n is an odd number, and if the equivalent model of data stream 1 is used after the last change, then data

stream 1 arrives sooner than data stream 2 before the first exchange. If the equivalent model of data stream 2
is used after the last change, then data stream 2 arrives sooner than data stream 1 before the first exchange.
Therefore, we have:

dn
1 (Tm) ≤ Max1≤θ2≤···≤θn≤m

[
ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+ ϕ(θ3, θ2, 1) + d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤···≤θn≤m
[
ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+ ϕ(θ2, θ1, 2) + d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
∨

d0
2(Tm) ∨ d0

1(Tm),

And:

dn
2 (Tm) ≤ Max1≤θ2≤···≤θn≤m

[
ϕ(m, θn, 2) + ϕ(θn, θn−1, 1) + · · ·+ ϕ(θ3, θ2, 2) + d0

1
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn≤m

[
ϕ(m, θn, 2) + ϕ(θn, θn−1, 1) + · · ·+ ϕ(θ2, θ1, 1) + d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
∨d0

2(Tm) ∨ d0
1(Tm).

If n is an even number, and if the equivalent model of data stream 1 is used after the last change, then
data stream 2 arrives sooner than data stream 1 before the first exchange. If the equivalent model of data stream
2 is used after the last change, then data stream 1 arrives sooner than data stream 2 before the first exchange.
Therefore, we have:

dn
1 (Tm) ≤ Max1≤θ2≤···≤θn≤m[ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+ ϕ(θ3, θ2, 1)+

d0
2
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn≤m[ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+

ϕ(θ2, θ1, 2) + d0
1
(
Tθ1

)
+ Tθ1 − Tm

]
∨ d0

2(Tm) ∨ d0
1(Tm),

And:

dn
2 (Tm) ≤ Max1≤θ2≤···≤θn≤m[ϕ(m, θn, 2) + ϕ(θn, θn−1, 1) + · · ·+ ϕ(θ3, θ2, 2)+

d0
1
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn≤m[ϕ(m, θn, 2) + ϕ(θn, θn−1, 1) + · · ·+

ϕ(θ2, θ1, 1) + d0
2
(
Tθ1

)
+ Tθ1 − Tm

]
∨ d0

2(Tm) ∨ d0
1(Tm).

The proof of Theorem 2 is given in the Appendix A (see, Appendix A.3).
In the above theorem, the system’s delay upper bound of the n-th exchange of data arrival

sequence before time Tm is obtained. Next, for any given time t, we drive the expression of system’s
delay upper bound.

Let us define h(α, β, t) = sup0≤s≤t{in fτ≥0{α(s) ≤ β(s + τ)}}.

Theorem 3. At any given time t, the system’s delay upper bound can be expressed as d(t) ≤ h(α, β, t).

The proof of Theorem 2 is given in Appendix A; see, Appendix A.4.
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According to Theorem 3, we have h(α, β, t1) ≤ h(α, β, t2), t1 ≤ t2. According to Theorem 3,
Dn(t) in Theorem 2 can be written as follows (n is an odd number):

Dn(Tm) = dn
1 (Tm) ∨ dn

2 (Tm) ≤ h(α1, βR1, Tm) ∨ h(α2, βR2, Tm)∨
Max1≤θ1≤θ2≤···≤θn≤m

[
ϕ(m, Tθn , 1)ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , 2

)
+

h
(
α1, βR1, Tθ1

)
+ Tθ1 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn≤m[ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+

ϕ(θ2, θ1, 1) + h
(
α2, βR2, Tθ1

)
+ Tθ1 − Tm

]
.

3.4. The Method of Calculation of the Upper Bound Equivalent Synchronization System Delay

Furthermore, consider the case of p-channel data, if it needs to be synchronized. The flows are
represented as 1, 2, · · · , p. According to the similar analysis in Sections 3.2 and 3.3, the upper bound
of the delays can be represented using the model as follows:

Dn(Tm) = dn
1 (Tm) ∨ dn

2 (Tm) ∨ · · · ∨ dn
p(Tm) ≤

Max1≤θ1≤θ2≤···≤θn−1≤θn≤m,xk 6=xk+1(1≤xk≤p)
[
ϕ(m, Tθn , xn) + ϕ

(
Tθn , Tθn−1 , xn−1

)
+ · · ·+

ϕ
(
Tθ2 , Tθ1 , x2

)
+ h
(
αx1 , βx1 , Tθ1

)
+ Tθ1−

Tm]∨h(α1, βR1, Tm) ∨ h(α2, βR2, Tm) ∨ · · · ∨ h
(
αp, βRp, Tm

)
.

We define:

f (t) = {1 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn−1 ≤ θn ≤ m, xk 6= xk+1(1 ≤ xk ≤ p)|ϕ(m, Tθn , xn)+

ϕ
(
Tθn , Tθn−1 , xn−1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , x2

)
+ h
(
αx1 , βRx1 , Tθ1

)
+ Tθ1

}
.

