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Abstract: Currently, there is a growing demand for the use of communication network bandwidth
for the Internet of Things (IoT) within the cyber-physical-social system (CPSS), while needing
progressively more powerful technologies for using scarce spectrum resources. Then, cognitive
radio networks (CRNs) as one of those important solutions mentioned above, are used to achieve IoT
effectively. Generally, dynamic resource allocation plays a crucial role in the design of CRN-aided
IoT systems. Aiming at this issue, orthogonal frequency division multiplexing (OFDM) has been
identified as one of the successful technologies, which works with a multi-carrier parallel radio
transmission strategy. In this article, through the use of swarm intelligence paradigm, a solution
approach is accordingly proposed by employing an efficient Jaya algorithm, called PA-Jaya, to
deal with the power allocation problem in cognitive OFDM radio networks for IoT. Because of
the algorithm-specific parameter-free feature in the proposed PA-Jaya algorithm, a satisfactory
computational performance could be achieved in the handling of this problem. For this optimization
problem with some constraints, the simulation results show that compared with some popular
algorithms, the efficiency of spectrum utilization could be further improved by using PA-Jaya
algorithm with faster convergence speed, while maximizing the total transmission rate.

Keywords: cognitive radio networks (CRNs); orthogonal frequency division multiplexing (OFDM);
resource allocation; Internet of Things (IoT); Jaya algorithm
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1. Introduction

With the rapid development of the Internet of Things (IoT) within the cyber-physical-social
system (CPSS), there is an ever-increasing demand for communication network bandwidth for
achieving high-performance applications which enrich and broaden the interactions and connections
in the cyber-physical-social world. Thus, some communication technologies have been developed
using new frequency bands. Moreover, various improved modulation and coding technologies
have also been proposed to utilize the existing frequency spectrum more efficiently [1–3]. However,
spectrum resources are limited. They are a kind of extremely valuable natural resource and are
becoming increasingly restricted or even depleted. In response to this limitation, it is necessary to
improve the current spectrum management methods. Fortunately, the recent advances of big data and
artificial intelligence technologies make it possible to address the issue.

Cognitive radio network (CRN), as an intelligent wireless communication system, can dynamically
share and allocate the spectrum in accordance with the current state of the channel, and it has been
seen as an effective solution to the current low utilization of spectrum resources [4,5]. Furthermore,
CRNs have been employed to develop the high-performance IoT [6–13]. For example, CRN technology
applied to wireless sensor network (WSN) systems in IoT can well sense the surrounding environment
and adapt to environmental changes by changing the transmission parameters in real time through
information acquired from the environment. Such characteristics make it especially suitable for
practical production scenarios. Generally, in the CRN-aided IoT, the secondary user (i.e., cognitive user)
may selectively access the idle frequency band of the primary user (i.e., authorized user) to improve
the utilization of the licensed spectrum. Meanwhile, some limit requirements should be met by the
interference of the secondary user to the primary user for the frequency band. These limits include
the constraints of total power, the bit error rate (BER), and the acceptable interferences of the primary
user [14].

Furthermore, orthogonal frequency division multiplexing (OFDM), as a multi-carrier parallel
wireless transmission technology, has been identified as one suitable alternative to deal with the
allocation and transmission of spectrum resources in CRNs [15,16]. Hence, the issue of how to
adaptively allocate downlink resources in a cognitive multi-user OFDM system for IoT has drawn
much attention from researchers.

Generally, there exist three types of CRNs, including interweave, underlay, and overlay CRNs.
In an interweave scenario, the secondary users adaptively utilize the spectrum band whenever it
is not used by the primary users [17]. In the underlay case, the secondary users are allowed to
coexist with the primary users, provided that the interference caused to the primary users is below
a predefined threshold [17]. In the latter category, the secondary system has the knowledge of the
primary system codebook, channel gains, and transmitted information. A part of the secondary
users’ power can be used to retransmit the primary users’ message so that the secondary users are
able to maintain or improve the primary rate while achieving their own communication goals [18].
Generally speaking, the existing solutions mostly use the traditional mathematical optimization
method or some greedy searching algorithms, which may suffer from a quite high computational
complexity during the implementation process [18,19]. Some evolutionary algorithms, including
simulated annealing (SA) [20], genetic algorithm (GA) [21], particle swarm optimization (PSO) [22,23],
differential evolution (DE) [24], and immune clonal optimization (ICO) [25], are employed to deal with
this issue, with the help of their effective computational features in the swarm intelligence paradigm.
Through the use of those algorithms, a satisfactory solution effect was achieved during the resource
allocation in CRNs [20–25]. However, there is still room to further improve the optimization effect
due to the inherent disadvantages of those algorithms in the practical engineering applications of
IoT, such as the possible ease of falling into the local optimal solutions in some cases, the difficulty
adjusting many key parameters during the implementation process of the algorithms, and many
drawbacks [26–32].
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The Jaya algorithm has been widely used in engineering optimization fields due to its excellent
searching ability with an algorithm-specific parameterless feature [33]. In consideration of the
satisfactory optimization performance achieved by the Jaya algorithm, there is a general idea to
utilize the Jaya algorithm to better serve CRN-aided IoT. In this article, motivated by our previous
work in ref. [34], the power resource allocation in the downlink of a CRN-aided IoT system is modeled
as a constrained optimization problem, and then a solution method is accordingly presented by
incorporating the proposed Jaya algorithm into the cognitive OFDM radio network model to achieve
a satisfactory power allocation result. Specifically, compared with the traditional Jaya, the proposed
Jaya algorithm, named PA-Jaya, achieved faster convergence speed by using a parallel structure and
an asynchronous iteration strategy. Actually, the simulation results show that compared with other
popular optimization algorithms, our PA-Jaya algorithm can achieve a better power allocation with
faster converge speed, which means that it can improve the efficiency of spectrum utilization more
effectively in IoT.

