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Abstract: Video-based person re-identification is an important task with the challenges of
lighting variation, low-resolution images, background clutter, occlusion, and human appearance
similarity in the multi-camera visual sensor networks. In this paper, we propose a video-based
person re-identification method called the end-to-end learning architecture with hybrid deep
appearance-temporal feature. It can learn the appearance features of pivotal frames, the temporal
features, and the independent distance metric of different features. This architecture consists
of two-stream deep feature structure and two Siamese networks. For the first-stream structure,
we propose the Two-branch Appearance Feature (TAF) sub-structure to obtain the appearance
information of persons, and used one of the two Siamese networks to learn the similarity of
appearance features of a pairwise person. To utilize the temporal information, we designed the
second-stream structure that consisting of the Optical flow Temporal Feature (OTF) sub-structure
and another Siamese network, to learn the person’s temporal features and the distances of pairwise
features. In addition, we select the pivotal frames of video as inputs to the Inception-V3 network on
the Two-branch Appearance Feature sub-structure, and employ the salience-learning fusion layer
to fuse the learned global and local appearance features. Extensive experimental results on the
PRID2011, iLIDS-VID, and Motion Analysis and Re-identification Set (MARS) datasets showed that
the respective proposed architectures reached 79%, 59% and 72% at Rank-1 and had advantages over
state-of-the-art algorithms. Meanwhile, it also improved the feature representation ability of persons.

Keywords: person re-identification; end-to-end architecture; appearance-temporal features; Siamese
network; pivotal frames

1. Introduction

Person re-identification (person Re-ID) aims at matching a target person across non-overlapping
cameras at different times or different locations. It not only has important significance in video
surveillance systems and the public security field, but is also a crucial challenge in the field of
multi-camera visual sensor networks [1]. In real world situations, because multi-camera visual sensor
networks capture the video clip of the target person, research on video-based person re-identification is
necessary and inevitable for public safety. Video-based person re-identification is the task of utilizing a
sequence of images/tracklets to match the person. At present, an increasing number of exiting research
works [2–5] focus on video-based person re-identification.

More specifically, the process of video-based person Re-ID is to give a probe video and search the
same person as the probe video in a large gallery of videos. As the probe video and gallery videos are
taken from different cameras, they may suffer from inherent challenges such as lighting variations,
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camera viewpoint changes, background clutter or occlusions, and the person’s appearance similarity
during person matching. In general, video-based person Re-ID is beneficial to improve the results of
person Re-ID under the complex and difficult conditions described above. The reason for this fact
is that video-based person Re-ID has the following advantages over still-image-based person Re-ID.
Firstly, videos contain more information than a single still image contains. Given the availability of
video clips, we can obtain temporal information related to a person’s motion. If the person suffers from
problems including occlusion, background clutter, and appearance similarity, the person’s appearance
information, based on a single still-image, is incomplete or missing. However, the use of potential
temporal information based on image sequence can effectively alleviate the lack of motion information.
What is more, videos provide a large number of the same person’s samples, so we can obtain more
abundant appearance information to against camera viewpoint changes.

On the other hand, the use of video also brings several challenges for identifying the person.
Firstly, some low-resolution image frames may appear in the captured video clips, which lead to
inaccurate appearance information. Secondly, when the target pedestrian is obstructed or interfered
with by objects or different persons in a video fragment, it becomes difficult to obtain the person’s
appearance information in the current image sequence. Lastly, although the temporal information in
the video is an important clue to identify pedestrians, the movement of different persons may also be
similar, which means that purely using temporal information will cause misunderstanding. As shown
in Figure 1, in this work, we define the appearance of ambiguity image frames and occluded image
frames as interference frames in the video, and others image frames (“good” frames) that contain the
full clear persons in the video as pivotal frames. Therefore, the following issues in video-based person
Re-ID should be considered. (1) How to establish a stable pedestrian appearance representation model,
that enables elimination of the effects of interference frames on individuals’ representation in videos?
(2) How to effectively harness two types of complementary information including appearance features
and temporal features in the video to compare the degree of similarity between different persons,
so that the role of pivotal frames is fully realized?
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Figure 1. An illustration of the interference frames and pivotal frames definition. The green box
indicates the pivotal frame (“good” frame).The red dotted box indicates the interference frame with
low-resolution image, occlusion, and background clutter.
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To address the first problem, for one thing, previous works have adopted new features [6],
appearance feature models, and semantic attribute features [7,8], which extract robust and
discriminative information to represent a person. However, we can observe that not all images
are informative in a given video, and severe interference frames cause previous methods to obtain
erroneous information. For another thing, the current common research idea [5,9] is to adopt a
combination of convolutional neural network (CNN) and recurrent neural network (RNN) to extract
the space-time features of each image frame, and aggregate them into a single feature vector by the
pooling operation. Although these methods have achieved good results, the interference frames in the
video will influence the final feature information. Simultaneously, such methods do not make full use of
the person’s appearance information. To sum up, in this work, we propose a Two-branch Appearance
Feature (TAF) sub-structure which consists of the walking cycle analysis model [2], the two-branch
Inception-V3 network, and the fusion layer, to select pivotal frames (“good” frames) and discard
interference frames, then learn the global and local discriminative appearance feature information.

