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Abstract: Changes in ocean temperature over time have important implications for marine ecosystems
and global climate change. Marine temperature changes with time and has the features of closeness,
period, and trend. This paper analyzes the temporal dependence of marine temperature variation
at multiple depths and proposes a new ocean-temperature time-series prediction method based on
the temporal dependence parameter matrix fusion of historical observation data. The Temporal
Dependence-Based Long Short-Term Memory (LSTM) Networks for Marine Temperature Prediction
(TD-LSTM) proves better than other methods while predicting sea-surface temperature (SST) by
using Argo data. The performances were good at various depths and different regions.

Keywords: long short-term memory (LSTM); temporal dependence; sea surface temperature (SST);
prediction

1. Introduction

Seawater temperature is an important indicator that measures water heat and is, thus, one of the
most important physical factors of the marine environment. The changes in seawater temperature
depend on the process of solar radiation, heat exchange between atmosphere and seawater, evaporation,
submarine earth activity, ocean internal radioactive fission and a biochemistry process [1]. Oceans
cover three-quarters of the Earth and their specific heat capacity is rather high, with the ocean playing
an important role in the regulation of the global climate. Ocean-temperature prediction makes humans
better understand global climate change and marine ecosystems. There are many factors that can result
in the change of water temperature, mainly divided into the influence of time and space [2]. Spatiality
is embodied in different areas that have different seawater temperature. The farther the distance,
the more obvious the temperature differences are. Timeliness is reflected in water temperature in
different times, different quarters, and different years are various. Due to ocean temperature being
affected by many factors, complex and changeable, carrying on an accurate prediction of space and
time at the same time is a challenge [3].

Ocean-observing networks are essential for describing and understanding the ocean [4]. For the
purpose of better observing the ocean and knowing more about the ocean, many large-scale global
ocean-observation programs have been in progress, including the World’s Oceans Real-Time Network
Plan (ARGO), the Integrated Ocean Observation System (IOOS), the "NEPTUNE" seafloor observatory
network planning (NEPTUNE), and European programs such as ESONET and DONET. These observed
data have been used for numerical results comparison and also to increase knowledge on global ocean
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and climate [5]. Moreover, ocean observed data prediction depends on observed arrays and tools that
are able to estimate forecasts [6].

In general, ocean forecasting methods are mainly divided into two categories: numerical-calculation
and empirical-statistics methods. The numerical-calculation method is to establish a prediction model
through kinetic and thermal equations, and make a numerical solution after given numerical conditions and
boundary conditions [7]. From traditional empirical statistics methods to artificial intelligence approaches,
there are many data-driven techniques for predicting ocean temperatures [8]. The representative statistical
techniques include Markov model [9], empirical canonical correlation analysis [10]. However, in recent
years, the neural network has been used successfully in many applications.

In marine-temperature research, the neural network plays a very important role. In [11], Tangang et al.
used neural-network models to seasonally forecast tropical Pacific sea-surface temperature anomalies
(SSTA) in the Niño 3.4 region (6◦ S–6◦ N, 120◦ W–170◦ W). Wu et al. predicted the SST over the tropical
Pacific using a neural network (NN) that consisted of deriving the SST principal components over a three-
to 15-month lead time using the input of SST and sea level pressure [12]. In [13], Tripathi et al. analyzed the
SST data in the Indian Ocean and used the ANN technique to study the predictability of the Indian summer
monsoon. It has been found that the performance of the ANN model was better than the corresponding
regression model in the prediction of Indian summer-monsoon rainfall.

Marine Temperature has the characteristic of changing with time, which means that each point
contains a large amount of data. Recurrent NNs (RNN), as an important form of neural network, is used
to process sequence data. However, RNN suffers a lot from vanishing- or exploding-gradient problems
that cannot solve the long-term dependence problem. As a special RNN, Long short-term memory
(LSTM) introduces the gate mechanism and can prevent back-propagated errors from vanishing
or exploding [14]. In general, LSTM performs better than RNN and the Hidden Markov Model
(HMM) [15]. Zhang et al. adopted LSTM in their research to predict sea-surface temperature (SST) and
made a short-term prediction, including one day and three days, and long-term prediction, including
weekly mean and monthly, mean [16]. Yang et al. proposed a model that combines temporal and
spatial information to predict future SST values. Its structure includes one fully connected LSTM layer
and one convolution layer [17].