This article is organized as follows. Section 2 presents the mathematical model used in the
optimization problem we discuss. In Section 3, in addition to analysis for the basic idea and
implementation of the traditional Jaya algorithm, the solution method using the proposed PA-Jaya is
also presented. Section 4 shows the simulation results to verify the advantages of using the PA-Jaya
algorithm, with a comparison with other algorithms. Finally, we provide a conclusion of this article in
Section 5.

2. The Problem Formulation

2.1. The Basic Model of OFDM Power Allocation in CRNs

In this article, we consider the following application situation for IoT within a CRN. The service
range of a base station covers one primary user and K secondary users. The primary user and the
secondary users use adjacent frequency bands, and the secondary users use OFDM transmission
technology. Moreover, we assume that the channel is slowly fading within one OFDM symbol period,
and the base station has full channel state information. The total number of subcarriers is N, and the
bandwidth of each subcarrier is Wc. Let bk,n be the transmission rate of user k on the subcarrier n.
Thus, the maximum number of bits in a symbol transmitted on this subcarrier is set to [35–37]

bk,n =

⌊
log2

⌊
1 +

pk,ng2
k,n

δ(N0Wc + Sk,n)

⌋⌋
, (1)

where b·c denotes the floor function; pk,n represents the power of user k on subcarrier n; gk,n is the
channel gain of user k on subcarrier n; and N0 represents the noise spectral density power, which is the
same for all users and subcarriers, and it is a constant. In addition, Sk,n indicates the primary user’s
interference to the secondary user. The variable δ indicates the BER of the transmission in the case of a
physical layer using multiple quadrature amplitude modulation (MQAM) technology, and it can be
expressed as

δ = −2
3

ln(5pe), (2)

where pe denotes the BER.
Generally, in a CRN, the optimization goal of power resource allocation is to maximize the total

transmission rate of the system for subusers under the restriction of the authorized users’ interference
threshold, total transmission power, and BER, so as to improve the spectrum utilization. Therefore,
the problem can be modeled as

max Wc

N

∑
n=1

K

∑
k=1

λk,nbk,n = Wc

N

∑
n=1

K

∑
k=1

λk,n

⌊
log2

⌊
1 +

pk,ng2
k,n

δ(N0Wc + Sk,n)

⌋⌋
, (3)
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s.t.
K

∑
k=1

λk,n = 1, λk,n =

{
0, bk,n = 0

1, bk,n 6= 0
(4)

N

∑
n=1

K

∑
k=1

pk,n 6 ptotal , (5)

N

∑
n=1

K

∑
k=1

λk,n pk,nFn 6 Ith , (6)

pe 6 pu. (7)

Here, Equation (4) shows that a subcarrier can only be occupied by one user. In addition, λk,n is
the subcarrier allocation state variable. It is equal to 1 only when the subcarrier n is occupied by user
k; otherwise, it is equal to 0. Equation (5) shows that the sum of the power pk,n transmitted by all
secondary users cannot exceed the total system upper power limit ptotal. In Equation (6), Fn represents
the interference factor of the secondary users to the primary user on subcarrier n, and Ith is the highest
user-acceptable maximum interference limit. It means that all subusers’ interference to the primary
user should not exceed its tolerable upper limit Ith. Moreover, Equation (7) indicates that the BER must
be less than the maximum BER requirement pu [38].

2.2. The Complex Model with User Rate Proportionality Constraints

Based on the practical scenario discussed above for the basic OFDM power allocation model
in CRNs, instead of considering the primary interference constraints, we considered the fairness of
channel resource allocation among secondary users. Then, the capacity of different secondary users
needs to meet the certain rate proportional constraint, as follows [39].