To deal with the second problem, the current work [10] mainly focuses on the integration of two
types of features before learning the distance between persons. Appearance features and temporal
features are different modal information. We believe that information maybe lost due to information
inequality when these two types of features are combined. In this paper, inspired by a previous
literature [11], instead of merging the temporal features and the appearance features of pivotal frames,
we learn the independent distances of the two types of features separately. Hence, we designed a
hybrid end-to-end deep learning architecture for further learning the feature representation and
the independent distance metric. The hybrid end-to-end architecture consists of a two-stream
appearance-temporal deep feature structure and two Siamese networks. The integrated architecture
separately obtains the person’s appearance features and temporal features through the hybrid feature
structure, whilst using the two Siamese networks to learn the independent distances of the two types
of features.

In summary, the main contributions of this paper are three-fold as follows.

(1) We propose a Two-branch Appearance Feature (TAF) sub-structure consisting of the walking cycle
model, the two-branch Inception-V3 network, and the saliency learning fusion layer, which is
used to learn the global and local appearance features of persons. This sub-structure is useful for
discarding interference frames with occlusion and background clutter in the video, and selecting
informative pivotal frames. The features of these pivotal frames can promote the representation
learning ability of two-branch Inception-V3 network. Simultaneously, the fusion layer can
improve the fusion effect and the learning result of local information.

(2) We design a two-stream hybrid end-to-end deep learning architecture that combines feature
learning and metric learning, which uses a hybrid deep feature structure and two Siamese
networks to obtain a person’s features and separately achieve the independent distance metric of
appearance features and temporal features. Note that it can obtain better appearance information
and temporal information by having two independent feature sub-structures.

(3) We evaluate our proposed architecture on three public video datasets, including PRID-2011
dataset [12], iLIDS-VID dataset [13], and MARS (Motion Analysis and Re-identification Set)
dataset [14]. Extensive comparative experiments show that our proposed video-based person
Re-ID architecture achieves comparable results to the existing state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 reviews the work related to person
Re-ID. Section 3 gives a complete explanation of the architecture proposed in this paper and a detailed
introduction to each part of the architecture. Section 4 conducts an experimental evaluation of the
performance of the proposed algorithm on public datasets. Finally, Section 5 summarizes the work of
this paper.
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2. Related Work

Person re-identification has attracted the attention of many researchers in recent years. With the
development of person re-identification works, we believe that the study of person re-identification can
be roughly divided into three groups: image-based person re-identification [15–21], video-based person
re-identification [2–5,9,22], and image to video person re-identification [23]. Typically, most existing
person Re-ID algorithms focus on three key steps: feature extraction [15–19], distance measure [20,21],
and end-to-end learning methods [11,24–27]. To obtain reliable feature representations, the features
adopted in the existing person Re-ID work can be divided into hand-designed features [15–19] and
deep learning features [28]. Hand-designed features are commonly used for the color and texture
features [15], SIFT features [16], and color names features [17], etc. At the same time, there are good
representation capabilities in hand-designed features such as GOG [18] and LOMO [19]. In order to
learn a robust distance measure, many scholars have proposed effective metric models, including
KISSME [20], XQDA [19], FDA [21], etc. To fully understand the relevant algorithms to our proposed
architecture in this paper, we will mainly introduce the research development of video-based person
Re-ID and the current status of end-to-end deep learning algorithms in person Re-ID.

2.1. Video-Based Person Re-Identification

The research in video-based person re-identification is based on person Re-ID in multi-frame
images. At present, more and more video-based person Re-ID methods are emerging. We believe that
video-based person Re-ID can be divided into traditional methods and deep learning methods. In terms
of traditional algorithms, the work of a past literature [2] uses the discriminative selection and ranking
(DVR) method to select discriminative video fragments and extract their HOG3D features for matching.
Another previous paper [3] proposes the STFV3D algorithm to extract spatiotemporal features (learn
Fisher vectors) with spatial alignment. The top-push distance metric method [4] establishes a top-push
constraint metric to improve the intra-distance and inter-distance between persons. In terms of deep
learning algorithms, in a past paper [5], a novel recurrent neural network architecture is proposed
to obtain space-time features in video. A previous literature [9] proposes an end-to-end learning
architecture integrated by Convolutional Neural Networks (CNNs) and Bidirectional Recurrent Neural
Networks (BRNNs) to match person in the video. In another past paper [22], a novel joint Spatial and
Temporal Attention Pooling Network (ASTPN) is proposed as feature extractor to obtain features for
video-based person Re-ID.

2.2. End-To-End Deep Learning on Person Re-Identification

With the wide applications of deep learning, end-to-end deep learning algorithms have appeared
in many researches of person re-identification. The essence of an end-to-end learning algorithm is to
completely connect the feature representation with the distance metric and jointly identify the same
person. The binary input and the ternary input are the common strategy in person Re-ID algorithms
of end-to-end learning. Literature [24] proposes a novel Deep Metric Learning (DML) method that
jointly learns color features, texture features, and metrics in a unified framework. In a past paper [11],
Chen et al. propose a novel deep end-to-end network to automatically learn the spatial-temporal
fusion features, and utilize the Siamese to train sample pair. A previous work [25] presents a novel
multi-channel parts-based Convolutional Neural Network (CNN) model under the triplet framework
for person Re-ID. A different past work [26] also proposes a new end-to-end Comparative Attention
Network (CAN) with triplet loss to learn the discriminative features of person images. For quaternary
input, a past work [27] designs a quadruplet loss to ensure that model outputs have a larger interclass
variation and a smaller intra class variation compared to the triplet loss. In our paper, we borrow
the idea from the Siamese network of binary input, and employ two Siamese networks to learn
the independent distance metric of different features. This effectively improves the performance of
video-based person Re-ID.
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3. The Proposed Hybrid End-To-End Deep Learning Architecture