Therefore:

Dn(Tm) ≤ (Max f (Tm)− Tm) ∨ h(α1, βR1, Tm) ∨ h(α2, βR2, Tm) ∨ · · · ∨ h
(
αp, βRp, Tm

)
,

where f (t) can be equivalent to any path from node 0 to node dest in Figure 2. Max f (t) can be
equivalent to obtaining the maximum path.
Sensors 2018, 18, x FOR PEER REVIEW  9 of 22 

 

 

Figure 2. Finding the upper bound of delay. 

There are 𝑝𝑚 + 2 nodes in this graph, and the nodes in the same row do not connect with each 

other. There is no connection between the nodes of the same column, but there is a connection 

between the two nodes in different rows and different columns. Besides, node 0 and any other node 

are connected. Node dest is connected to the node km only, and the distance is 0. The defined distance 

is represented as 𝑙(𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2). So, we have: 

𝑙(0, 𝑘𝑚 + 𝑢) = ℎ(𝛼𝑥𝑘 , 𝛽𝑅𝑥𝑘 , 𝑇𝑢) + 𝑇𝑢,⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ∀0 ≤ 𝑘 ≤ 𝑝 − 1,1 ≤ 𝑢 ≤ 𝑚, 
 

l(𝑘𝑚, 𝑑𝑒𝑠𝑡) = 0,⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ∀1 ≤ 𝑘 ≤ 𝑝, 
 

𝑙(𝑘𝑚 + 𝑢, 𝑟𝑚 + 𝑣) = 𝜑(𝑣, 𝑢, 𝑟 + 1),⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ∀0 ≤ 𝑟, 𝑘 ≤ 𝑝 − 1, 1 ≤ 𝑢 < 𝑣 ≤ 𝑚, 
 

𝜑(𝑣, 𝑢, 𝑟) ={
𝑖𝑛𝑓 {𝜏 ≥ 0， ∑ 𝐺𝑟(𝑇𝑘) ≤

𝑣

𝑘=𝑢+1

𝛽𝑅𝑟
2 (𝜏)},⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ (𝑣 ≥ 𝑢 + 2),

0,⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑒𝑙𝑠𝑒.

 

 

In Figure 2, all paths from node 0 to node dest constitute the value of 𝑓(𝑡). For example, taking 

𝜃1 = 1, 𝜃2 = 2, 𝜃3 = 𝜃4 = ⋯ = 𝜃𝑛 = 𝜃2, 𝑥1 = 1, 𝑥2 = 3, 𝑥3 = 𝑚, we have: 

𝑓(𝑇𝑚) = ℎ(𝛼1, 𝛽𝑅1, 𝑇𝑢) + 𝜑(2,1,3) + 𝜑(𝑚, 2, 𝑝) + 𝑇1 − 𝑇𝑚. 
 

It can be expressed as the path distance which is 𝑙(0,1) + 𝑙(1,2𝑚 + 2) + 𝑙(2𝑚 + 2, 𝑝𝑚). 

4. Monitoring System Delay Experimental Tests 

4.1. Network Topology Simulation and Experimental Design 

The network simulation software EstiNet is used for the experiments. For the sake of simplicity 

and generality, this paper selects the network topology structure shown in Figure 3. In order to 

simulate the time delay of the synchronization system, the data transmission introduced in Algorithm 

1 is carried out in the network of Figure 3. 

Figure 2. Finding the upper bound of delay.

There are pm + 2 nodes in this graph, and the nodes in the same row do not connect with each
other. There is no connection between the nodes of the same column, but there is a connection between
the two nodes in different rows and different columns. Besides, node 0 and any other node are
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connected. Node dest is connected to the node km only, and the distance is 0. The defined distance is
represented as l(node1, node2). So, we have:

l(0, km + u) = h
(
αxk , βRxk , Tu

)
+ Tu, ∀0 ≤ k ≤ p− 1, 1 ≤ u ≤ m,

l(km, dest) = 0, ∀1 ≤ k ≤ p,

l(km + u, rm + v) = ϕ(v, u, r + 1), ∀0 ≤ r, k ≤ p− 1, 1 ≤ u < v ≤ m,

ϕ(v, u, r) =

 in f

{
τ ≥ 0,

v
∑

k=u+1
Gr(Tk) ≤ β2

Rr(τ)

}
, (v ≥ u + 2),

0, else.

In Figure 2, all paths from node 0 to node dest constitute the value of f (t). For example, taking
θ1 = 1, θ2 = 2, θ3 = θ4 = · · · = θn = θ2, x1 = 1, x2 = 3, x3 = m, we have:

f (Tm) = h(α1, βR1, Tu) + ϕ(2, 1, 3) + ϕ(m, 2, p) + T1 − Tm.

It can be expressed as the path distance which is l(0, 1) + l(1, 2m + 2) + l(2m + 2, pm).

