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Abstract: A series of graphite oxide samples were prepared using the modified Hummers method.
Flake graphite was used as the raw material and the reaction temperature of the aqueous solution
was changed (0 ◦C, 30 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, 80 ◦C, and 100 ◦C). X-ray diffraction, Fourier-transform
infrared spectroscopy, Raman spectral analysis, X-ray photoelectron spectroscopy, and contact
angle tests were performed to characterize the structure, chemical bonding, type, and content
of oxygen-containing functional groups of the graphite oxide samples. The results showed that
the type and content of each oxygen-containing functional group could be controlled by changing
the reaction temperature with the addition of water. As the temperature of the system increased,
the degree of oxidation of the graphite oxide samples first increased and then decreased. Too high
a temperature (100 ◦C) of the system led to the formation of epoxy groups by the decomposition
of some hydroxyl groups in the samples, causing the reduction of oxygen-containing functional
groups between the graphite layers, poor hydrophilic properties, and low moisture content. When
the system temperature was 50 ◦C, the interlayer spacing of the graphite oxide samples was at its
highest, the graphite was completely oxidized (C/O = 1.85), and the oxygen-containing functional
groups were mainly composed of hydroxyl groups (accounting for approximately 28.88% of the
total oxygen-containing functional groups). The high content of hydroxyl and carboxyl groups had
good hydrophilic ability and showed the highest moisture content. The sample at 50 ◦C had better
sensitivity to ammonia because of its high hydroxyl group and carboxyl group content, with the
sample showing an excellent profile when the ammonia concentration was 20–60 ppm.

Keywords: reaction temperature; hydrophilic; oxygen-containing functional groups; chemical
bonding; ammonia gas sensitivity

1. Introduction

Graphene is a novel two-dimensional carbon material that has attracted a great deal of attention
in recent years due to its unique electronic structure [1–3] and excellent optoelectronic properties [4–7].
Graphite oxide [8] is an intermediate product of graphene oxide, which is obtained by the Hummers
method, and has a lot of special properties [9], such as a large specific surface area [10], extremely high
ion-exchange property [11], and abundant oxygen-containing functional groups on the surface [12].
Differences in oxygen-containing functional groups are not only reflected in the physical and chemical
properties (e.g., hydrophilic ability [13] and polar molecular adsorption [14,15]) of graphite oxide,
but they also affect the integrity of the graphene structure [16,17] and the distribution of surface
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defects [18]. Based on different reaction conditions, the structure, morphology, defect distribution, and
chemical bond of graphene products have been studied, which is of great significance not only for
the controlled and accurate preparation of graphene, but also for further development and utilization
of graphene.

Graphite oxide, also known as graphite acid, is a compound with an indefinite quantity of
carbon, hydrogen, and oxygen elements. Previous studies on graphite oxide have mainly focused
on its formation process [19,20], structure [21,22], and evolution of surface chemical groups [23].
For example, studies have found that HNO3 and H2SO4 intercalated into graphite and formed graphite
intercalated compounds [24], which is a necessary process to prepare graphite oxide. Studies looking
at ways to improve the Staudenmaier method for preparing graphite oxide discovered the (C2F) n-type
graphite structure model [20,21] via the fluorinated graphite method. Furthermore, researchers have
studied the evolution of various groups in graphite oxide with different oxidation degrees by means of
the solid nuclear magnetic field [12,25,26] to more accurately analyze the structure of graphite oxide
and the type of chemical groups on its surface. These studies found that there might be groups such
as carbonyl groups [27], carboxyl groups [28], ether groups [23,29], and peroxy groups [12] on the
surface of the graphite oxide, and at least two magnetically inequivalent sites of hydroxyl groups [30].
Moreover, these two types of hydroxyl groups can bond at any time to form epoxy groups, where
the hydroxyl group forms a deformed tetrahedron with four carbon atoms on the six-membered ring
of the carbon plane, causing the flat carbon oxide plane to warp [31,32]. Simultaneously, researchers
have studied the physical and chemical properties of graphite oxide and found that the surface of
graphite oxide is hydrophilic [33,34] owing to its large number of polar groups, the large number
of hydroxyl groups gives the oxide an excellent ion-exchange performance [35,36], and different
oxygen-containing groups of graphite oxides show excellent gas sensitivity to specific gases [37–39].
Based on these characteristics of oxygen-containing functional groups on the surface of graphite
oxide, researchers have prepared composite materials with excellent properties using graphite oxide
or by combining graphite oxide with other materials, such as graphite oxide photocatalysts [40],
polybenzimidazole/graphite oxide composite electrodes [41], chitosan/graphite oxide composite
adsorbents [42], and polyaniline/graphite oxide conductive composites [43]. At present, graphite
oxide research is more focused on how to make use of these properties, but there has been no in-depth
study of the precise and controlled preparation of graphite oxide. In particular, the type and content of
oxygen-functional groups have scarcely been reported to date.