3.1. Architecture Overview

The hybrid end-to-end deep learning architecture of our proposed method is shown in Figure 2.
The hybrid end-to-end architecture consists of two-stream deep feature structure and two Siamese
networks. The two-stream deep feature structure is composed of the Two-branch Appearance Feature
sub-structure and the Optical flow Temporal Feature sub-structure, which can obtain abundant
appearance information and stability temporal information of the pairwise person. It then employs
two Siamese networks to compare the similarities between different persons of each type of feature.
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Figure 2. The framework of the proposed hybrid end-to-end deep learning architecture.
The architecture consists of inputs, a two-stream hybrid deep feature structure, and two Siamese
networks. The two-stream hybrid deep feature structure is composed of the Two-branch Appearance
Feature sub-structure and the Optical flow Temporal Feature sub-structure, which can obtain abundant
appearance information and stability temporal information of the pairwise person. Then, two Siamese
networks are employed to compare the similarities between different persons of each type of feature.

In detail, for the first-stream feature substructure, we take the video of the original RGB image
frames with persons i and j as inputs to the Two-branch Appearance Feature (TAF) sub-structure,
respectively. A key process of the TAF sub-structure is that the walking cycle analysis model is used to
select the pivotal frames N (N represents the number of pivotal frames) in the image sequence, then the
pivotal frames are fed into a two-branch Incpetion-V3 network to learn the global appearance feature
information. In addition, the fusion layer with weights sharing is applied to learn the salient and local
features, whilst also fuse the global and local appearance information in the pivotal frames. Similarly,
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for the second-stream feature sub-structure, we use the optical flow image of video with persons i and
j as inputs to the Optical flow Temporal Feature (OTF) sub-structure, respectively. Then, the CNN
architecture and the temporal pooling generate temporal information. Finally, the obtained appearance
features (FT

i , FT
j ) and temporal features (Fo

i , Fo
j ) are separately trained for similarity between features

through two Siamese networks.

3.2. Input Data Acquisition

Multi-camera visual sensor networks are an important source of data acquisition for video-based
person re-identification. The three public video datasets used in this paper all capture persons through
multiple non-overlapping visual sensing cameras, as shown in Figure 3. Specifically, the PRID-2011
dataset [12] consists of image sequences extracted from multiple person trajectories recorded from two
different static surveillance cameras. The iLIDS-VID dataset [13] is created from the persons observed
in two non-overlapping camera views from the i-LIDS Multiple-Camera Tracking Scenario (MCTS)
dataset which was captured at an airport arrival hall with a multi-camera CCTV network. The MARS
dataset [14] was collected from six near-synchronized cameras on the campus of Tsinghua university.
There were five 1080 × 1920 HD cameras and one 640 × 480 HD camera.
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Figure 3. The data acquisition of multi camera visual sensor networks. These scenes are captured
under disjoint cameras.

3.3. Two-Branch Appearance Feature Substructure (The First-Stream)

In order to select the pivotal frames in the videos and obtain more distinguishing global
and local appearance features of persons, we designed a Two-branch Appearance Feature (TAF)
substructure consisting of a walking cycle analysis model, a two-branch Inception-V3 network and a
salience-learning fusion layer. The appearance feature sub-structure will be described in detail below.

3.3.1. Walking Cycle Analysis Model

Given a video of the target person, in order to select reliable pivotal frames in the video and
discard the interference frames, we consider employing the walking cycle analysis model [2,3,29] to
obtain the pivotal frames as the input of the two-branch Inception-V3 network. This is done to prevent
the appearance features are not affected by low-resolution image, complex background interference,
and occlusion. In this model, we first extract the Flow Energy Profile (FEP) signal [2]. The FEP is a
one-dimensional signal which represents the motion energy intensity induced by the activity of human
muscles during walking [30], and is approximately estimated by optic flow computation. For each
successive and raw RGB image frame, rit of person i in the video Si = {ri1, ri2, · · · , rit, · · · , riL},
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we calculate its flow energy by the connection between optical flow fields in the horizontal direction,
vx, and the vertical direction, vy, as shown in Equation (1):

Erit = ∑
(x,y)∈p

∥∥[vx(x, y), vy(x, y)]
∥∥

2, (1)

where Erit represents the FEP value of the rit-th frame, and p is an image of the lower body of a person.
The rough estimated FEP value of the walking cycle is prone to instability due to background

noise and occlusion interference. According to this situation, the literature [3] uses the discrete Fourier
transform method to convert the original FEP value into the frequency domain, thus obtaining a
more accurate walking cycle model. In order to obtain a discriminative pivotal frame, we use this
method [3] to convert the video sequence into a walking cycle. During the walking cycle, the image
frames corresponding to the maximum and minimum FEP values can improve the result of person
representation, so our paper selects them as the pivotal frames N (N represents the number of
pivotal frames). As shown in Figure 4, from the graph of FEP value, the local maximum of energy
value Erit corresponds to the walking posture when the person’s legs overlap. Conversely, the local
minimum value represents the person’s posture when their legs are farthest away. Through the
analysis of the walking cycle model, the pivotal frames SiPF = {ri1, ri2} are extracted from the video
Si = {ri1, ri2, · · · , rit, · · · , riL} as the input of the two-branch Inception-V3 network.
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Figure 4. Pivotal frames extraction. The image frames with the golden box in the raw RGB frames is a
partially selected video segment. The red curve in the Flow Energy Profile (FEP) signal is the regular
FEP value and the blue curve is the rough FEP value.