4. Monitoring System Delay Experimental Tests

4.1. Network Topology Simulation and Experimental Design

The network simulation software EstiNet is used for the experiments. For the sake of simplicity
and generality, this paper selects the network topology structure shown in Figure 3. In order to
simulate the time delay of the synchronization system, the data transmission introduced in Algorithm
1 is carried out in the network of Figure 3.Sensors 2018, 18, x FOR PEER REVIEW  10 of 22 
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Algorithm 1:

1. Node 1 and 3 send packets in size of 100 kb at intervals of one second to node 42, denoting arrived curves as
α1(t) and α2(t).
2. Send node 42 packets of data to node 11 after synchronization.
3. No. 5, 12, 14, 17, 18, 20, 21, 23, 22, 29 nodes send competing data packets to node 8, to constitute competing
flow R3(t), which reaches curve α3(t).
4. No. 4, 13, 15, 16, 19, 24, 25, 26, 27, 28 nodes send competing data packets to node 8, to constitute competing
flow R4(t), which reaches curve α4(t).
5. No. 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 nodes send competing data packets to node 8, to constitute competing
flow R5(t), which reaches curve α5(t).
6. All the links take bandwidth of 10 Mb. For all routers, the same configuration is used.

In order to assess the feasibility and effectiveness of the proposed method, we design different
α3(t), α4(t), α5(t) in the experiment, which are given as follows. Deploying data generating program,
such that data packets sent by R3 are shown in Figure 4.
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Make competing flows R3(t), R4(t) and R5(t) consistent with data in BC-pAug89 [23] dataset.
The stg-trace file command in software EstiNet can read network flows generated by the specified file.
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4.2. Theoretical Analysis of Delay Bound for Monitoring System

4.2.1. First, the Computation Service Curve and the Scaling Function of Node 42 of the Synchronous
Link Are Given

For simplicity, the synchronization process is to add the number of packets sent by node 1 and
node 3. Then, the scaling function can be expressed as S(a) = 1

2 a. Further testing the processing time
of a char type data. The total time of one million operations is less than 10 milliseconds, which means
the average time for a single operation is less than 0.01 microseconds. In addition, defining the time
complexity as O(n), thus the equivalent service curve can be expressed as C(t) ≥ 100t× 8 = 800t,
where t is in units of microseconds, and C(t) is in units of byte.

4.2.2. When There Are no Competing flows α3(t), α4(t) and α5(t)

Because the propagation delay of the link is set relatively small (1 microsecond, which is
negligible), the delay of the system is mainly composed of processing delay, transfer delay and
queuing delay. The equivalent service model using common links and routers is as follows:

βR,T = R[t− T]+ =

{
R(t− T), t > T,
0, t ≤ T.

Since the propagation delay is small, assuming the router processing delay can be ignored, then
the equivalent service model for each link and router is the bandwidth of the link. Therefore, the
equivalent transport service curve from node 1 to node 42 is β1,42 = β1,2 ⊗ β2,42, where β1,2 = 10t.
Based on the remaining service theorem [7], we have:

β2,42 = 10t− α2(t),

β3,42 = 10t− α1(t).

The equivalent transport service curve from node 11 to node 42 is β42,11 = 10t. Due to the same
amount of data in node 1 and node 3, and according to the previously obtained computing services
curve C(t) of node 9 and scaling function S, we can obtain the equivalent service curve on node 1 and
node 3 to node 11 as follows:

β3,11 = β1,11 = β1,2 ⊗ β2,42 ⊗
1
2

(
C⊗ S−1(β42,11)

)
= 10t− α1(t).

4.2.3. When Adding Competing Flows of α3(t), α4(t) and α5(t)

According to the residual service curve theorem [7], the service curves of node 1 and node 3 to
node 2 are as follows:

β′1,2 = 10t− α3(t),

β′3,2 = 10t− α4(t).

The service curve from node 42 to node 11 is:

β′42,11 = 10t− α5(t).

Thus, the equivalent service curves on node 1 and node 3 to node 11 are as follows:

β′1,11 = β′1,2 ⊗ β2,42 ⊗
1
2

(
C⊗ S−1(β′42,11

))
,

β′3,11 = β′3,42 ⊗ β3,42 ⊗
1
2

(
C⊗ S−1(β′42,11

))
.
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4.2.4. Time Delay Increasing due to Forwarding

Because we adopt socket for packet forwarding in the implementation process, which means the
packets will not be sent to node 11 until the total packets arrive to node 42. Nevertheless, each arrived
packet should be forwarded in normal condition. Thus, the additional time delay is the transmission
delay for the same size of the data packet from node 2 to node 11. Because the link bandwidth is
10 MB, the increase of delay can be obtained with a packet size/bandwidth. Define the delay as ∆t.
The system delay should be superimposed on ∆t in the original calculation of boundary value. Namely,
Dn(t) = Dn(t) + ∆t.

Taking experimental verification of the above analysis, we get 22,625.8 microseconds of delay for
100 Kb packet to be sent from node 1 to node 11 transiting in node 42, and the delay directly sent from
node 1 to node 11 is 12,896.8 µs, where ∆t = 9996.9 ≈ 100 Kb/10 Mbps.

Furthermore, multiple data links are considered to be forwarded. Therefore, the total delay
is required to compose of the delay time for the last packet forwarded through an intermediate
transmission. Intermediate delay δ can be calculated by:

δ = MTU size× (m− 1)/10 Mbps.