R1 : R2 : · · · : RK = α1 : α2 : · · · : αK, (8)

Rk =
N

∑
n=1

λk,nbk,n, k = 1, 2, · · · , K (9)

Rk > 0, k = 1, 2, · · · , K (10)

In Equation (8), αk (k = 1, 2, · · · , K) is a predefined constant, representing the rate proportional
constraint that needs to be met by secondary users. Different users’ capacity is defined in Equation (9),
and it can be further calculated with Equation (3). In addition, Equation (10) is a non-negative
constraint on users’ capacity, which is implicitly indicated by Equation (8). In this model, we still
strive for the maximum value of the defined function in Equation (3). The interference constraint,
Equation (6), in the previous model is ignored, and we add constraints from Equations (8)–(10) to
further limit the capacity of different secondary users.

3. The Proposed Solution Method Using the PA-Jaya Algorithm

The Jaya algorithm is a variant of swarm intelligence, and it achieves the optimal solution by
constantly performing an iterative search of the same principle [33]. It has been verified that, in some
cases, the Jaya algorithm is more flexible and more advantageous because of its parameterless feature.
In an effort to avoid the computational limitations and further improve the performance, we propose
an efficient solution method for the optimization problem in CRN-aided IoT, through the use of the
PA-Jaya algorithm. To this end, in order to achieve faster convergence speed, PA-Jaya was developed
by using a parallel structure and an asynchronous iteration strategy.
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3.1. The General Idea of Jaya Algorithm

The Jaya algorithm was developed based on the thought that, during each iteration, the solution
for a given problem should move toward the best solution and avoid the worst solution. Considering a
general optimization problem, it is assumed that at any iteration i, the number of design variables is N
and the population size is M. If p(i)m,n , pi,m,n is the value of the n-th (n = 1, 2, · · · , 2N) variable for the
m-th (m = 1, 2, · · · , M) candidate during the i-th iteration, then this value is updated according to the
following formula.

p′i,m,n = pi,m,n + r1(pi,best,n − |pi,m,n|)− r2(pi,worst,n − |pi,m,n|), (11)

where pi,best,n is the value of the n-th parameter for the best solution and pi,worst,n is the value of the
n-th parameter for the worst solution in the population. Moreover, p′i,m,n is the new value of pi,m,n,
and r1 and r2 are two random numbers whose values are in the range of [0, 1], respectively. The term
“r1(pi,best,n − |pi,m,n|)” indicates that the solution tries to move towards the best solution, and the
term “−r2(pi,worst,n − |pi,m,n|)” shows that the solution tries to avoid the worst solution. The two
random numbers r1 and r2 provide the Jaya algorithm with the ability to perform a random search
within the search space, theoretically ensuring that the algorithm can converge to the global optimal
solution. In addition, the exploration capability of the Jaya algorithm is further improved by utilizing
the absolute value of the candidate solution. p′i,m,n is accepted if the function value it produces is better.
Let Pi,m = {pi,m,n}2N

n=1, P′i,m = {p′i,m,n}2N
n=1, and J(·) be the fitness evaluation function; then, it can be

expressed as

Pi+1,m =

{
P′i,m, if J(P′i,m) > J(Pi,m)

Pi,m, if J(P′i,m) 6 J(Pi,m)
(12)

The Jaya algorithm updates the candidate solution by comparing the modified solution and
its corresponding old solution. A given candidate solution is updated only when the fitness of its
modified solution is better than that of the old one, in which case it is updated to the value of the
modified solution. Otherwise, it keeps the value of the old one [33].

Afterward, the same procedure is followed for all the candidates in the population. Obviously,
this means that only the best solutions are forwarded as input to the next iteration. In other words,
the Jaya algorithm always tries to get closer to success (i.e., reaching the best solution) and tries to
avoid failure (i.e., moving away from the worst solution). The algorithm struggles to become victorious
by reaching the best solution: it is from this aspect that Jaya draws its name. The update procedure of
the Jaya algorithm is shown in Algorithm 1. Compared with some traditional evolutionary algorithms,
e.g., GA and PSO, there is no requirement for algorithm-specific parameters in Jaya, which is the
biggest advantage of this algorithm [33,40–43].
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Algorithm 1 Jaya update procedure.
Input: population matrix P, population size M, the number of variables 2N, fitness vector f , the best
and worst solution vectors: pbest and pworst
Output: updated population matrix P, updated fitness vector f
for m := 1 to M do

for n := 1 to 2N do
Choose a random number rm,n,1 from [0,1];
Choose a random number rm,n,2 from [0,1];
p′m,n = pm,n + rm,n,1(pbest,n − |pm,n|)− rm,n,2(pworst,n − |pm,n|);

end for
f ′m = J(P′m);
if f ′m > fm then

for n := 1 to 2N do
pm,n = p′m,n;

end for
fm = f ′m;

end if
end for

3.2. PA-Jaya for the Fundamental Issue in the Cognitive OFDM Radio Network

With the analysis mentioned in Section 2, the basic spectrum resource allocation problem discussed
in this article can be modeled as a constrained optimization problem. Hence, the problem can be
transformed into finding a user’s corresponding power allocation scheme for pk,n under the premise
of satisfying the constraints in order to maximize the total transmission rate of all secondary users.

In the process of using evolutionary algorithms to solve problems, the coding representation of
the individual population and the setting of the fitness function are crucial components. Therefore,
here, we first specify these two parts.