Remarks. For the selection of pivotal frame’s number, our paper adopts the strategy of selecting
even frames. Because the strategy of selecting the pivotal frames in our paper is to select the image
frames corresponding to the maximum and minimum FEP values in the video, selecting the even
pivotal frames not only discards the interference frames, but also preserves the complete appearance
posture of the person.
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3.3.2. Two-BranchInception-V3 Network

Although the CNN has successfully demonstrated breakthroughs in person re-identification,
changing the structure of the CNN from different perspectives enable achieve different performance.
A straightforward way to improve CNN performance is to increase the number of layers in the network.
Due to the deepening of the number of network layers, the number of network parameters and the
computational cost will increase dramatically. At the same time, a deepened network and limited
training samples may also cause serious overfitting problems. Hence, we construct the two-branch
global feature learning module using the 42-layer Inception-V3 network [31]. Compared to other
frameworks, such as VGG-Net [32] or Res-Net [33], we decided that the Inception-V3 network was
more suitable for learning global features due to its high computational cost efficiency (higher modeling
capacity at a smaller parameter size) and its capability for learning more discriminative appearance
features at varying pivotal frames.

For the two-branch Inception-V3 network, although the two branches of model that learns the
global features are the same Inception-V3 network, they do not share the weight parameters of the
network. Intuitively, the pivotal frames SiPF = {ri1, ri2} of person i are input into the two-branch
Inception-V3 network, respectively, and the person’s global appearance features ( f T

i1
′ and f T

i2
′) are

obtained by learning.
Remarks. Since the selected pivotal frames correspond to different postures of the person walking

in the video, and the interference frames with the occlusion are discarded, it is thus stable and easy to
extract the person’s feature information from the pivotal frames with clear appearance. Furthermore,
the two-branch Inception-V3 network can learn person’s appearance information in two different
poses. The above observations are the main reasons for learning more discriminative appearance
features at varying pivotal frames.

3.3.3. Salience-Learning Fusion Layer

This fusion layer is designed to learn the local features and fuse the output of two-branch
Inception-V3 network. Due to the phenomenon of feature redundancy in the feature map learned
from the above multi-layer Inception-V3 network, and because some feature channels may capture
interfering information about aperson, we suggest that the salience-learning fusion strategy can
automatically discover and emphasize important local information, such as the head, torso,
package, etc.

As shown in Figure 5, we input features f T
i1
′ and f T

i2
′ into the salience-learning fusion layer,

which can learn the different weights of each different feature channel. Then, we use the Eltwise
operation to sum the feature channels. Finally, the information of each feature map is fused together
through the fully connected layer, and we get the final appearance feature FT

i . This is the main reason
why the layer can extract local appearance information and also reduce the feature dimension.

Remarks. In this work, we use the salience-learning fusion layer to exploit visual saliency.
The strategy of salience-learning [26] has been successfully applied to person re-identification. As can
be seen from Figure 8, the target person with the package can be accurately identified. Specifically,
the layer combines the global and local features of a person in different poses, and the different weights
of each feature channel can automatically calculate the positions in different visual saliency features.
At the same time, the Eltwise-sum operation links the locations of local visual features.
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3.4. Optical Flow Temporal Feature Substructure (The Second-Stream)

Although spatial appearance features are more discriminative than temporal features for person
Re-ID [19], the temporal feature information can compensate for the errors caused by persons of similar
appearance. The Optical Flow Temporal Feature (OTF) sub-structure combines the optical flow images
with the CNN to obtain temporal features. The reason why the RNN is not added because the optical
flow images contain temporal information associated with the pedestrian motion, and the temporal
information learned in the optical flow images is mapped to the temporal feature map, no longer use
the RNN to get the temporal information. Finally, the temporal pooling method is used to aggregate
the sequence-level temporal features into a single temporal feature. The OTF sub-structure is described
in detail later in this section.

3.4.1. The CNN Architecture

In this paper, the input of the OTF sub-structure (the second-stream) is the image frame of
the optical flow information corresponding to the video, which is the same as the literature [11].
Specifically, we define the optical flow images in the video Sio as Sio = {oi1, oi2, · · · , oit, · · · , oiL},
where oiL represents the optical flow image and L is the video length. The method of obtaining oit
is the same as the method described in Section 3.3, computed using the Lucas–Kanade optical flow
technique [34].

As shown in Figure 2, we employed a previously proposed CNN architecture [11] to obtain
the temporal information. However, in our case, some of the parameters in the architecture were
modified. Figure 2 shows the network architecture, and Table 1 demonstrates the parameters of
this CNN architecture. The CNN architecture is composed of three convolutional layers, two fully
connected layers and a dropout layer. Note that the process steps of each convolutional layer are
convolutional, nonlinear activation functions, and pooling. We chose the rectified linear unit (ReLU)
as the activation function and set the pooling operation to max-pooling. We input the optical flow
image frames Sio = {oi1, oi2, · · · , oit, · · · , oiL} of person i into the CNN architecture and generate the
output temporal feature vector Fo

i =
{

f o
i1, f o

i2, · · · , f o
it, · · · , f o

iL
}

after passing the CNN. The process of
the above CNN architecture can be expressed by Equations (2) and (3) as follows

f o
it
′ = Maxpool(relu(Conv(oit))), 1 ≤ t ≤ L, (2)

f o
it = connect( f o

it
′), 1 ≤ t ≤ L, (3)

where oit denotes the optical flow image at t moment, f o
it
′ is the feature vector through three

convolutional layers, and f o
it is the temporal feature vector after the CNN architecture.
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Table 1. Parameters of the CNN architecture.