4.2.5. Arrival Flow Curve

(a) Arrival flow curve of monitoring sensors.

Since 100 kb monitoring data packet is sent, we can omit the time required for data transmission.
The arrival flow curve on node 1 and node 3 can be represented by the following step function [14]:

Sensors 2018, 18, x FOR PEER REVIEW  12 of 22 

 

𝛽1,2
′ = 10𝑡 − 𝛼3(𝑡),  

𝛽3,2
′ = 10𝑡 − 𝛼4(𝑡).  

The service curve from node 42 to node 11 is:  

𝛽42,11
′ = 10𝑡 − 𝛼5(𝑡).  

Thus, the equivalent service curves on node 1 and node 3 to node 11 are as follows: 

𝛽1,11
′ = 𝛽1,2

′ ⨂𝛽2,42⨂
1

2
(𝐶⨂𝑆−1(𝛽42,11

′ )),  

𝛽3,11
′ = 𝛽3,42

′ ⨂𝛽3,42⨂
1

2
(𝐶⨂𝑆−1(𝛽42,11

′ )).  

4.2.4. Time Delay Increasing due to Forwarding 

Because we adopt socket for packet forwarding in the implementation process, which means the 

packets will not be sent to node 11 until the total packets arrive to node 42. Nevertheless, each arrived 

packet should be forwarded in normal condition. Thus, the additional time delay is the transmission 

delay for the same size of the data packet from node 2 to node 11. Because the link bandwidth is 10 

MB, the increase of delay can be obtained with a packet size/bandwidth. Define the delay as ∆𝑡. The 

system delay should be superimposed on ∆𝑡 in the original calculation of boundary value. Namely, 

𝐷𝑛(𝑡) = 𝐷𝑛(𝑡) + ∆𝑡. 

Taking experimental verification of the above analysis, we get 22,625.8 microseconds of delay 

for 100 Kb packet to be sent from node 1 to node 11 transiting in node 42, and the delay directly sent 

from node 1 to node 11 is 12,896.8 μs, where 𝛥𝑡 = 9996.9 ≈ 100⁡ Kb/10⁡ Mbps. 

Furthermore, multiple data links are considered to be forwarded. Therefore, the total delay is 

required to compose of the delay time for the last packet forwarded through an intermediate 

transmission. Intermediate delay 𝛿 can be calculated by: 

𝛿 = MTU⁡ size × (m − 1)/10⁡ Mbps.  

4.2.5. Arrival Flow Curve 

(a) Arrival flow curve of monitoring sensors. 

Since 100 kb monitoring data packet is sent, we can omit the time required for data transmission. 

The arrival flow curve on node 1 and node 3 can be represented by the following step function [14]: 

𝛼1(𝑡) = ⌈
𝑡

𝑇
⌉ × 100⁡ 𝑘,  

𝛼2(𝑡) = ⌈
𝑡

𝑇
⌉ × 100⁡ 𝑘.  

where time 𝑡 is in units of microseconds, and 𝑇 = 106. 

(b) Competing arrival flow curve according to Figures 4–6. 

Maximum flow within any one second is 10 Mb for competition flow 𝑅3⁡ and 𝑅4. Maximum 

flow within any two seconds is 13 Mb. Arbitrary maximum flow within three seconds is 14 Mb. So, 

we can get the curve as: 

𝛼3(𝑡) = 𝛼4(𝑡) = ⌈
𝑡

3𝑇
⌉ × 10𝑀 + ⌊

𝑡 + 2𝑇

3𝑇
⌋ × 3𝑀 + ⌊
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While for competing flow 𝑅5, the largest flow within any one second is 1 Mb. Therefore, it can 
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where time t is in units of microseconds, and T = 106.

(b) Competing arrival flow curve according to Figures 4–6.

Maximum flow within any one second is 10 Mb for competition flow R3 and R4. Maximum flow
within any two seconds is 13 Mb. Arbitrary maximum flow within three seconds is 14 Mb. So, we can
get the curve as:
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While for competing flow 𝑅5, the largest flow within any one second is 1 Mb. Therefore, it can 

be expressed as: 
While for competing flow R5, the largest flow within any one second is 1 Mb. Therefore, it can be

expressed as:
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Furthermore, since the network bandwidth is 10 Mbps, the data packet size of any transmission
time segment x is Sx ≤ 10x. We can further get constrained conditions for α′3(t), α′4(t), α′5(t) as follows:

σ = t/
(

3× 106
)

,

τ = t%
(

3× 106
)

,

ϑ(t) =


σ× 14M + 10τ,

(
0 ≤ τ ≤ 106),

σ× 14M + 10M + 10(τ − 10̂6),
(
106 < τ ≤ 2× 106),

σ× 14M + 13M + 10(τ − 2× 10̂6),
(
2× 106 < τ ≤ 3× 106),
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α′3(t) = α′4(t) = Min(α3(t), ϑ(t)) = Min(α4(t), ϑ(t)),

α′5(t) = Min(α5(t), 10t).