In the previous studies of our research group on the preparation [44–46], structure, and
physicochemical properties of graphite oxide have found that the amount of KMnO4 and concentrated
H2SO4 and the reaction time during the middle temperature stage have a significant effect on the
oxidation degree of graphite oxide. While the reaction time during the low temperature stage oxidizes
the graphite oxide product, the degree of influence is small. Previous research by the author Luo
found that temperature changes during the high temperature and water addition stages had a great
influence on the degree of oxidation of the graphite oxide and the type of functional groups. To further
investigate the influence of water temperature conditions on the structural characteristics and surface
functional groups of graphite oxide, the modified Hummers method was used to prepare a series of
graphite oxide samples with different oxygen functional groups by controlling the reaction temperature
during the water addition stage. The present study then looked at the changes in structure, chemical
bonding, content, and type of oxygen-containing functional groups to achieve accurate and controllable
content and type of oxygen-containing functional groups of graphite oxide.

2. Experimental

2.1. Raw Materials and Reagents

Raw materials (natural flake graphite, carbon 90–99.9%, 75 µm) were purchased from Qingdao
Shenshu Graphite Products Co., Ltd. (Qingdao, China). Analytical grade potassium permanganate
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(KMnO4), hydrogen peroxide (H2O2), concentrated sulfuric acid (H2SO4), and hydrochloric acid (HCl)
were purchased from Chengdu Kelong Chemical Factory (Chengdu, China). The experimental water
was ultrapure water with a resistivity of >18.25 MΩ·cm.

2.2. Sample Preparation

Graphite oxide was prepared by the modified Hummers method, wherein the mass ratio of
graphite to KMnO4 was 1:4. The experiment consisted of three stages: (1) Low temperature stage:
160 mL of concentrated H2SO4 was added to a 500 mL dry beaker and stirred in an ice water bath (0 ◦C).
Slowly, 4.0 g of graphite powder was added and stirred for 20 min to fully disperse, then 16.0 g of
KMnO4 powder was slowly added, and stirring continued at 0 ◦C for 180 min; (2) Middle temperature
stage: after the low temperature stage, the temperature of the water bath was controlled at 37 ◦C for
60 min; (3) High temperature stage: after the middle temperature stage, 300 mL of ultrapure water
was added at room temperature (25 ◦C), and the temperature of the control system was altered to 0 ◦C,
30 ◦C, 50 ◦C, 60 ◦C, 70 ◦C, 80 ◦C, and 100 ◦C, with an ice water bath used for the 0 ◦C treatment. After
the addition of water was completed, an appropriate amount of 5% H2O2 was added until no bubbles
formed in the system, and then a quantitative amount of 5% HCl solution was added. The graphite
oxide solution stood for 12 h, after which the supernatant liquid was discarded, and 5000 mL of
ultrapure water was added. After several repetitions, the graphite oxide solution was washed until the
pH showed neutrality, and there was no SO4

2− in the filtrate (detected by BaCl2 solution). The gel was
filtered and placed in an oven at 60 ◦C for 12 h to obtain a yellow-brown graphite oxide sample. Based
on the different reaction temperatures, the samples were labeled GO-X, where X = 0, 30, 50, 60, 70, 80,
and 100.