Marine data have the characteristics of wide distribution, a large amount of data, and many types.
Effective use of cloud-computing resources benefit the development of large-scale high-performance-
computing ocean data. Fustes et al. proposed a new segmentation method to isolate dark areas in SAR
images. Cloud computing is used for scaling up the algorithms and providing communication between
users [18]. The above research shows how their approach benefits from cloud resources.

In this article, we put forward a TD-LSTM network to predict ocean-temperature changes.
In TD-LSTM, we first analyze the temperature history of marine observation values, refer to their
closeness, period, and trend, using the ocean-temperature fusion method based on time dependence
to reconstruct the data sequence. According to the reconstructed LSTM model, we can predict the time
series of ocean temperatures.

This paper’s main contributions include: (1) by analyzing the time dependence of ocean-temperature
changes, the ocean-temperature fusion method is proposed based on time dependence; (2) putting forward
an LSTM ocean-temperature prediction method based on time dependence; (3) extension based on a
time-dependent LSTM ocean-temperature prediction method is applied to different depths; (4) verifying
the validity of the TD-LSTM in different areas.

The rest of this paper is organized as follows. In Section 2, we describe the problem formulation
and long short-term memory networks in our paper. Section 3 puts forward an analysis method
about temporal dependence and a method to construct TD-LSTM. Simulation results and performance
evaluations are shown in Section 4. Section 5 presents our conclusions.
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2. Preliminary

2.1. Problem Formulation

The discrete time sequence is a set of chronological observation values, temperature, salinity,
dissolved oxygen, and daily precipitation are all sequences of this kind.

The 3D grid data sets consist of longitude, latitude, and depth. As shown in Figure 1a, in the
horizontal plane, each observation point has corresponding observed values. At the same time,
as shown in Figure 1b, in each observation point in the vertical direction of different depth also has the
corresponding measurements. These points make up the spatial distribution of ocean temperature.
On time distribution, each temporal point has a set of observations sorted by time interval. We wanted
to solve the problem of how to predict future data according to existing temperature data.

We look at the observations at each observation point as a time series. If a model can be built to
capture the temporal dependencies among data, then the future values can be predicted according
to the historical values. Therefore, the prediction problem of each observation point in the 3D grid
region can be expressed as the prediction problem of time series. Given the historical observations
{Xt|t = 0, ..., n− 1}, predict {Xn}.

Figure 1. Grid data of ocean temperature.

2.2. Long Short-Term Memory

An LSTM network is a special form of RNN, which is a type of gated RNN. LSTM was proposed
by Hochreiter and Schmidhuber in 1997. In the earliest LSTM model, the ingenious concept of
self-circulation was introduced to generate a path for the long-term continuous flow of gradients [19].
One of the most important extensions was to make the weight of self-looping context-sensitive rather
than fixed. This overcomes, to some extent, the most direct gradient disappearance or explosion
problem caused by a traditional RNN due to an excessive number of layers in the time dimension.
By using the hidden layer as a memory unit, the LSTM network can handle correlations between time
series, both for short and long periods of time. Among them, the gated structure controls the weight of
the self-loop, and the accumulated time scale can be dynamically changed. Even for the LSTM of fixed
parameters, the time scale can be changed due to the input sequence.