Layers Network Parameter/Type

Conv1 Filter 5 × 5/stride 2/pad 4
Max pool1 Filter 2 × 2/stride 2

Conv2 Filter 5 × 5/stride 2/pad 4
Max pool2 Filter 2 × 2/stride 2

Conv3 Filter 5 × 5/stride 2/pad 4
Max pool3 Filter 2 × 2/stride 2
Dropout dropout ratio 0.5

3.4.2. Temporal Pooling

To aggregate the temporal information of all time steps in the OTF sub-structure, the multi-frame
feature vector is aggregated into a single feature vector using the temporal pooling method.
The implementation of these functions can be achieved by mean pooling, max pooling, and sum
pooling, but it was proven [5] that mean pooling is more suitable for aggregating information in person
Re-ID. The median value is tested as well to remove gross errors. In our paper, we adopt the same
temporal mean-pooling method to take the temporal feature vector Fo

i =
{

f o
i1, f o

i2, · · · , f o
it, · · · , f o

iL
}

from the CNN architecture as inputs, and then produce a single feature vector Fo
i to represent the final

temporal feature of person i in the video. This process can be expressed by the following Equation (4).

Fo
i =

1
L

L

∑
t=1

f o
it, (4)

where f o
it is the temporal feature at time t, and t ∈ [1, L]. Fo

i is the final temporal feature of person i
generated by the OTF sub-structure.

3.5. Two Siamese Networks

The Siamese network is a measure of the similarity of two objects, which consist of two
substructures with shared weights [35]. Each substructure is used as a feature extractor to output
the trained feature vectors, and the Siamese network compares these feature vectors using Euclidean
distance. The essence of this network comparison idea is to try to reduce the distance between feature
vectors of the same class and increase the distance between feature vectors of different classes. Thus,
the similarity of a pair of inputs is distinguished by a margin. Fortunately, this property is close to the
distance metric learning algorithm in the person Re-ID, so the Siamese network has been applied to
person Re-ID work. For video-based person Re-ID, the Siamese network can use the features of a pair
of image sequences to train similarity.

Concretely, in our paper, as shown in Figure 2, we constructed two Siamese network [8] to learn
the independent distance of the TAF sub-structure and OTF sub-structure, respectively. For the first
Siamese network, the final appearance feature vector FT

i and FT
j obtained by the pivotal frames of

person i and j through the TAF substructure are taken as inputs. The similarity loss function Sim(•) of
the generic first Siamese network is defined as follows

Sim(FT
i , FT

j ) =

 1
2‖F

T
i − FT

j ‖
2

i = j
1
2 [max(M− ‖FT

i − FT
j ‖, 0)]2 i 6= j

, (5)

where M represents the margin value in the Siamese network. Similarly, the second-stream Siamese
pseudo-network employs the same function with different types of feature vector inputs, as shown in
Equation (6):

Sim(Fo
i , Fo

j ) =

{
1
2‖F

o
i − Fo

j ‖
2
i = j

1
2 [max(M− ‖Fo

i − Fo
j ‖, 0)]2 i 6= j

, (6)
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It should be noted that Fo
i and Fo

j denote the temporal feature vectors of person i and j. To sum
up, the joint objective function Simobj combined with the two-stream Siamese network is shown in
Equation (7):

Simobj = ∂TSim(FT
i , FT

j ) + ∂oSim(Fo
i , Fo

j ), (7)

where ∂T , ∂o represents the loss weight, and ∂T > ∂o. The reason for setting these weights is the
effectiveness of the appearance features compared to the temporal features.

4. Training and Test

4.1. Training (Joint Multiple Loss)

During the training phase, we adopted a joint training method similar to those previously
described in the literature [11]. The core of this strategy is to combine the objective function of two
Siamese networks and the objective function of the predicted person’s identity to train our proposed
appearance feature learning substructure. In order to take full advantage of label information, we used
the Softmax loss function [36] to predict the person’s identify. In our work, as shown in the Figure 6
for feature vector FT

i in the first-stream substructure, the posterior probability of predicting person i is
as follows

PiT( m̃i = mi|Si) =
exp(Wmi F

T
i )

∑nid
n=1 exp(WnFT

i )
, (8)

where mi represents the category label of the person i training video sample Si, m̃i is the predicted
label, and Wn refers to the Softmax function parameter of the person’s class n. The training loss is
computed as

Lossso f t
i = ∑ log(PiT( m̃i = mi|Si)), (9)

Note that the use of the Softmax loss function during training is only for the appearance feature
sub-structure (the first-stream).Sensors 2018, 18, x FOR PEER REVIEW  12 of 22 
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Therefore, the loss function Loss of the entire architecture is as follows

Loss = Simobj + Lossso f t
i + Lossso f t

j , (10)
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where Lossso f t
i and Lossso f t

j are the Softmax functions of persons i and j, respectively.

4.2. Test (Re-Identification)

In the testing phase, given a probe video and candidate video set, the test of the pedestrian
re-identification algorithm is compared the distance between the probe video and each the videos in
the candidate video set. Therefore, our goal is to calculate and rank the distances between the person’s
features. In our work, as shown in Figure 6, we use Euclidean distance to express the similarity of
persons. For the final appearance feature vectors (FT

i and FT
j ) and temporal feature vectors (Fo

i and Fo
j ),

the independent Euclidean distances are calculated as follows

dT = ‖FT
i − FT

j ‖, (11)

do = ‖Fo
i − Fo

j ‖, (12)

where dT and do represent the distance of appearance features and the distance of temporal features,
respectively. Finally, the weighting merges the above distances and sorts them:

d = ∂TdT + ∂odo, (13)

where d is the joint distance between persons. The data selection principle for training phase and
testing phase is specified in Section 5.1.3.