2.3. Characterization

An X’pert MPD Pro-type X-ray diffractometer (PANalytical, Almelo, The Netherlands) was
used for X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) used an XSAM 800
multi-function surface analysis electron spectrometer (Kratos, Manchester, UK). Fourier-transform
infrared spectroscopy was performed on a Nicolet-5700 infrared absorption spectrometer (Nicolet,
Madison, WI, USA). Raman spectral analysis used an InVia laser Raman spectrometer (Renishaw,
London, UK).

The gas sensing performance was analyzed using a WAS-30A gas sensing test system (Zhengzhou
Yusheng Instrument Co, Ltd., Zhengzhou, China). Instrument parameters were as follows: acquisition
speed 1 time/s, test voltage was 5 V, and system integrated error was less than ±1%. The test process
was as follows: a certain concentration of ammonia was first injected into the closed box to compel
the ammonia concentration in the closed space to reach the test concentration, the resistance of the
sample gradually decreased, and the ammonia sensitivity of the sample was analyzed via the resistance
change. After the resistance stabilized, the closed box was opened and the ammonia gas was removed.
The recovery time of the sample was tested by the change in resistance. The above process was
repeated for different ammonia concentration tests, adding different concentrations of ammonia gas
(20 ppm, 40 ppm, and 60 ppm) in a confined space. To eliminate the interference of humidity on
the components, the principle of stable relative humidity on the saturated salt solution was used to
maintain the humidity above the saturated NaCl solution (humidity 75.3%) and then tested.

3. Results and Discussion

3.1. Color and Dispersion

The color changes in the graphite oxide dispersion prepared at different reaction temperatures are
shown in Figure 1. As the reaction temperature increased, the color of the graphite oxide dispersion
gradually changed from brownish black to pale brown and pale brownish-yellow, and finally to
dark brown.
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with water [47], the hydrophilic ability of the sample was low owing to the low total content of these 
groups mentioned above, and the water contact angle was poor. When the reaction temperature was 
30 °C, 50 °C, and 60 °C, the graphite was completely oxidized, the surface contained a large quantity 
of hydroxyl groups and carboxyl groups, and the water affinity of hydroxyl groups and carboxyl 
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Figure 1. Color change of the graphite oxide dispersion prepared at different reaction temperatures.

When the reaction temperature was 0 ◦C, the graphite was not completely oxidized owing to the
lower reaction temperature and the sample dispersion was poor. Therefore, the dispersion exhibited a
mixed color (brownish black) of graphite and graphite oxide. As the reaction temperature increased,
the graphite was gradually completely oxidized, and the color of the graphite oxide dispersion
gradually changed from brownish black to pale brown (30 ◦C and 50 ◦C) and pale brownish-yellow
(60 ◦C and 70 ◦C) because the dispersibility of graphite oxide was enhanced, and thus the light
transmittance increased. When the reaction temperature increased to 80 ◦C, some of the hydroxyl
groups joined to form epoxy groups, the content of carboxyl groups slowly increased, and the
increase in the content of epoxy groups and carboxyl groups caused the sample to darken and
appear brownish-yellow. Lastly, when the reaction temperature reached 100 ◦C, due to the high
temperature hydrothermal action, the content of hydroxyl groups was greatly reduced, epoxy groups
was slowly increased, and the oxidation degree of graphite was lowered, resulting in a decrease in the
light transmittance of the sample and the color changing to dark brown.