According to the requirements mentioned above, the power allocation scheme can be expressed
as a matrix of K× N dimensions. It can be expressed as

P =


p1,1 p1,2 · · · p1,N−1 p1,N
p2,1 p2,2 · · · p2,N−1 p2,N

...
...

...
...

...
pK,1 pK,2 · · · pK,N−1 pK,N

 , (13)

where the row of the matrix represents the user k (k = 1, 2, · · · , K), the column represents the subcarrier
n (n = 1, 2, · · · , N), and each element of the matrix pk,n represents the power obtained by the user
k on the subcarrier n. According to the constraint described by Equation (4), one subcarrier can be
occupied by only one user; that is to say, there can be only one nonzero element per column of this
matrix. Hence, we only considered those nonzero elements in the model.

Here, for convenience, we represent each solution individual in the population with a matrix of
size 1× 2N, in which the first N elements are in the range of [1, K], indicating how the N subcarriers
are assigned to the K users. The next N elements represent the specific power values allocated to each
subcarrier. According to Equations (5) and (6), these variables should be in the range of [0, ptotal] and
[0, Ith

Fn
]. Then, the structure of the population can be depicted as in Figure 1.
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p K-1 p1,1 p1,2 ... p1,N1 5

... 6 p2,1 p2,2 ... p2,N3 K

... K p3,1 p3,2 ... p3,NK-2 2

... 1 pM,1 pM,2 ... pM,N2 5

...

Individual 1

Individual 2

Individual 3

Individual M

N Subcarriers N Subcarriers

Total population size M

Figure 1. Structure of population and individuals designed for the power allocation problem.

Since the basic spectrum resource allocation problem discussed in this article can be clearly
expressed as a constrained maximization problem, we chose Equation (3) as the fitness evaluation
function of the proposed PA-Jaya algorithm. Considering the specificity of the individual coding
methods in this article, it is necessary to perform special processing when using the PA-Jaya algorithm
for a population update. That is, the first N elements need to be rounded after each update, and they
are bounded within [1, K]. The next N elements are only bounded within [0, ptotal]. The remaining
constraints are judged after the whole population is generated, and the fitness value is set to 0 for the
individual solutions that do not meet the requirements. All individual solutions need to be compared
with the corresponding individual solutions before the population update, and those with larger
fitness values enter the next iteration. Meanwhile, the best individuals and the worst individuals in
the population are also updated.

The proposed PA-Jaya algorithm, as an improvement to the traditional Jaya algorithm, aims to
speed up the convergence of the algorithm by updating the values asynchronously with a parallelized
structure and by reducing infeasible solutions through an inner loop iteration strategy.

Motivated by the successful work of improving the convergence speed using asynchronous
iteration in PSO [44,45], in the proposed PA-Jaya algorithm, the update of the best individual solutions
is not performed only after the whole population update is completed, but is performed after each
individual solution updates. Immediately after each individual solution update is completed, it is
compared with all individual solutions of the previous generation, and the best individual is selected
to update the subsequent individual solutions.

Another important improvement of the proposed Jaya algorithm is that it sets an inner loop to
reduce the generation of infeasible solutions. Considering that the basic resource allocation problem in
this article is a constrained optimization problem, all the candidate solutions obtained need to meet the
requirements of Equations (5) and (6). In this case, if the traditional Jaya algorithm is directly applied,
a large number of infeasible solutions will be generated in the population after each iteration, and these
solutions will be discarded, resulting in unsatisfactory efficiency of the iterative solution. Therefore,
an intuitive idea is to consider how to reduce these infeasible solutions during the update process of
each iteration. The PA-Jaya algorithm addresses this problem through an inner loop in each iteration
to repeat the update of a single candidate solution to satisfy the constraints as much as possible; thus,
most of the solutions in the population after each iteration will be feasible solutions. Specifically, for the
basic spectrum resource allocation problem discussed in this article, when we obtain the first candidate
solution during the first iteration, we will immediately observe whether it meets the requirements of
Equations (5) and (6). If these requirements are met, we continue to update the subsequent solutions
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in the population while also paying attention to the constraints, until all the candidate solutions are
updated during this iteration. Otherwise, if the first candidate solution does not meet these constraints,
the candidate solution will be regenerated until it meets all the requirements or the maximum number
of inner loops is reached, and then the subsequent operations are consistent with the above. Thus,
based on the above two tricks, the framework of the improved asynchronous Jaya algorithm can be
described by Algorithm 2.

Furthermore, motivated by some successful work [46–49], we introduce the parallel structure
into the proposed algorithm to make full use of computing resources and reduce the running time.
Generally, parallel models of the common GA can be divided into four categories, including the
master-slave model, coarse-grained model, fine-grained model, and hybrid model [47].