The LSTM model actually uses an LSTM cell structure to replace the cellular structure of the RNN
hidden layer, giving it the ability to remember for long periods of time. After continuous improvement,
the cell structure of the most widely used LSTM model is shown in Figure 2. Among them, the input
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gate controls whether its value can be added to the state (“memory cell”). The state unit can be
linearly self-looping, and the forgetting gate controls its weight. The output of the cell is controlled by
an output gate that can be controlled to turn off. All gating units can perform a sigmoid nonlinear
transformation, and the input unit can have any compression nonlinearity. The entire calculation of
the LSTM network can be defined by a series of equations as follows:

it = σ(Wi H + bi) (1)

ft = σ(W f H + b f ) (2)

ot = σ(Wo H + bo) (3)

ct = tanh(Wc H + bc) (4)

mt = ft
⊙

mt−1 + it
⊙

ct (5)

ht = tanh(ot
⊙

mt) (6)

Among the equations, it, ft, ot, ct denote enter threshold values, forgetting gate values, output
gate values, and new states of memory cells. σ is a sigmoid function, and Wi, W f , Wo, and Wc are
weight matrices. bi, b f , bo, and bc are the corresponding offset terms. H is the concatenation of the new
input xt and the previous hidden vector ht−1. mt is the final state of the memory cell, and ht is the final
output of the memory unit.

Figure 2. Structure of the long short-term memory (LSTM) cell.

3. Methodology

The temporal dependence-based LSTM (TD-LSTM) network is mainly divided into two parts.
The first part is to analyze the temporal dependence of marine-temperature changes and propose a
temporal dependence parameter matrix fusion method. The second part is to use the fusion sequence
to train the LSTM neural network to obtain the prediction model.

3.1. Temporal Dependence Analysis

LSTM networks have the ability to learn the long-term temporal dependence of marine
temperature. However, the desire to simulate the periodicity and trend of temperature changes
requires a very long input sequence. This will lead to a lengthy process throughout the training process.
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In order to ensure the accuracy of the prediction while reducing the amount of training, we will use
the ocean temperature time closeness, trend and period to select primary data for modeling.

Figure 3 shows temporal dependencies in different observations. Figure 3a,d show temperature
profiles at two different depth in the ocean. The X axis represents the time interval (from January
to December) and the Y axis represents the monthly average temperature of the corresponding
month. The curves from different depths all show an empirical temporal correlation in time series,
i.e., the temperature of recent time intervals are more relevant than ones of distant time intervals.
This indicates that the ocean temperature has closeness in the time dimension. The five curves have
different shapes, indicating that different closeness at different depths. At the same time, comparing
Figure 3a,d from different latitude and longitude, it shows that different regions also have different
characteristics of closeness. In Figure 3b,e, we can clearly observe that the annual period. The period
distribution is very clear at 0 and 50 m, but not so obvious at 100, 200, and 500 m. Figure 3c,f show
the trend of monthly mean temperature for July at different depths during the period of 2004–2016.
It can be seen that the trend of temperature’s increase or decrease is different at different depths.
Temperature changes at different locations and depths also various. In general, their temperature
changes are affected by their closeness, period and trend, but the degree of impact may be different.

Figure 3. Temporal dependencies in different observations.

Trends are usually reflected by observations, where we use multiple periodic points to represent
trends. Inspired by the above analysis, observations at different depths are affected by closeness, period,
and trend. We propose a temporal dependence parametric matrix fusion method, as shown below.

XTD = Wc ◦ Xc + Wp ◦ Xp (7)

Among the quotations, ◦ is Hadamard product, Xc and Xp represent closeness and period,
respectively, Wc and Wp are the parameters used to weight the closeness and period. Wc ◦ Xc is the
length of closeness sequence and Wp ◦ Xp make the lehgth of period sequence. Wc ◦ Xc and Wp ◦ Xp
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together decide the length of trend. For a single observation, it will become a temporal sequdence after
fusion [20].