3.2. Contact Angle

Results from the hydrophilic tests of the graphite oxide samples prepared at different reaction
temperatures are shown in Figure 2. As the reaction temperature increased, the contact angle of the
graphite oxide sample decreased from 82.9◦ (GO-0) to 36.1◦ (GO-50), and then gradually increased
to 65.5◦ (GO-100), indicating that the reaction temperature had a great influence on the hydrophilic
ability of the graphite oxide samples. When the reaction temperature was 0 ◦C, the graphite was
not completely oxidized, being mainly composed of hydroxyl groups, epoxy groups, and a small
quantity of carboxyl groups. Although hydroxyl groups and carboxyl groups have a strong affinity
with water [47], the hydrophilic ability of the sample was low owing to the low total content of these
groups mentioned above, and the water contact angle was poor. When the reaction temperature was
30 ◦C, 50 ◦C, and 60 ◦C, the graphite was completely oxidized, the surface contained a large quantity
of hydroxyl groups and carboxyl groups, and the water affinity of hydroxyl groups and carboxyl
groups was good; therefore the sample had good hydrophilic ability and a low contact angle. When
the reaction temperature increased to 70 ◦C, 80 ◦C, and 100 ◦C, the content of carboxyl groups in the
graphite oxide only increased slightly. However, a large amount of hydroxyl groups joined to form
epoxy groups, and the water affinity of epoxy groups was poor; therefore, the hydrophilic ability of
the sample deteriorated, and the contact angle increased.
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3.3. Moisture Content and Liquid-Solid Ratio

To further illustrate the effect of reaction temperature on the oxygen-containing functional groups
of graphite oxide, we tested the moisture content (Figure 3a) and calculated the liquid-solid ratio of the
graphite oxide samples (Figure 3b). The moisture content of the graphite oxide samples prepared at
different reaction temperatures was above 96%, and as the reaction temperature increased, the moisture
content first increased and then decreased. The liquid-solid ratio was first 27:1 (GO-0) and increased
to 43:1 (GO-50), and then gradually decreased to 29:1 (GO-100), wherein the liquid-solid ratio of the
GO-50 sample was 1.5 times higher than that of the GO-0 sample. The hydrogen bonding ability of
carboxyl groups and a water molecule is the strongest, hydroxyl groups is the second strongest, and
epoxy groups is the weakest. When the reaction temperature was 0 ◦C, and because the graphite was
not completely oxidized at this time, although hydroxyl groups was dominant, the total hydroxyl
groups and carboxyl groups content was low, and a large amount of epoxy groups was present,
resulting in poor hydrophilic ability of the sample, which was manifested in a low moisture content.
With increasing reaction temperature, the graphite was gradually oxidized completely, and a large
amount of hydroxyl groups and a small amount of carboxyl groups existed in the edge and surface
of the graphite. The GO-50 sample had a good hydrophilic ability and the highest moisture content.
When the reaction temperature continued to increase to 100 ◦C, the degree of oxidation of the graphite
further increased, and hydroxyl groups in the structure was initially removed and joined to form
epoxy groups. Although the carboxyl groups content increased, the content increase ratio was lower
than the removal rate of hydroxyl groups. And to the extent that, the presence of a large amount of
epoxy groups resulted in a decrease in the spacing of the graphite oxide layers while also lowering the
hydrophilic ability and moisture content.
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3.4. Structural Characterization

The XRD patterns of the graphite oxide samples prepared at different temperatures after adding
water during the high temperature stage are shown in Figure 4. In Figure 4a,b, all samples had
strong and sharp diffraction peaks at 2θ = 10◦ for the different temperatures, which corresponded
to the characteristic diffraction peak of the maximum bottom surface spacing of the graphite oxide.
The presence of the surface characteristic diffraction peak (d001) indicates that all graphite samples
were partial or complete oxidized to graphite oxide at the temperatures mentioned above. When the
temperature of the water addition was 0 ◦C, the characteristic diffraction peak of the maximum ground
spacing of the graphite oxide (d001 = 0.8816 nm) appeared in the GO-0 sample at 2θ = 10.02◦ and the
comparative graphite sample (d001 = 0.3359 nm) showed a significant increase. However, the d001

value did not reach the sample with a higher degree of oxidation (d001 = 0.9 nm) [20], because under
low temperature conditions, the oxidation degree of the graphite oxide was low, and the content of
oxygen-containing functional groups on the surface and the interlayer was also low. With an increase
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in the temperature of the system after the addition of water, the characteristic diffraction peak of
the maximum bottom surface spacing of graphite oxide shifted to a low angle, d001 value rapidly
increased to 0.9230 nm (GO-30) and 0.9595 nm (GO-50), and the graphite in the sample was almost
completely oxidized. The graphite oxide had the most oxygen-containing functional groups and
was mainly composed of hydroxyl groups (approximately 28.77–30.01% of the total amount of the
oxygen-containing functional groups).
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pattern between 3–60◦, (b) XRD diffraction pattern between 8–15◦.