5. Experiments

In this section, we evaluated the proposed architecture of the three video datasets. The first part
of our experimental work was mainly to compare experiments with other algorithms, and the other
part was to verify the effectiveness of some factors in the proposed method.

5.1. ExperimentalSetup

5.1.1. Datasets

The details of the three datasets are as follows, and Table 2 and Figure 7 show the basic information
and some person samples, respectively.

Table 2. Detailed information of the experimental datasets.

Dataset Persons Cameras Videos Resolution Evaluation

PRID-2011 385/749 2 400 64 × 128 CMC
iLIDS-VID 300 2 600 64 × 128 CMC

MARS 1261 6 20,478 128 × 256 CMC & mAP

The PRID-2011 dataset [12] is composed of images captured by two cameras (A and B) from
outdoor non-overlapping perspectives. There are 385 identities and 749 identities in cameras A and B,
respectively, and 200 persons with the same identity under both cameras. Note that there are 400 video
sequences for 200 subjects. The video sequence length of each pedestrian is between 5 and 675 frames.
The design peculiarity of this dataset is the challenges of persons with simple background interference,
less occlusions, and lighting variations.

The iLIDS-VID dataset [13] consists of 600 video sequences of 300 identities, also captured from
two non-overlapping cameras view. Each video sequence of the dataset is between 23 and 192 frames in
length. The challenges of this dataset include camera-view changes, illumination variations, complex
cluttered background, and serious occlusions.
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The MARS dataset [14] is a relatively new video person Re-ID dataset. The dataset is derived from
an extension of the Market1501 dataset [37] with 1261 pedestrians and 20,478 tracklets. These tracklets
were captured by six cameras and collected using a DPM detector [38] and a GMMCP tracker [39].
Furthermore, there are 3278 distracted tracklets in the dataset due to false detection and association.
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5.1.2. Evaluation Protocol

In order to evaluate the effectiveness of the person Re-ID algorithm, we adopted the cumulative
matching characteristic (CMC) curve [40] and the mean average precision (mAP) [14] as evaluation
criteria. The CMC value refers to the expectation of a correct match in the rank-k (%) position.
The CMC curve refers to the curve of correct match results in the rank-k (%). The mAP considers
both the precision and recall of multiple same persons in a gallery. For the PRID-2011 dataset and
iLIDS-VID dataset, we used the CMC value to evaluate the performance of the algorithm. For the
MARS dataset, both CMC curve and mAP were adopted. The experimental results were the average
values after ten random experiments.

5.1.3. Implementation Details

In terms of data preparation, we followed an experimental data selection principle similar to
the literature [13] on the PRID-2011 dataset and the iLIDS-VID dataset. Specifically, we used the
177 persons out of 354 videos from the camera A and B on the PRID-2011 dataset. On the iLIDS-VID
dataset, we used the 400 videos of 200 persons for the experiment. Similarly, we randomly selected the
videos from one camera-view for the training samples, and other videos from the other camera-view
for testing. Finally, for the MARS dataset, we followed the experimental data selection principle as
described in the literature [14]. The dataset was divided into 625 persons for training, and the rest
of the persons for testing. In addition, since we consider the pairwise input of the Siamese network,
the person’s videos in the training set were randomly combined into positive sample pairs and negative
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sample pairs. The sequence length on the three datasets was set to 16, as in the literature [11]. In cases
where the person sequence was shorter than 16, we use the entire sequence.

In terms of architecture parameter settings, our experiments were conducted under the Caffe [41]
deep learning framework. When we trained the deployed network architecture on the deep learning
framework, some necessary training parameters needed to be set: initial learning rate was set to 0.0001,
the momentum to 0.9, max iterations to 30,000, and the learning rate decline policy was “inv”. Then,
the M (margin value of the Siamese network) was set to 2. Lastly, the optimization method during
training was the stochastic gradient descent method.

5.2. Comparative Experiment

In order to verify the performance of the proposed architecture on the PRID-2011 dataset,
iLIDS-VID dataset, and MARS dataset, we established a comparative experiment to compare our
video-based person Re-ID architecture with other state-of-the-art algorithms.

5.2.1. Results on PRID-2011 Dataset

For the PRID-2011dataset, we compared the performance of our proposed architecture with
eleven state-of-the-art methods, including DVR [2], DVDL [42], STFV3D [3], RMLLC-SLF [43], TDL [4],
RFA [44], CNN-RNN [5], CNN-BRNN [9], CRF [10], ASTPN [22], TSSCN [11], and TAM-SRM [45].
The experimental results in the CMC values are shown in Table 3. The black bold in Table 3 indicates
the highest correct recognition rate. Note that among these approaches, the first four methods are based
on the traditional person Re-ID method, and the remaining are based on deep learning algorithms.
As can be seen from Table 3, Rank-1, Rank-5, and Rank-20 of our proposed method reached 79%,
92%, and 99%, respectively. In the comparison methods, in addition to the TAM-SRM algorithm,
the Rank-1 recognition rate was improved compared to the rest of the algorithms. Concurrently,
our method was also 1% higher on Rank-1 than the similar TSSCN method. These results all show the
good performance of our proposed algorithm on the PRID-2011 dataset. Remarks, Figure 8 shows the
re-identification sorting results of some persons in the PRID-2011 dataset.