Here, we use the coarse-grained model, also called the land-based model, which is the most
adaptable and widely used GA parallel model. The initial population is divided into several
independent subpopulations, and the improved asynchronous Jaya iterative algorithm is used to
perform evolution operations independently in each subpopulation. After a certain number of
iterations, information exchange is conducted between different subpopulations, and the convergence
speed is further accelerated by introducing the optimal individuals to the entire population.
By adopting a parallelization structure, the independence between each subpopulation can be ensured,
and the individual diversity of each subpopulation can be enriched. This not only ensures the exchange
of excellent antibodies within the population, but also prevents the rapid spread of local optimal
solutions and the occurrence of immature convergence. The update procedure of the improved PA-Jaya
algorithm is shown in Algorithm 3.

Algorithm 2 The improved asynchronous Jaya update procedure.
Input: population matrix P, population size M, the number of variables 2N, the number of inner loops
T, fitness vector f , the best and worst solution vectors: pbest and pworst
Output: updated population matrix P, updated fitness vector f
for m := 1 to M do

for t := 1 to T do
for n := 1 to 2N do

Choose a random number rm,n,1 from [0,1];
Choose a random number rm,n,2 from [0,1];
p′m,n = pm,n + rm,n,1(pbest,n − |pm,n|)− rm,n,2(pworst,n − |pm,n|);

end for
if P′m meets constraints (5) and (6) then

break;
end if

end for
f ′m = J(P′m);
if f ′m > fm then

for n := 1 to 2N do
pm,n = p′m,n;

end for
fm = f ′m;

end if
end for
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Algorithm 3 The improved PA-Jaya update procedure.
Input: population matrix P, the number of subpopulations S, the number of population iterations D,
the number of iteration intervals of subpopulation information exchange Q
Output: updated population matrix P
for i := 1 to D do

for s := 1 to S do
Update Ps with the improved asynchronous Jaya algorithm;

end for
if i mod Q = 0 then

for s := 1 to S do
Replace the worst individual solution in Ps with the global best individual solution;

end for
end if

end for

Figure 2 presents a schematic diagram for using the PA-Jaya algorithm to achieve optimization
for the cognitive OFDM radio network power allocation model. The basic steps of the solution method
are as follows.

Step 1: Parameter setting. It starts with the setting of initial parameters, including the number of
secondary users (K), the number of variables (2N), population size (M), the number of population
divisions (S), the number of inner loops (T), the number of iteration intervals of subpopulation
information exchange (Q), and the algorithm termination criterion. For the current situation, the
termination criterion is set as the maximum number of iterations (D), which means that the algorithm
is terminated when it iterates more than this value.

Step 2: PA-Jaya initialization. Initial values of individual solutions can be randomly generated
under the constraints in Equations (5) and (6). After finishing the same operation for all the variables
in the whole population, the solutions matrix is well initialized.

Step 3: Fitness evaluation. Once all the candidate solutions are initialized, every individual
solution is evaluated with the fitness function. Considering the practical problem in this article, the
fitness function’s purpose is to get the maximum object value according to Equation (3).

Step 4: Solution update. In each parallel subpopulation, by comparing the fitness function value
of each candidate solution, we can easily select the best and the worst solutions. Hence, we are able to
modify the old solution with the proposed asynchronous Jaya iteration strategy. Let Pi,m = {pi,m,n}2N

n=1,
P′i,m = {p′i,m,n}2N

n=1, and let J(·) be the mathematical operation in Equation (3), respectively. Then,
the update of the candidate solution is checked by assessing

J(P′i,m) > J(Pi,m). (14)

If Equation (14) is met, p′i,m will be applied to the basic power allocation model; that is to say,
the candidate solution will be updated through pi+1,m = p′i,m. Otherwise, it retains the original value.
Generally, the traditional Jaya updates its best and worst individuals after the entire population
has been updated. Compared with this, PA-Jaya updates the best value in every single individual
calculation, and it can be seen as an asynchronous update strategy. In addition, a maximum number of
loops in the inner layer is set to reduce infeasible solutions with the purpose of further accelerating the
speed of convergence in PA-Jaya. Thus, the PA-Jaya algorithm guides the candidate solution update in
each independent subpopulation, while all these subpopulations exchange information periodically.
The whole process can be described by Algorithm 3.

Step 5: Convergence criterion. The stopping condition is checked. Once the searching process
reaches the maximum number of iterations, the loop is terminated and the optimum solution
is obtained.
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Figure 2. Flowchart of the PA-Jaya algorithm for the cognitive orthogonal frequency division
multiplexing (OFDM) radio network power allocation model.

3.3. PA-Jaya for the User Fairness Issue in Cognitive OFDM Radio Network

This problem becomes more complicated when the secondary user rate proportional constraint
is considered. Obviously, in this problem, the subchannel and power should be jointly allocated
to achieve the optimal capacity under the user rate proportional constraints. However, this joint
optimization results in high computational costs. In order to address this complex model, the traditional
methods are usually based on three steps. The first step is to allocate channels for each secondary user
based on the interference factors of each channel. The second step roughly allocates the total transmit
power to each user based on the number of channels obtained by each secondary user. The third step
is implemented on the basis of the previous two allocations while using the traditional water-filling
algorithm to choose the best allocation method for every secondary user.
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In order to better handle this problem, the following fairness indicator is introduced [50].