With a further increase in temperature, the characteristic diffraction peak of the maximum bottom
surface spacing of graphite oxide shifted to a higher angle, and d001 value was reduced to 0.9145 nm
(GO-60) and 0.9135 nm (GO-70). During this time, the oxygen-containing functional groups in the
graphite oxide were rich, hydroxyl groups was still dominant (approximately 25.27–27.92% of the total
oxygen-containing functional groups), and the content of carboxyl groups and epoxy groups gradually
increased. When the temperature was increased to 80 ◦C and above, the d001 value of the graphite
oxide was rapidly reduced to 0.8615 nm (GO-80) and 0.8564 nm (GO-100), and the oxygen contents of
the sample surface and the interlayer were reduced. Simultaneously, some of the hydroxyl groups
in the sample joined to form epoxy groups, resulting in a decrease in the maximum bottom surface
spacing of the graphite oxide. This indicated that an increase in the reaction temperature significantly
changed the interlayer structure of the graphite oxide.

The Fourier-transform infrared spectroscopy spectra of the graphite oxide samples prepared at
different reaction temperatures are shown in Figure 5a,b. All the graphite oxide samples had absorption
peaks at 3730–3740 cm−1 (Figure 5b), 1735 cm−1, 1631 cm−1, 1400 cm−1, 1262 cm−1, and 1046 cm−1,
indicating that the graphite oxide contained various oxygen-containing functional groups. Among
these were the C−OH stretching vibration peak at 3730–3740 cm−1, the −C=O stretching vibration
peak at 1735 cm−1, and the bending vibration peak of the graphite oxide surface and the interlayer
water molecules at 1631 cm−1. At 1400 cm−1, the −OH bending vibration peak occurred; at 1262 cm−1,
the C−O−C stretching vibration peak of graphite oxide was seen; and at 1046 cm−1, the C−OH
stretching vibration peak was present. With an increase in reaction temperature, the absorption
peak intensity at 1735 cm−1 increased gradually, and the absorption peak intensity at 1631 cm−1

and 1400 cm−1 increased first and then decreased, whereas the intensity of the absorption peak at
3730–3740 cm−1, 1262 cm−1 and 1046 cm−1 scarcely changed.
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presence of hydroxyl groups and epoxy groups destroyed the ordered structure of the graphite 
crystal and the graphite crystal structure defects increased. When the reaction temperature was ≥ 60 
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was 100 °C, because the reaction solution boiled at this time, hydrothermal reduction caused a large 
amount of oxygen-containing functional groups to be removed, and the graphite crystal structure 
defects were reduced. 

Figure 5. Infrared spectra of graphite oxide samples prepared at different reaction temperatures:
(a) Infrared spectra between 2000–1000 cm−1, (b) Infrared spectra between 3750–3720 cm−1.

The intensity of the absorption peaks at 1735 cm−1 gradually increased owing to the increase
in the reaction temperature, and the content of carboxyl groups in the graphite oxide samples
continuously increased. However, the intensity of the absorption peak at 3730–3740 cm−1 and
1046 cm−1 scarcely changed, indicating that the graphite oxide sample contained hydroxyl groups, but
because of the influence of the adsorbed water, the change in the functional group content was not
reflected in the infrared absorption peak intensity. The absorption peak intensity at 1631 cm−1 and
1400 cm−1 first increased and then decreased, indicating that, as the reaction temperature increased,
the moisture content of graphite oxide increased first and then decreased. Although a large amount
of adsorbed water was removed at high temperatures during the infrared sample drying process,
because the surface of the graphite oxide contained a large amount of hydroxyl groups and carboxyl
groups, the graphite oxide rapidly adsorbed water molecules before and during the infrared test.
The absorption peak intensity first increased and then decreased, indicating that the increase in the
reaction temperature within a certain range was favorable for the formation of hydroxyl groups
and carboxyl groups, and the reaction temperature of 50 ◦C was favorable for the formation of
hydroxyl groups.