Table 3. Comparison experiment with two types of state-of-the-art algorithms for the PRID-2011
dataset in terms of CMC values.

PRID-2011 Dataset

Category Methods Rank-1 Rank-5 Rank-20

Traditional

DVR 40 72 92
DVDL 40 70 86

STFV3D 42 72 92
RMLLC-SLF 50 78 97

TDL 57 80 94

Deep Learning

RFA 58 86 98
CNN-RNN 65 90 97

CNN-BRNN 72 92 98
CRF 77 93 98

ASTPN 77 95 99
TSSCN 78 94 99

TAM-SRM 79 94 99
Our 79 92 99
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Figure 8. The re-identification results of some people in the proposed architecture in the PRID-2011
dataset. The first column in the figure represents the probe video. The second column is the result of
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and the red boxes are the wrong match.

5.2.2. Results on iLIDS-VID Dataset

For the iLIDS-VID dataset, the comparison method we used was consistent with the experiment
on the PRID-2011 dataset. The experimental results are shown in Table 4, the black bold indicates the
best recognition rate. Rank-1, Rank-5, and Rank-20 of our method on the iLIDS-VID dataset reached
59%, 82%, and 96%, respectively. Compared to the comparison method, our method had a slight gap
with the CRF method, the TSSCN method, and the ASTPN method. Our analysis considered that the
number of training samples in the dataset was small, and the challenges were complex, including
background interference and severe occlusion.

Table 4. Comparison experiment with two types of state-of-the-art algorithms for theiLIDS-VID dataset
in terms of CMC values.

iLIDS-VID Dataset

Category Methods Rank-1 Rank-5 Rank-20

Traditional

DVR 40 61 82
DVDL 26 48 69

STFV3D 37 64 87
RMLLC-SLF 59 85 96

TDL 56 88 98

Deep Learning

RFA 49 76 90
CNN-RNN 65 90 97

CNN-BRNN 55 85 95
CRF 61 85 97

ASTPN 62 86 98
TSSCN 60 86 97

TAM-SRM 55 87 97
Our 59 82 96
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5.2.3. Results on MARS Dataset

The MARS dataset is a large-scale dataset for video-based person Re-ID; we compared our method
with six state-of-the-art methods, including the ASIPN [22], CAR [29], Zheng et al. [14], CRF [10],
TAM-SRM [45], and Li et al. [46]. The experimental results are shown in Table 5 and Figure 9, and the
bold black indicates the highest recognition rate. Rank-1, Rank-5, and Rank-20 of our method for the
MARS dataset reached 73%, 91%, and 97%, respectively. In the comparative method, the framework
proposed in this paper outperformed the TAM-SRM method by 2% and 1% on Rank-1 and Rank-5,
respectively. Simultaneously, our method was also superior to the method of Zheng et al. [14] and the
TAM-SRM algorithm in terms of the mAP evaluation criterion. The above results indicate that our
architecture had good performance on the MARS dataset. In particular, the method of Li et al. [46]
obviously outperformed the proposed algorithm by a large margin. The method of Li et al. [46]
takes full advantage of the labeled information of the pretrained model on image-based person
re-identification datasets to train. The results provide evidence that we can improve the training ability
of video-based person re-identification models by using labeled information on image-based datasets.

Table 5. Comparison experiment with other state-of-the-art algorithms on the MARS dataset in terms
of CMC values and mean average precision (mAP).

MARS Dataset

Methods Rank-1 Rank-5 Rank-20 mAP

ASTPN 44 70 81 -
CAR 56 70 80 -

Zheng et al. 68 83 89 49.3
CRF 71 89 96 -

TAM-SRM 71 90 98 50.7
Li et al. 82 - - 65.8

Our 73 91 97 52.4
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above results indicate that our architecture had good performance on the MARS dataset. In 
particular, the method of Li et al. [46] obviously outperformed the proposed algorithm by a large 
margin. The method of Li et al. [46] takes full advantage of the labeled information of the pretrained 
model on image-based person re-identification datasets to train. The results provide evidence that 
we can improve the training ability of video-based person re-identification models by using labeled 
information on image-based datasets. 

 
Figure 9. Experimental results of the comparison with other state-of-the-art algorithms for the MARS
dataset in term of the CMC curve. Because the work of Li et al. [46] only reported the Rank-1 value,
their results cannot be drawn as a curve.

5.3. Verification Experiment ofKey Components

In this section, we performed in-depth experiments on the PRID-2011 dataset to verify the
effectiveness of four key components, including the pivotal frame’s number, the different Inception-V3
structure and network, the different weights with two-stream architecture, and the independent
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effectiveness of each stream feature’s sub-structure. The specific experimental results and analysis are
as follows. Note that, when we verified the effectiveness of one component, the other two components
were kept unchanged. Therefore, we changed this component to conduct the verification experiment.

5.3.1. Effectiveness of the Pivotal Frame’s Number

As shown in the experimental results of the first to third rows in Table 6, the selection of different
numbers of pivotal frames yielded different recognition rates. We can observe that when the number of
pivotal frames equals 2, N = 2, the best performance and recognition rates were achieved. Note that we
ensured that the other two components were “Our (Inception-V3-5c)” and “Our (∂T = 0.7, ∂o = 0.3)”
when we completed the experiment. The experimental results also show that the number of pivotal
frames is an important factor in the appearance feature substructure of our proposed. Simultaneously,
pivotal frames also help the TAF model get better appearance feature. For the effectiveness of the
pivotal frame’s number, considering the complete appearance feature sub-structure, the increase in the
number of pivotal frames is only the repeated accumulation of the two walking postures of a person.
Minor changes in the appearance of the person are likely to cause the fitting of the global feature
representation on the deep Inception-V3 network, and the increase in the number of pivotal frames
may increase the likelihood of similar poses between different persons.