(c) Competing flow using BC-pAug89 data set.

We describe the competing flow using flow model under Gaussian assumption, and we have:

α3(t) = α4(t) = α5(t) = ρn + k

√√√√nσ2 + 2σ2 ×
n−1

∑
i=1

(n− i)(1 + nα)−
β
α .

If there is no other flow in the system, ∀t > 0, we have:

h(α1(t), β1(t), t) = h(α2(t), β2(t), t) =
200k
10

= 20, 000,

∆t =
100k
10M

× 106 = 10, 000,

δ =
1500 ∗ 8 ∗ 6

10M
× 106 ≈ 6866,

ϕ
(

Tθp , Tθq , 1
)
= ϕ

(
Tθp , Tθq , 2

)
=

100k× (p− q)
10

.

According to the equivalent calculating method in Section 3.4, we have Dn(t) ≤ h
(

α1(t), β′1,11, t
)
+

∆t + δ = 1, 436, 866.
Using the theoretical analysis of BC-pAug89, we get competitive flow model under the generalized

Cauchy hypothesis by Matlab calculation:

α3(t) = α4(t) = α5(t) < t.

The maximum transmission flow per second does not exceed 1 Mb. Therefore:

h
(
α1(t), β′1,11, T

)
= h

(
α1(t), β′1,11(t), 2T

)
= · · · = h

(
α1(t), β′1,11(t), nT

)
<

200k
9

= 22, 222,

ϕ
(

Tθp , Tθq , 1
)
= ϕ

(
Tθp , Tθq , 2

)
=

100k× (p− q)
9

.

According to the equivalent calculating method in Section 3.4, we can obtain:

Dn(t) ≤ h
(
α1(t), β′1,11, t

)
+ ∆t + δ = 22, 222 + 10, 000 + 6866 = 39, 088.

4.3. Simulation Results of Monitoring System Delay

In Figure 7, the simulated network delay is compared with the case where competing flow is not
superimposed. In Figure 8, the simulated network delay is compared with the case where competing
flows in Figures 4–6 are superimposed. In Figure 9, the simulated network delay is compared with the
case where competing flow in BC-pAug89 data set is superimposed.
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Since delay caused by operations such as packet and packetization in the network communication
and processing delay of the routers are not considered in the theoretical calculation, the upper
bound of the theoretical delay calculated in Figures 7 and 9 is smaller than the measured value.
However, such deviation is within 5 milliseconds, which is quite small. According to Figures 7–9,
it can be seen that the theoretical results are close to those obtained by simulation, which indicates the
feasibility and effectiveness of our proposed method.
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5. Summary

In this paper, we propose a new method to provide an estimation for the upper bound of the
smart grid monitoring system’s end-to-end delay. The graph theory approach is utilized to obtain
the results, and simulations demonstrate the feasibility of the proposed method. It is notable that
the main results in this paper are presented in forms of theorems. If the objectively existing system
constraints and system parameter uncertainty are taken into consideration, the studied problem cannot
be solved analytically. Instead, numerical methods, such as deep learning and reinforcement learning
approaches, shall be applied to solve the new problem. On the other hand, with the development of
smart grid technology, the concept of Energy Internet has developed rapidly in recent years [24,25].
Within the architecture of the Energy Internet, power systems and information systems are integrated,
and energy and information are fused, such that a better scheduling and management of various kinds
of energy can be achieved [3,25]. The latency problem of communication systems considered in this
paper exists in the Energy Internet as well. In addition, the analysis of communication delay can be
further extended to energy transmission systems [4,26]. In the future, we will conduct research on
communication systems within scenarios of the Energy Internet.
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Appendix A.

Appendix A.1. Proof of Theorem 1

Proof. We prove this theorem on two cases.

(1) First, when t > t2, assuming the new system’s backlog is B′(t) at time t, obviously, we have
B′(t) ≥ B(t).

(a) Let us consider the case of B′(t) > B(t).

For the suspension service system, the backlog for the system at time t2 is R(t2)− R∗(t1). For the
service system which is not suspended, the backlog at time t2 is R(t2)− R∗(t2). Hence, the incremental
backlog is R∗(t2) − R∗(t1) at time t2, and this term is defined as a suspensive backlog caused by
the suspension.

Under the same circumstances, we assume the process is after suspensive backlog. The server
will only deal with the suspensive backlog in the idle moment. If the system suspensive backlog
increases at time t, then we claim the suspensive backlog has not been finished yet, which means that
the system is not idle from t2 to t. Since B′(t) > B(t) ≥ 0, the system will still be busy until B′(t) has
been finished processing. Afterwards, whether the system is busy or not is not taken into consideration.
Assuming that B′(t) finishes at time t + τ, then d′(t) = τ.

Since the system has always been busy from t2 to t+ τ, the amount of data that can be processed is
at least β(t + τ − t2), while the actual amount of data from t2 to t + τ is R(t)− R∗(t1). Then, we have:

β(t + τ − t2) ≤ R(t)− R∗(t1).

Since β is a generalized increment function, we have:

τ ≤ [in f {τ ≥ 0, R(t)− R∗(t1) ≤ β(τ)}+ t2 − t].