The Raman characterizations and D/G peak ratios of graphite oxide samples prepared at different
reaction temperatures are shown in Figure 6a,b. As the reaction temperature increased, the ID/IG ratio
(the intensity ratio of the D peak and the G peak) gradually increased and then rapidly decreased.
For the order of the crystal structure of the sample by ID/IG, the larger the ID/IG, the more structural
defects the sample contains and the lower the degree of ordering [48]. When the reaction temperature
was ≤ 50 ◦C, the graphite could be violently oxidized, and a large number of oxygen-containing
functional groups (hydroxyl groups, carboxyl groups, and epoxy groups) were attached to the surface
and edge of the graphite, and hydroxyl groups and epoxy groups was dominant. The presence of
hydroxyl groups and epoxy groups destroyed the ordered structure of the graphite crystal and the
graphite crystal structure defects increased. When the reaction temperature was ≥ 60 ◦C, the content
of hydroxyl groups decreased rapidly due to the changes in the reaction temperature. Although the
content of carboxyl groups increased gradually, the increase rate was lower than the decrease rate
of hydroxyl groups. The decrease in the functional group promoted the reduction of graphite, thus
the graphite crystal structure defects were decreased. When the reaction temperature was 100 ◦C,
because the reaction solution boiled at this time, hydrothermal reduction caused a large amount
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of oxygen-containing functional groups to be removed, and the graphite crystal structure defects
were reduced.
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Figure 6. Raman spectrum and D/G peak ratio curve of graphite oxide samples prepared at different
reaction temperatures: (a) Raman spectrum, (b) D/G peak ratio.

The XPS spectra and contents of each functional group of the graphite oxide prepared at different
reaction temperatures are shown in Figure 7 and in Table 1. When the reaction temperature was lower,
the graphite oxide samples showed a lower degree of oxidation (carbon to oxygen ratio: C/O = 2.09),
with less oxygen-containing functional groups on the surface and between layers, as well as low water
content and poor hydrophilic ability of samples. Subsequently, as the temperature of the system
increased, the degree of oxidation of the graphite oxide samples first increased and then decreased.
When the system temperature was 50 ◦C, the interlayer spacing of the graphite oxide samples was at
its highest, the graphite was completely oxidized (C/O = 1.85), and the oxygen-containing functional
groups were mainly composed of hydroxyl groups (accounting for approximately 28.88% of the total
oxygen-containing functional groups). The high content of hydroxyl and carboxyl groups had good
hydrophilic ability and showed the highest moisture content. Excessive temperatures (100 ◦C) of the
system led to the formation of epoxy groups by the decomposition of some hydroxyl groups in the
samples, causing the reduction of oxygen-containing functional groups between the graphite layers
(100 ◦C, C/O = 2.23), poor hydrophilic properties, and low moisture content.
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Table 1. Content of each functional group of graphite oxide prepared at different reaction temperatures.

Sample
Relative Percentage Content /%

C/O
C=C C−OH Epoxy Groups O−C=O

GO-0 53.75 23.08 18.03 5.14 2.09
GO-30 43.80 28.77 19.95 7.48 1.90
GO-50 42.58 30.01 19.72 7.69 1.85
GO-60 42.23 27.92 21.33 8.52 1.86
GO-70 44.78 25.27 21.40 8.54 1.89
GO-80 45.42 21.33 22.93 10.31 2.06