3.2. Structure of TD-LSTM Networks

In the previous section, we discussed how to choose keyframes for the model. This reduces
training time and capture time-dependent features. Figure 4 shows the structure of our proposed
TD-LSTM networks. As illustrated in the top part of Figure 4, there is a set of historical observations of
ocean temperature. The red dot indicates the temperature at which time t is to be predicted. We used
green dots to reflect the closeness of time. As time distance increases, the relationship between temporal
closeness becomes weaker and green becomes shallower. We used blue dots to reflect the period of
time, they have the same time interval. The closeness and periodic points together reflect the trend.
We combined these points that reflect closeness, period, and trend, and put them in sequentially
into the LSTM units in the middle of Figure 5. The lower part of Figure 5 shows the output value
corresponding to each LSTM unit state. When the input at time t− 1 is completed, the LSTM network
gives the predicted value at time t. The predicted value is compared with the real value, and the Loss
value is calculated to optimize the network.

Figure 4. TD-LSTM networks architecture.

Figure 5. The average of MSE.
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3.3. Algorithm and Optimization

In the following part, Algorithm 1 is presented for the training TD-LSTM networks at
an observation point. We first constructed the training instances from the original observations. Then,
TD-LSTM was trained via back-propagation [21] and optimized by Adaptive Moment Estimation
(Adam). Adam is an adaptive-learning rate-optimization algorithm. Its advantage mainly lies in
that, after bigotry correction, the learning rate of each iteration has a certain range, which makes the
parameters relatively stable [22].

Algorithm 1 Training of TD-LSTM networks

Input:

historical observations:{X1, ..., Xn−1};

target at time t: Xt;

lengths of closeness, period, trend: lc, lp;

period: p;
Output:

TD-LSTM modelM;

//construct training instance
1: D ← ∅;
2: for all available time interval t(1 ≤ t ≤ n− 1) do

3: Sc = [Xt−lc , Xt−(lc−1), ..., Xt−1];
4: Sp = [Xt−lp ·p, Xt−(lp−1)·p, ..., Xt−p];
5: put a training instance (

{
Sc, Sp

}
) into D;

6: end for

// train model
7: initialize parameter θ;
8: repeat

9: randomly select a batch of instances from D;
10: find θ by optimization algorithm;
11: until the objective is minimized
12: output the optimized TD-LSTM modelM;

4. Experiment

In this section, we evaluated our method on BOA_Argo against a few methods.

4.1. Settings

4.1.1. Datasets

The data used in this experiment is from the Global Ocean Argo Grid Data Set (BOA_Argo) [23].
The grid dataset provides annual average, monthly average and yearly ocean temperature from
January 2004 to December 2017 covering the global ocean (180◦ W 180◦ E, 79.5◦ S 79.5◦ N) and salinity
data. Spatial resolution is 1◦ × 1◦ horizontally and 58 layers in the vertical standard layer.

4.1.2. Baselines

We compare our TD-LSTM with the following three baselines:
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1. SVR

Support Vector Regression (SVR) is one of the most popular regression models in recent years.
SVR has achieved good results in many applications. In the experiment, we used support vector
regression with the RBF kernel function.

2. MLPR

Multilayer Perceptron Regressor (MLPR) is a typical artificial neural network for regression tasks.
We used a three-layer perceptron network, which includes one hidden layer with 100 neurons.
In the MLPR network, we set activation = ′relu′ and α = 0.0001.

3. LSTM

LSTM is a time-recurrent neural network. Thanks to its unique design structure, LSTM can
learn long-term correlation. In the experiment, we used 8 and 24 m LSTM to compare with our
proposed method.

In the experiment, we used different variants of the above methods as needed.

4.1.3. Preprocessing

We use the Min-Max normalization method to scale the time series data into the range [−1, 1].
In the evaluation, we got the predicted value back to normal values with inverse transform.

4.1.4. Hyperparameters

In the TD-LSTM networks, the parameters that can be learned using the default parameters
provided by Keras. In the LSTM layer, we used the tanh activation function. It is a fraction of the
units to drop for the linear transformation of the inputs. We used Adam as the gradient optimization
algorithm, as Adam is an adaptive learning rate optimization algorithm [22]. Adam is generally
pursuing as being fairly robust to The choice of hyperparameters, although the learning rate sometimes
needs to be changed from the suggested default [24]. When we are dependent on the sequence length,
we compare the different lc, and lp length combinations. In the allocation of training and validation
sets, we randomly selected 90 percents of the training data to train each model and then used the
remaining 10 percents of the data as the validation set. Finally, we train the final model using all the
training data.