I =

(
K

∑
i=1

Rk
αk

)2(
K

K

∑
i=1

(
Rk
αk

)2
)−1

. (15)

The maximum value of Equation (15) is 1, and when it reaches this value, the fairness of the
allocation model is optimal.

The signal-to-noise ratio (SNR) in this model can be written as

SNR =
g2

m,n

δ(N0Wc + Sm,n)
. (16)

Theoretically, allocating more power to the channels with larger SNRs can maximize the total
channel capacity demanded in this model, but doing so may not satisfy the user fairness constraints in
Equation (10).

Then, considering the user fairness issue, an optimization approach, called the ROOT-FINDING
algorithm, was proposed on the basis of proportional rate constraints [39]. For the case of high
channel gain, the ROOT-FINDING algorithm can solve the user rate proportional constraint problem
well and achieve spectrum efficiency improvement. However, in order to satisfy the proportional
constraint, many subcarriers are often not correctly allocated to the optimal user, resulting in a low
overall utilization efficiency of the subcarrier. In Ref. [51], an improved algorithm, called LINEAR,
was proposed in an effort to effectively address this problem. This algorithm achieves an increase in
spectral efficiency by relaxing the fairness constraint while improving the computational time. Since
the user fairness and spectral efficiency may not be well weighed, the algorithm still has room for
improvement.

In response to these limitations, through the use of the two-stage allocation scheme described
in Ref. [51], here we present a novel method on the basis of the PA-Jaya algorithm. In the first stage,
we fully consider the state of each channel. Assuming that transmit power is evenly distributed
across all subchannels, then we can reasonably suppose that the proportion of subcarriers assigned to
different users is approximately the same as their capacity rates after power allocation. Then, we use
the proposed PA-Jaya algorithm to allocate each channel to the user with the best SNR as much as
possible while satisfying the total power constraints and user fairness constraints. This procedure can
be described as follows.

First, we assign each secondary user the unallocated subcarrier that has the maximum SNR for
that user. Then, each user is assigned a number of subcarriers according to his proportion constant,
and the priority of the secondary users is determined by the ratio of his obtained capacity to the
proportion constant, which is Rk

αk
(k = 1, 2, · · · , K). Finally, all unoccupied subcarriers are allocated

to users who can obtain the maximum SNR; in this case, each secondary user can get one subcarrier
at most.

After the subcarrier allocation procedure, we use the proposed PA-Jaya algorithm to further
distribute power. Motivated by the work in Ref. [50], in order to better apply our proposed
PA-Jaya algorithm, we designed a special fitness function for this issue, which is

F =

 Wc
N
∑

n=1

K
∑

k=1
λk,nbk,n if I > ε

I− ε otherwise
(17)

Here, ε is a predefined constant representing the minimum requirement for the fairness indicator.
In this function, it is obvious that for those solutions which do not meet the user fairness constraint,
the algorithm selects them through the fitness function so that they can gradually move in the direction
of better satisfying the user fairness requirement. For those solutions satisfying the requirement,
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the algorithm helps them acquire more channel capacity, eventually converging to the optimal solution.
The introduction of ε makes it possible to maximize the channel capacity while satisfying the minimum
user fairness requirement. Moreover, the specific algorithm structure is similar to the previous one;
it is not described in detail here.

3.4. Computational Complexity Analysis for PA-Jaya

As described above, the population size is set as M, the number of variables in each candidate
solution is 2N, and the maximum number of inner iterations is K.

According to the flow shown in Algorithm 2, it is obvious that our proposed PA-Jaya algorithm
needs to use a triple loop for each iteration update. The number of the outermost loop is set as the
population size M, which indicates that each individual solution in the population is traversed to
ensure that all solutions in the population are updated. The number of the middle loop is set as a
predefined constant K. The function of this loop is to minimize the generation of infeasible solutions in
the updated population, so as to accelerate the overall convergence speed of the algorithm. The number
of the innermost loop is set as the number of variables 2N in each candidate solution. This loop is
essential because our PA-Jaya algorithm needs to generate two random numbers, r1 and r2, for each of
these variables when updating each candidate solution.

Then, in the worst case during each iteration, the time complexity required for our proposed
PA-Jaya algorithm is O(M× N × K), which seems to be K times the time required by the traditional
Jaya algorithm. However, considering that K is a relatively small constant, such an increase in time is
acceptable. In addition, PA-Jaya requires fewer iterations to converge, which also makes up for the
increase in time required for each iteration to some extent. Moreover, by using a parallelized structure,
our algorithm makes full use of existing computing resources while greatly reducing the runtime of
the algorithm.