GO-100 45.83 20.18 22.96 11.03 2.23

From Table 1, we also found that as the reaction temperature increased, the C/O ratio and
C=C content first decreased and then increased. This was because as the reaction temperature
increased, the C=C content in the graphite decreased, the oxygen-containing functional group content
gradually increased, and the oxygen content increased, further causing a decrease in the C/O ratio.
Simultaneously, as the reaction temperature increased, the content of C−OH first increased and then
decreased. This was because when the reaction temperature was low, C−OH preferentially appeared
on the graphite surface, and as the reaction temperature increased, the C−OH content gradually
increased. When the reaction temperature was 100 ◦C, a portion of the C−OH in the graphite oxide
was initially removed [49]. Simultaneously, the content of C−O−C and O−C=O increased gradually
with the change in the reaction temperature, indicating that the higher the reaction temperature in the
high temperature stage, the better the formation of C−O−C and O−C=O. Comparing the changes
in the O−C=O and C−OH content, the O−C=O content gradually increased with the increase in the
reaction temperature; however, the rate of increase was much smaller than the rate of decrease of
C−OH, which further explains that compared to graphite oxide at 50 ◦C, graphite oxide at 100 ◦C
having a low water content and a large contact angle.

3.5. Gas Sensitivity Test

3.5.1. Static Resistance Analysis

The static resistance changes in the graphite oxide samples prepared at different reaction
temperatures at ammonia concentrations of 60 ppm are shown in Figure 8. As can be seen from
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the figure, as the reaction temperature increased, the initial resistance of the gas sensor first increased
and then decreased, and the initial resistance of GO-50 was the largest. This was because the content of
oxygen-containing functional groups in the graphite oxide increased first and then decreased with the
increase of the reaction temperature. The change of the content of oxygen-containing functional groups
caused the change of the degree of defects of the graphite oxide. The fewer the defects, the larger the
π electron free path and the better the conductivity. GO-50 has more hydroxyl, carboxyl and epoxy
groups and more defects, so it exhibited the largest initial resistance.
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When the gas sensor was in ammonia atmosphere at a concentration of 60 ppm, the resistance
of the gas sensor decreased, and the resistance of GO-50 sample decreased most significantly. This
was because graphite oxide adsorbs water molecules under certain humidity. When ammonia gas
contacted GO, it dissolved into the water molecular film to form NH4+ and OH−, which increased the
concentration of conductive ions in the water molecule film and reduced the resistance of the gas sensor.
Simultaneously, hydroxyl groups and carboxyl groups of graphite oxide formed a hydrogen bond
with the ammonia gas molecule and supplied electrons, resulted in a increase in carrier concentration,
a decrease in the band gap width, and an increase in conductivity [50]. The GO-50 sample has a higher
content of hydroxyl groups and carboxyl groups. After being placed in the ammonia atmosphere
for 100 seconds, the resistance drop of the sample was most pronounced and the resistance was
the smallest.

3.5.2. Dynamic Resistance and Sensitivity Analysis

The dynamic continuous response recovery curves of graphite oxide prepared at different reaction
temperatures at ammonia concentrations of 20–60 ppm are shown in Figure 9. After adding a certain
concentration of ammonia, the resistance of the gas sensor began to decrease sharply, and after a
response, the resistance stabilized. The tank was then opened, the gas began to desorb, and the
resistance of the gas sensor recovered quickly, which was then restored to the baseline position.