4.1.5. Evaluation Metric

We measure our method by Mean Squared Error (MSE),

MSE =
SSE

n
=

1
n

n

∑
i=1

(yi − ŷi)
2 (8)

Here, there are n samples, ŷi is the predicted value of the ith sample, and yi is the corresponding
true value. The smaller the MSE, the more accurate the description of the experimental data is proved
by the prediction model.

4.2. Evaluation of SST Prediction

In this section, we first evaluated the predictive performance of TD-LSTM for sea surface
temperatures. Taking the world’s largest sea-coral sea area as an example, five observation points were
randomly selected, a time-dependent parameter matrix fusion was performed on their historical
observation data, and the TD-LSTM model was trained using the fused sequence to predict the
temperature of the next month. We set the time-dependent parameter of TD-LSTM to lc = 6, lp = 2.
For better comparison, other methods have the same input sequence as TD-LSTM. We also set different
input sequence lengths for comparison, which were 8 (months) and 24 (months), respectively. Since 8 has
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the same sequence length as lc = 6, lp = 2, 24 has the same time span as lc = 6 and lp = 2. Table 1 shows
the MSE of all methods on BOA_Argo at SST of Coral Sea. The results show that TD-LSTM performance
is not the most prominent at each point, but the average MSE is the best. In other words, TD-LSTM is
better than other methods in overall forecasting. Figure 5 shows the average MSE for each model at 5
locations. It can be seen that TD-LSTM has the best performance. TD-LSTM is 1.6% better than 8-LSTM,
4.3% better than 24-LSTM, 4% better than TD-SVR, 25.1% better than 8-SVR, 6.2% better than 24-SVR,
and 11.7% better than TD-MLPR. It is 40.9% better than 8-MLPR and 36.1% better than 24-MLPR.

Table 1. Comparison of SST predictions in the coral sea area.

Methods P1 P2 P3 P4 P5 Average of MSE

TD-LSTM 0.0525 0.0319 0.0158 0.0305 0.0232 0.0308
8-LSTM 0.0576 0.0293 0.0129 0.0287 0.0280 0.0313

24-LSTM 0.0611 0.0314 0.0162 0.0297 0.0227 0.0322
TD-SVR 0.0368 0.0269 0.0296 0.0321 0.0348 0.0321
8-SVR 0.0414 0.0500 0.0203 0.0536 0.0403 0.0411

24-SVR 0.0389 0.0229 0.0294 0.0455 0.0267 0.0327
TD-MLPR 0.0361 0.0316 0.0353 0.0428 0.0288 0.0349
8-MLPR 0.0622 0.0580 0.0302 0.0689 0.0411 0.0521
24-MLPR 0.0617 0.0282 0.0503 0.0715 0.0295 0.0482

4.3. Results of Different TD-LSTM Variants

In the previous section, we compared the performance of the TD-LSTM method in predicting SST.
In this section, we extend the method to different depths and regions to demonstrate the possibilities
of TD-LSTM for more applications.

4.3.1. Comparisons of Different Ocean Depth

As shown in Figure 3, seawater of different depths has different variations. The four figures in
Figure 6 show the performance of each method at 50 m, 100 m, 200 m, and 500 m. MSE is still the
average MSE of 5 points randomly selected. Figure 6a compares the performance at 50 m, and the
performance of TD-LSTM ranks second, without the 24-LSTM. This is because the input sequence
used by TD-LSTM is only 1/3 of the length of 24-LSTM. With a reduced number of input sequences,
performance is close to 24-LSTM and can be tolerated. The performance of TD-LSTM is better than
other variants of SVR and MLP. Figure 6b compares performance at 100 m depth. TD-LSTM performs
better than 24-LSTM, much better than SVR and MLP variants. The performance of TD-LSTM is
better than that of 24-LSTM because the variation of seawater temperature at 100 m depth is not
obvious. The time-dependent parameter matrix fusion method can better grasp the characteristics
of the variation law. Figure 6c,d compare the performance of each method at 200 m and 500 m,
respectively. The LSTM method is better than the variants of SVR and MLPR. The performance of the
TD-LSTM is close to that of the 24-LSTM and is better than the 8-LSTM.