Table 6. Verification experiment results for the pivotal frame’s number for the PRID-2011 dataset in
terms of CMC values.

PRID-2011 Dataset

Methods Rank-1 Rank-5 Rank-20

Our (N = 2) 79 92 99
Our (N = 4) 72 90 96
Our (N = 6) 73 85 92
Our (N = 8) 73 89 93

5.3.2. Effectiveness of the Different Inception-V3 Structures and Different Network

In order to verify that the Inception-V3 network can extract distinguishing features for pivotal
frames, we compared different Inception-V3 structures with the Res-Net (50) network [33]. Comparing
the results of lines 1–4 in Table 7 we can see that using the Inception-V3 network to perform
the extraction of appearance features consistently improves the matching performance. Note that
“Inception-V3-3c”, “Inception-V3-4e”, and “Inception-V3-5c” refer to the outputs of the “3c”, “4e”,
and “5c” modules in the Inception-V3 network, respectively. In particular, the "Inception-V3-5c"
structure in the Inception-V3 network performed better than the rest of structure, with improvements
of approximately 14% and 8% on Rank-1, respectively. These results verify that the “Inception-V3-5c”
structure can learn a rich global appearance feature and effectively improve the person Re-ID
recognition rate.

Table 7. Verification experiment results for the different Inception-V3 structures and different networks
on the PRID-2011 dataset in terms of CMC values.

PRID-2011 Dataset

Methods Rank-1 Rank-5 Rank-20

Res-Net (50) 66 82 90
Our(Inception-V3-3c) 65 85 95
Our(Inception-V3-4e) 71 88 95
Our(Inception-V3-5c) 79 92 99



Sensors 2018, 18, 3669 18 of 21

5.3.3. Effectiveness of the Different Weights with Two-Stream Architecture

In the hybrid end-to-end learning architecture, the appearance features and temporal features
of persons can be extracted separately. In order to verify the importance of each stream feature
structure, from the 1 to 5 rows in Table 8, we performed a verification experiment of two streams
networks with five different weights. It can be seen that when the weight is ∂T = 0.7, ∂o = 0.3,
the optimal result of our architecture was 79% for Rank-1. Note that when there was no temporal
feature (OTF) sub-structure, the Rank-1 recognition rate was 70%. After adding the temporal feature
(OTF) sub-structure, the recognition rate was significantly improved. The experimental results prove
that the temporal features of the OTF model are beneficial to the method proposed in video-based
person Re-ID.

Table 8. Verification experiment results for the different weights with the two-stream architecture on
the PRID-2011 dataset in terms of CMC values.

PRID-2011 Dataset

Methods Rank-1 Rank-5 Rank-20

Our(∂T = 0.5, ∂o = 0.5) 73 88 95
Our(∂T = 0.6, ∂o = 0.4) 76 93 97
Our(∂T = 0.7, ∂o = 0.3) 79 92 99
Our(∂T = 0.8, ∂o = 0.2) 77 92 97

Our(∂T = 1, ∂o = 0) 70 86 93

5.3.4. Independent Effectiveness of Each Stream Feature Substructure

In this subsection, we performed a comparison experiment on the PRID-2011 dataset to verify the
independent effectiveness of each stream feature’s sub-structure. From rows 1 to 5 in Table 9, we chose
the independent feature substructure (TAF sub-structure and OTF sub-structure) to be compared with
related algorithms, including CNN-RNN [5], CNN-BRNN [9], and CRF [10]. The results showed
that the TAF sub-structure reaches 70%, 88%, and 95% on Rank-1, Rank-5, and Rank-20, respectively.
Compared with the three other algorithms, the results of the independent TAF sub-structure were better
than the CNN-RNN algorithm, and lower than the other two algorithms. For the independent OTF
sub-structure, the Rank-1, Rank-5, and Rank-20 reached 57%, 74%, and 89%, respectively. However,
the results of the OTF structure were lower than results of the other three algorithms. Among the three
algorithms, they all use appearance feature information and temporal feature information to represent
the person.

Table 9. Verification experiment results for the independent effectiveness of each stream feature
substructure on the PRID-2011 dataset in terms of CMC values.

PRID-2011 Dataset

Methods Rank-1 Rank-5 Rank-20

Our (∂T = 1, ∂o = 0) 70 86 93
Our (∂T = 0, ∂o = 1) 57 74 89

CNN-RNN 65 90 97
CNN-BRNN 72 92 98

CRF 77 93 98

6. Conclusions

In this paper, we proposed a hybrid end-to-end deep learning architecture for video-based
person re-identification. The architecture consists of the two-stream hybrid feature structure and two
Siamese networks. The two-stream hybrid deep feature structure includes the Two-branch Appearance
Feature sub-structure and the Optical flow Temporal Feature sub-structure, which can separately
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learn appearance and temporal information. For the video-based person re-identification, our method
showed, in a large number of experiments on three datasets, that separate feature structures were
superior in their ability to learn appearance features and temporal features, as well as the independent
distances of different modal features. In future, we will add semantic features to enrich the feature
learning model and improve the loss function to optimize the distance metric.
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