(b) Let us consider the case of B′(t) = B(t).
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System backlog at time t is not changed, which means the system delay at time t is unchanged,
i.e., d′(t) = d(t). If we combine the above two situations, we obtain:

d′(t) = d(t) ∨ τ ≤ d(t) ∨ [in f {τ ≥ 0, R(t)− R∗(t1) ≤ β(τ)}+ t2 − t], ∀t > t2.

(2) Second, we focus on the situation when t1 < t < t2.

Since the system was suspended from t1 to t2, the traffic flow within t1 to t2 will start to be
processed after t2. Therefore, the completion time t f in of its processing satisfies:

t f in ≤ in f {τ ≥ 0, R(t)− R∗(t1) ≤ β(τ)}+ t2.

So, we obtain the delay as:

d′(t) = t f in − t = [in f {τ ≥ 0, R(t)− R∗(t1) ≤ β(τ)}+ t2 − t],

which finishes the proof. �

Appendix A.2. Discussions for the Value of m in Tm

(a) For the case m = x1 + 1, we derive the upper bound of system delay d1
1(Tm).

i If t′ > Tx1 + d0
2(Tx1), data of R1 with time scale Tm arrives at the synchronization link

after the data with the previous time scale is processed. It means that at time t′, β2
R1’s

backlog would not increase. According to Theorem 1, d1
1(Tm) = d0

1(Tm).
ii If t′ < Tx1 + d0

2(Tx1), according to the rules that first come first served, for β2
R1, data will

not be processed until time Tx1 + d0
2(Tx1). Since data of R2 arrives first, data of R2 with

time scale Tm has arrived at time t′. β2
R2 would have to wait until Tx1 + d0

2(Tx1) before
processing the data. The system delay can be expressed by the equivalent delay of R2,
and we have d1

1(Tm) = d0
2(Tm).

According to Case i and Case ii, if m = x1 + 1, the upper bound of system delay can be expressed
as d1

1(Tm) = d0
1(Tm) ∨ d0

2(Tm).

(b) For the case m ≥ x1 + 2, we derive the upper bound of system delay d1
1(Tm).

iii If t′ > Tx1 + d0
2(Tx1) at time t′, the backlog of β2

R1 may have increased. If so, according to
Theorem 1, we can obtain the delay bound ∆ as:

∆ = in f
{

τ ≥ 0, R1
1
(
t′
)
− R∗1

(
Tx1 + d0

1(Tx1)
)
≤ β2

R1(τ)
}
+ Tx1 + d0

2(Tx1)− t′.

Since R1
1(t
′) and R1(Tm) are identical, and they stand for the total delay of the data which were

sent at time Tm and passed by β2
R1, we can obtain the data delay at time Tm as:

d1
1(Tm) = ∨+ t′ − Tm.

Therefore, if β2
R1’s backlog has increased at time t′, then:

d1
1(Tm) =

[
in f
{

τ ≥ 0, R1(Tm)− R∗1
(

Tx1 + d0
1(Tx1)

)
≤ β2

R1(τ)
}
+ Tx1 + d0

2(Tx1)− Tm

]
.
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Conversely, if it hasn’t, then d1
1(Tm) = d0

1(Tm). Since:

R(Tm)− R∗1
(

Tx1 + d0
1(Tx1)

)
=

m(m≥x1+2)

∑
k=x1+1

G1(Tk),

We have:

d1
1(Tm) = d0

1(Tm) ∨
[

in f

{
τ ≥ 0,

m(m≥x1+2)

∑
k=x1+1

G1(Tk) ≤ β2
R1(τ)

}
+ Tx1 + d0

2(Tx1)− Tm

]
.

iv If t′ < Tx1 + d0
2(Tx2), data will not be processed until Tx1 + d0

2(Tx1), and the upper bound
of the finishing time is:

t f in = in f
{

τ ≥ 0, R1
1
(
t′
)
− R∗1

(
Tx1 + d0

1(Tx1)
)
≤ β2

R1(τ)
}
+ Tx1 + d0

2(Tx1).

Thereby, the system delay still satisfies:

d1
1(Tm) = t f in − Tm,

d1
1(Tm) = in f

{
τ ≥ 0,

m(m≥x1+2)

∑
k=x1+1

G1(Tk) ≤ β2
R1(τ)

}
+ Tx1 + d0

2(Tx1)− Tm.

With the results in Case iii and Case iv, for the data sent at time Tm, its upper bound of end-to-end
delay can be expressed as:

d1
1(Tm) = d0

1(Tm) ∨ d0
2(Tm) ∨

[
in f

{
τ ≥ 0,

m(m≥x1+2)

∑
k=x1+1

G1(Tk) ≤ β2
R1(τ)

}
+ Tx1 + d0

2(Tx1)− Tm

]
.