4. Simulation Results and Analyses

4.1. Simulation Setup

The simulation was conducted in the environment of MATLAB/Win 7. Assuming that the
CRN-aided IoT system exists with a multipath frequency selective fading channel, and that the channel
gain of each subcarrier is subject to Rayleigh fading with an average channel gain of 1, then the
parameters of the simulation are set as shown in Table 1.

Table 1. Model parameters.

Description Parameter Value

BER pe 10−5−10−1

Transmit BER δ 5 dB
Noise spectral density power N0 10−7 W/Hz

Interference factor Sk,n 10−6 W
Subcarrier bandwidth Wc 0.315

Total system upper power limit ptotal 1−30 W
User-acceptable maximum interference limit Ith

Fn
10−3−10−2 W

The number of secondary users K 8
Population size M 30

Total number of subcarriers N 64
The number of subpopulations S 3

The iteration interval of subpopulation communicate Q 10
The number of inner loop T 10
Total number of iterations D 200

In order to verify the performance of our proposed solution method using the PA-Jaya algorithm,
the simulation model was run 10 times under the same parameter settings, and the average value



Sensors 2018, 18, 3649 13 of 20

was obtained. Moreover, the computational performance was also compared between our solution
method and other popular algorithms, including SA [20], GA [21], PSO [22,23], DE [24], ICO [25],
and traditional Jaya [33]. The detailed parameter settings for each algorithm can be found in Table 2.
It is noted that for our proposed PA-Jaya algorithm, the initial population is randomly generated,
and each subpopulation is updated by asynchronous Jaya iteration, as shown in Algorithm 2. Then,
information exchange between different subpopulations takes place at regular intervals, and the overall
process can be seen in Algorithm 3.

Moreover, for the user fairness issue discussed in this article, the user fairness proportion factor
is randomly generated. Then, we compare our proposed PA-Jaya algorithm with the algorithms
ROOT-FINDING [39] and LINEAR [51]. Our solution to this issue can be divided into two parts.
The first part is the allocation of subchannels, which is the same as that in Ref. [50]. In the second part,
we use the PA-Jaya algorithm to allocate the appropriate power to the channels of different users while
meeting the required constraints. As the fitness function is set as Equation (17), and the minimum user
rate proportionality is set to 0.99, the process of conducting PA-Jaya and setting the parameters are
consistent with the former issue.

Table 2. Controlled parameters of PA-Jaya and other comparative algorithms.

Parameter SA GA PSO DE ICO Jaya PA-Jaya

Initial temperature 100 – – – – – –
Reannealing interval 100 – – – – – –

Population size – 30 30 30 30 30 30
Scaling factor – – – 0.3 – – –

Crossover factor – 0.3 – 0.1 0.3 – –
Mutation factor – 0.1 – – 0.1 – –

Initial inertia weight – – 0.9 – – – –
Convergence inertia weight – – 0.4 – – – –
Local acceleration constant – – 2 – – – –

Global acceleration constant – – 2 – – – –
Cloning proportion – – – – 0.2 – –

4.2. Results and Discussion

We first compare the results of our proposed PA-Jaya algorithm in different subpopulation size
cases with the asynchronous Jaya and traditional Jaya algorithms. When the total transmit power
(ptotal = 1 W) and the BER (δ = 5 dB) are limited (which means that the model constraints are satisfied),
and the maximum number of iterations D is reached, the results of different algorithms are as shown
in Figure 3.
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Figure 3. Performance comparison of different Jaya algorithms.



Sensors 2018, 18, 3649 14 of 20

In Figure 3, the PA-Jaya algorithm can achieve better results compared with the traditional
Jaya algorithm and the asynchronous Jaya algorithm without a parallel structure. Meanwhile,
compared with the traditional Jaya algorithm, several other improved Jaya algorithms can
get better results, which could be due to the way that asynchronous iteration improves the
convergence speed. In addition, comparing the asynchronous Jaya algorithm and the PA-Jaya
algorithm with different subpopulation sizes, it can be seen that when the number of subpopulations
is 2, the result of PA-Jaya is similar to that of the asynchronous Jaya algorithm. When the number
of subpopulations is 3, the result of PA-Jaya is better. However, as the number continues to grow,
the result gets worse. On the one hand, this phenomenon shows that the use of a parallel structure can
increase the diversity of the whole population to prevent premature local convergence, thereby further
improving the performance of the Jaya algorithm. On the other hand, it also shows that when the
subpopulation size is too small, the performance of the algorithm is limited. Taking into account the
above situation, we set the number of subpopulations to 3 for the simulations hereafter reported in
this article.

Meanwhile, Figure 4 shows the total transmission rate of the secondary users obtained by those
algorithms under the same conditions. Then, when the number of secondary users is 8 and the
maximum number of iterations D is reached, the total transmission rate of the system under different
BERs is as shown in Figure 5. Furthermore, the optimal solutions of the total system transmission
rate are shown in Table 3, and they are recorded in every 20 generations. While setting the BER of the
transmission (δ) and the maximum number of iterations (D) to 5 dB and 200, respectively, the total
transmission power of the secondary users changes as shown in Figure 6 with the interference tolerance
of different primary users.