Sensitivity was defined as S = ∆R/R0 × 100%, where, R0 is the resistance of the gas sensor when
it is stable in air, and ∆R is the difference value between the resistance of the gas sensor exposed to a
certain concentration of ammonia and R0. Figure 10a shows that the sensitivity of all the gas sensors
increased linearly with an increase in the concentration of ammonia. When the reaction temperature
was 0 ◦C or ≥70 ◦C, the sensitivity of the gas sensor (GO-0, GO-70, GO-80, and GO-100) was very
low, and the sensitivity of the samples was highest at 60 ppm ammonia concentration, which was
57.72% (GO-70). When the reaction temperature was 30 ◦C, 50 ◦C, and 60 ◦C, the gas sensor showed
high ammonia sensitivity. The sensitivity of the GO-50 sample was 56.80% at 20 ppm ammonia
concentration, and the sensitivity increased to 80.53% when the ammonia concentration increased to
60 ppm.
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The sensitivity of the GO-0 sample was lower than that of the other samples because the reaction
temperature was too low, thus the graphite was not completely oxidized, part of the graphite remained,
and the contents of the oxygen-containing functional group and the active site were small. The low
sensitivity of GO-70, GO-80, and GO-100 samples was due to the decrease in the oxygen content in
the samples, resulting in a decrease in the O/C ratio, a decrease in hydroxyl groups content, and a
decrease in active sites, which was not conducive to the adsorption of the sample for ammonia. When
the reaction temperature was 30 ◦C, 50 ◦C, and 60 ◦C, the sample resistance changed greatly and the
sensitivity was high. Thus, the relative content of different oxygen-containing functional groups in
graphite oxide plays an important role in influencing sensitivity to ammonia. We found that GO-30,
GO-50, and GO-60 had higher hydroxyl groups and carboxyl groups content, with hydroxyl groups
and carboxyl groups possessing excellent adsorption characteristics for ammonia [51].
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Figure 9. Dynamic resistance curves of graphite oxide samples prepared at different
reaction temperatures.

Table 2. Response/recovery time, sensitivity value of GO-X to 20 ppm NH3.

GO-0 GO-30 GO-50 GO-60 GO-70 GO-80 GO-100

Response time (s) 45 35 29 36 37 40 44
Recovery time (s) 1 2 5 2 3 2 1
Sensitivity value (%) 18.895 50.867 56.795 48.539 29.742 29.346 13.123

The changes in response time of graphite oxide at 20 ppm ammonia at different reaction
temperatures are shown in Figure 10b and Table 2. There was a relationship between response
recovery time and sensitivity, i.e., the higher the sensitivity of the sample (e.g., GO-50), the shorter the
response time (29 s). In contrast, the lower the sensitivity of the sample (e.g., GO-0), the longer the time
(45 s). Simultaneously, the recovery time was inversely related to the response time, i.e., the higher the
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sensitivity of the component, the longer the recovery time. For example, the GO-50 sample response
time was 29 s and the recovery time was the longest (5 s). The analysis showed that the sample with
high sensitivity contained relatively more active sites, which can achieve the adsorption equilibrium of
ammonia in a short time [50]. Simultaneously, the sensitivity of the sample was influenced by a high
content of functional groups and was difficult to desorb after ammonia adsorption.
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Figure 10. Sensitivity change of graphite oxide and response recovery time curve at 20 ppm ammonia: 
(a) Sensitivity change, (b) Response recovery time. 
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Figure 10. Sensitivity change of graphite oxide and response recovery time curve at 20 ppm ammonia:
(a) Sensitivity change, (b) Response recovery time.

4. Conclusions

The surface of graphite oxide is rich in oxygen-containing functional groups. The present study
controlled the preparation conditions of graphite oxide samples to prepare different contents of
oxygen-containing functionalized graphite oxide, and a series of graphite oxide gas sensors with
different reaction temperatures were prepared by the sol-gel spin-coating process. Changes in the
reaction temperatures caused the oxygen-containing functional groups of graphite oxide in the gas
sensor to show different trends and exhibit different hydrophilic properties. With the increase of
reaction temperature, the C/O ratio and C=C content first decreased and then increased, whereas
hydroxyl groups content first increased and then decreased. The higher the temperature, the better
formation of the epoxy groups and carboxyl groups, and the reaction temperature of 50 ◦C was suitable
for the preparation of high hydroxyl content graphite oxide. By measuring the ammonia sensitivity
of the gas sensor, the change in the content of oxygen-containing functional groups had a significant
effect on the conductivity and ammonia sensitivity of the element. The sensitivity of the sample with
higher content of hydroxyl groups and carboxyl groups at ammonia concentration of 20 ppm was
56.80% (GO-50), whereas when ammonia concentration was 60 ppm, the sensitivity of the sample
increased to 80.53% (GO-50).
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