Apparently, for ∀x > x1, d0
2(Tx) ≤ d1

1(Tx).
We define the following formulas:

ϕ(m, θ, 1) =

 in f

{
τ ≥ 0,

m
∑

k=θ+1
G1(Tk) ≤ β2

R1(τ)

}
, m ≥ θ + 2,

0, else,

ϕ(m, θ, 2) =

 in f

{
τ ≥ 0,

m
∑

k=θ+1
G2(Tk) ≤ β2

R2(τ)

}
, m ≥ θ + 2,

0, else,

ϕ(θm, θn, 1) =

 in f

{
τ ≥ 0,

θn
∑

k=θm+1
G1(Tk) ≤ β2

R1(τ)

}
, θn ≥ θm + 2,

0, else,

ϕ(θm, θn, 2) =

 in f

{
τ ≥ 0,

θn
∑

k=θm+1
G2(Tk) ≤ β2

R2(τ)

}
, θn ≥ θm + 2,

0, else.

Then, we have:

ϕ
(
θp, θm, 2

)
+ ϕ(θm, θn, 1) =

{
ϕ
(
θp, θn, 1

)
, (θn = θm),

ϕ
(
θp, θm, 2

)
+ ϕ(θm, θn, 1), (θm > θm).

(A1)
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From Case (a) and Case (b), for data with time scale Tm, its upper bound of delay can be
expressed as:

d1
1(Tm) = d0

1(Tm) ∨ d0
2(Tm) ∨

[
ϕ(m, Tx1 , 1) + Tx1 + d0

2(Tx1)− Tm

]
.

Appendix A.3. Proof of Theorem 2

Proof. Using the mathematical induction, according to the analysis in Section 3.2, we have:

d1
1(Tm) ≤ Max1≤θ≤m

[
ϕ(m, θ, 1) + d0

2(Tθ) + Tθ − Tm

]
∨ d0

1(Tm) ∨ d0
2(Tm),

d1
2(Tm) ≤ Max1≤θ≤m

[
ϕ(m, θ, 2) + d0

1(Tθ) + Tθ − Tm

]
∨ d0

1(t) ∨ d0
2(Tm),

d2
2(Tm) ≤ Max1≤θ2≤m

[
ϕ
(
m, Tθ2 , 2

)
+ d0

1
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 2

)
+ ϕ

(
Tθ2 , Tθ1 , 1

)
+ d0

2
(
Tθ1

)
+ Tθ1 − Tm

]
∨

d0
1(Tm) ∨ d0

2(Tm),

d2
1(Tm) ≤ Max1≤θ2≤m

[
ϕ
(
m, Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨

Max1≤θ1≤θ2≤m
[
ϕ
(
m, Tθ2 , 1

)
+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
∨

d0
1(Tm) ∨ d0

2(Tm).

Assuming n is an odd number, and the following inequality is satisfied:

dn−1
1 (Tω) ≤ Max1≤θ2≤···≤θn−1≤ω

[
ϕ(ω, θn−1, 1) + · · ·+ ϕ(θ3, θ2, 1) + d0

2
(
Tθ2

)
+ Tθ2−

Tω ] ∨Max1≤θ1≤θ2≤···≤θn−1≤ω

[
ϕ(ω, θn−1, 1) + · · ·+ ϕ(θ2, θ1, 2) + d0

1
(
Tθ1

)
+ Tθ1 − Tω

]
∨

d0
1(Tω) ∨ d0

2(Tω)

dn−1
2 (Tω) ≤ Max1≤θ2≤···≤θn−1≤ω

[
ϕ(ω, θn−1, 2) + · · ·+ ϕ(θ3, θ2, 2) + d0

1
(
Tθ2

)
+ Tθ2−

Tω ] ∨Max1≤θ1≤θ2≤···≤θn−1≤ω

[
ϕ(ω, θn−1, 2) + · · ·+ ϕ(θ2, θ1, 1) + d0

2
(
Tθ1

)
+ Tθ1 − Tω

]
∨

d0
1(Tω) ∨ d0

2(Tω).

Consider exchanges for n times. First let us consider dn
2 (t). It can be seen as equivalent to the

output of R2 through service β1
R2 after the suspension of β2

R2, where the pause period is Txn + d0
2(Txn) <

t < Tx2 + dn−1
1 (Txn). We have:

dn
2 (Tm) ≤ d0

2(Tm)∨ dn−1
1 (Tm) ∨Max1≤θ1≤θ2≤···≤θn−1≤θn≤m[ϕ(m, Tθn , 2) + Tθn

+dn−1
1 (Tθn)− Tm

]
.