From Figure 4, it can be seen that, in each iteration, the solution performance of the total system
transmission power obtained by our proposed PA-Jaya algorithm is obviously better than that of SA,
GA, PSO, DE, ICO, and traditional Jaya algorithms while also achieving faster convergence speed.
On the one hand, this is because of the iterative method and parameterless feature of the Jaya algorithm,
which make it superior to other algorithms and allow it to converge faster. Then, the asynchronous
iteration method we use further accelerates the process. In addition, it can be seen from this figure
that several other algorithms fall into local convergence prematurely, and our PA-Jaya algorithm can
avoid it well by adopting a multiple-subpopulation structure. This parallel structure helps our PA-Jaya
algorithm keep searching for the optimal solution during the iteration.
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Figure 6. Relationship between the interference threshold and the total system transmission rate.

Moreover, as shown in Figure 5, with the lower BER required by the system, the constraint
requirements decrease, so the total system transmission rate increases. It also indicates that the system
can effectively adapt to different BER constraints in the power allocation model. For the same reason,
the solution performance of our PA-Jaya algorithm is also better than those of SA, GA, PSO, DE, ICO,
and the traditional Jaya algorithms.

Table 3. Optimal solutions of the total system transmission rate during iterations.

Generation GA PSO ICO SA DE Jaya PA-Jaya

0 28.35 25.83 26.68 15.75 26.15 26.90 27.04
20 31.53 31.19 27.37 32.45 30.24 37.23 38.43
40 32.76 32.45 29.23 32.45 34.02 38.02 40.01
60 32.76 33.08 32.19 36.86 36.23 38.27 41.27
80 32.76 33.08 33.74 36.86 37.49 38.40 41.90

100 32.76 33.08 34.30 36.86 37.80 38.78 42.21
120 32.76 33.08 34.50 36.86 38.12 39.00 42.53
140 32.76 33.08 34.50 37.80 38.12 39.22 42.84
160 32.76 33.08 34.52 37.80 38.12 39.34 42.84
180 32.76 33.08 34.52 37.80 38.12 39.53 42.84
200 32.76 33.08 34.52 37.80 38.12 39.63 42.84

Figure 6 shows that with the increase of the tolerable interference threshold, the transmission
power allowed to be used by the secondary users increases, and, therefore, the total
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transmission power of the system increases. Meanwhile, with the increase of the main user’s
tolerable interference threshold, our algorithm achieves better performance for the same reason
mentioned above.

Subsequently, with the same settings for the simulation parameters, we used the proposed PA-Jaya
algorithm to solve the multi-user OFDM CRN problem with the user proportional rate constraints
mentioned in Section 2.2. Here, the interference generated by the secondary users to the primary
users is ignored, and the proportional rate between different users is randomly generated. We set
the number of secondary users as 16, with the purpose of better comparing the result of our PA-Jaya
algorithm and others in the case of a large number of secondary users, which is slightly different
from the former simulation setup. In Figure 7, the comparison is clearly shown, where “Alpha”
indicates the user proportionality factor required in this model. Figures 8 and 9 show the comparison
of these different algorithms in the user fairness indicator (I) and channel capacity with different
user numbers, respectively.
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Figure 7. Comparison of different algorithm effects under normalized rate proportional constraint.

From the above simulation results, it is obvious that as the number of users increases, it becomes
more difficult for the ROOT-FINDING algorithm to make full use of channel resources, so the channel
capacity cannot achieve its optimal value. Meanwhile, the LINEAR algorithm has difficulty meeting the
user fairness requirement. Our proposed PA-Jaya algorithm makes a compromise between these two
aspects by adopting the fitness function and minimum user fairness constraint set. PA-Jaya achieves a
similar result to LINEAR in terms of capacity. It is also shown that with the PA-Jaya algorithm, we can
better weigh the capacity and fairness indicator, thus obtaining better results than the other algorithms.
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5. Conclusions

In this article, with the aim of applying the CRN-aided IoT to the CPSS, a solution method for
multi-user cognitive OFDM radio network power allocation using our PA-Jaya algorithm is proposed.
In consideration of the special advantages of the swarm intelligence-based PA-Jaya algorithm for
tackling the optimization problem with faster convergence and higher efficiency, the solution method
using PA-Jaya may be a competitive choice for addressing the power allocation issue in CRN-aided
IoT with high-quality requirements for complex parameter optimization. Simulation results show that
the proposed algorithm is an efficient scheme for CRNs and can maximize the total transmission rate
of this system model while satisfying the requirements of tolerable interference, total power limitation,
and BER of the primary user. For user fairness issues, our proposed PA-Jaya algorithm can maximize
the required channel capacity while satisfying certain user fairness constraints. By employing our
PA-Jaya algorithm, the CRN technology is further enhanced to sense environmental changes and
adaptively adjust its transmission parameters so that it works well in WSN systems, which has
important practical value for production scenarios.
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