If we assume dn−1
1 (Tθn) = d0

2(Tθn), then dn
2 (Tm) = d0

2(Tm), and:

Max1≤θ1≤θ2≤···≤θn−1≤θn≤m

[
ϕ(m, Tθn , 2) + Tθn + dn−1

1 (Tθn)− Tm

]
≤ d0

2(Tm)∨
Max1≤θn≤m

[
ϕ(m, Tθn , 2) + Tθn + d0

1(Tθn)− Tm
]
∨Max1≤θ2≤···≤θn−1≤θn≤m[ϕ(m, Tθn , 2)+

Tθn + ϕ
(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ3 , Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − Tθn − Tm

]
∨

Max1≤θ1≤θ2≤···≤θn−1≤θn≤m
[
ϕ(m, Tθn , 2) + Tθn + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , 2

)
+

d0
1
(
Tθ1

)
+ Tθ1 − Tθn − Tm

]
= d0

2(Tm) ∨Max1≤θ1≤θ2≤···≤θn−1≤θn≤m[ϕ(m, Tθn , 2) + Tθn+

d0
1(Tθn)− Tm

]
∨Max1≤θ2≤···≤θn−1≤θn≤m

[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+

ϕ
(
Tθ3 , Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn−1≤θn≤m[ϕ(m, Tθn , 2)+

ϕ
(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
Apparently, if θ1 = θ2 = · · · = θn−1 = θn, then:

Max1≤θ1=θ2=···=θn−1=θn≤m
[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ3 , Tθ2 , 1

)
+

d0
2
(
Tθ1

)
+ Tθ1 − Tm

]
= Max1≤θn≤m

[
ϕ(m, Tθn , 2) + Tθn + d0

1(Tθn)− Tm
]
.



Sensors 2018, 18, 3615 20 of 22

Therefore, we have:

dn
2 (Tm) ≤ d0

2(t) ∨ dn−1
1 (Tm) ∨Max1≤θ2≤···≤θn−1≤θn≤m

[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
++

· · ·+ ϕ
(
Tθ3 , Tθ2 , 1

)
d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn−1≤θn≤m[ϕ(m, Tθn , 2)+

ϕ :
(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
.

Meanwhile, apparently:

Max1≤θ2≤···≤θn−1≤θn≤m
[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ3 , Tθ2 , 1

)
+ d0

2
(
Tθ2

)
+

Tθ2 − Tm
]
= Max1≤θ1≤···≤θn−1≤m

[
ϕ(m, θn−1, 1) + · · ·+ ϕ(θ3, θ2, 1) + d0

2
(
Tθ2

)
+ Tθ2 − Tm

]
.

If we set θn−1 = θn, then:

Max1≤θ1≤θ2≤···≤θn−1=θn≤m
[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ2 , Tθ1 , 2

)
+

d0
1
(
Tθ1

)
+ Tθ1 − Tm

]
= Max1≤θ1≤θ2≤···≤θn−1≤m[ϕ(m, θn−1, 1) + · · ·+ ϕ(θ2, θ1, 2)+

d0
1
(
Tθ1

)
+ Tθ1 − Tm

]
.

Thus, we have:

dn
2 (Tm) ≤ Max1≤θ2≤···≤θn−1≤θn≤m

[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+ ϕ

(
Tθ3 , Tθ2 , 1

)
+

d0
2
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn−1≤θn≤m

[
ϕ(m, Tθn , 2) + ϕ

(
Tθn , Tθn−1 , 1

)
+ · · ·+

ϕ
(
Tθ2 , Tθ1 , 2

)
+ d0

1
(
Tθ1

)
+ Tθ1 − Tm

]
∨ d0

2(Tm) ∨ d0
1(Tm).

In the same way, we can prove:

dn
1 (Tm) ≤ Max1≤θ2≤···≤θn≤m[ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+ ϕ(θ3, θ2, 2)+

d0
1
(
Tθ2

)
+ Tθ2 − Tm

]
∨Max1≤θ1≤θ2≤···≤θn≤m[ϕ(m, θn, 1) + ϕ(θn, θn−1, 2) + · · ·+

ϕ(θ2, θ1, 1) + d0
2
(
Tθ1

)
+ Tθ1 − Tm

]
∨ d0

2(Tm) ∨ d0
1(Tm).

When n is an even number, a similar proof can be obtained. Here, we omit the details. �

Appendix A.4. Proof of Theorem 3

Proof. The analytical methods are consistent with the proof of processing delays in the network
calculus theory. For a given time t, taking τ ≤ d(t), we have R(t) ≥ R∗(t + τ). Meanwhile, according
to the definition of the service curve, we have:

R∗(t + τ) ≥ R(t + τ) ∨ β(t) = in f0≤s≤t+τ{R(t + τ − s) + β(s)}.

Therefore, for 0 ≤ s0 ≤ t + τ:

R∗(t + τ) = R(t + τ − s0) + β(s0).

Thus, we obtain:
R(t) ≥ R(t + τ − s0) + β(s0).

Furthermore, for t + τ − s0 ≤ t, we have:

R(t)− R(t + τ − s0) ≤ α(s0 − τ).

Therefore:
β(s0) ≤ R(t)− R(t + τ − s0) ≤ α(s0 − τ).
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Define in fτ≥0{α(s) ≤ β(s + τ)} = δ(s). We have τ ≤ δ(s0 − τ). According to 0 ≤ s0 ≤ t + τ, we
get s0 − τ ≤ t. While:

h(α, β, t) = sup0≤s≤t{in fτ≥0{α(s) ≤ β(s + τ)}},

We have τ ≤ h(α, β, t). Since it is true for any τ ≤ d(t), we have d(t) ≤ h(α, β, t). �
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