4.3.2. Impact of Temporal Closeness, Period and Trend

To prove the effect of time dependence on the performance of the model, we choose the closeness
length lc from 2 to 11 and the periodic length lp from 0 to 2 to compare the performance of their various
combinations. The results at depths of 0 m, 50 m, 100 m, 200 m and 500 m are shown in Figure 5,
respectively. We use the x-axis to indicate the number of closeness lengths, three colors to indicate
the number of periodic lengths from 0 to 2, and the y-axis to the corresponding MSE value. Figure 7a
shows the model performance of each parameter combination on the sea surface (0 m). By comparison,
at a depth of 0 m, lc = 2, lp = 1, the model obtains the best MSE. As shown in Figure 7b, the best
performance of the model obtained when lc = 10, lp = 1. Figure 7c reflects the results at 100 m, lc = 10,
lp = 1 bring the best performance. At a depth of 200 m, lc = 7, lp = 1, the model obtained the best
MSE. In the case of a depth of 500 m, lc = 4, lp = 1 was the best selection.
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(a) Performance at 50 m. (b) Performance at 100 m.

(c) Performance at 200 m. (d) Performance at 500 m.

Figure 6. Comparison of performance at different depths.

(a) Temporal dependence at 0 m. (b) Temporal dependence at 50 m. (c) Temporal dependence at 100 m.

(d) Temporal dependence at 200 m. (e) Temporal dependence at 500 m.

Figure 7. Impact of temporal dependences at different depths.
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With the same comparison method, the choices obtained at different depths are different.
This result tells us that at different depths, time-dependent parametric matrix fusion should be
performed for different depths and selecting appropriate parameters. Only in this way can we get a
better model.

4.4. Comparisons of Different Regions

In this section, we applied the TD-LSTM method to different regions, including the Coral Sea,
the Equatorial Pacific Region, and the South China Sea. The performance of the method was evaluated
by comparing the average of MSEs of a plurality of randomly selected points. Figure 8 shows the
comparison of various methods in the Coral Sea. The results show that LSTM is better than SVR and
MLPR. Between LSTM variants, TD-LSTM is better than 8-LSTM and 24-LSTM, and TD-LSTM has
an input sequence length less than 24-LSTM, which reduces the need for historical-data collection
and reduces the computational overhead of the model. Figure 9 shows the comparison of the various
methods in the Equatorial Pacific Region. The results show that the LSTM method is better than SVR
and MLPR at 0 m, 200 m, and 500 m. Among the variants of LSTM, TD-LSTM is better than 8-LSTM
and 24-LSTM. At 50 m and 100 m, LSTM is not as good as SVR. Figure 10 shows the comparison of the
various methods in the South China Sea. The results are similar to those in the Pacific equatorial region.
At 0 m, 200 m, and 500 m, the LSTM method is better than SVR and MLPR. Among the variants of
LSTM, TD-LSTM performs best. At 50 m and 100 m, SVR performs better than LSTM.

Combining the results of the above three sea areas, it is not difficult to find that LSTM has better
performance than SVR and MLPR at 0, 200, and 500 m. In the variant of LSTM, TD-LSTM performs
better thasn 8-LSTM and 24-LSTM. Table 2 shows the improvement rate of TD-LSTM relative to
other methods at 0, 200, and 500 m. It can be seen from the numbers that the overall performance of
TD-LSTM at three depths is the best, far better than the variants of SVR and MLPR.

Figure 8. Comparison of performances at different depth in the Coral Seas.

Figure 9. Comparison of performances at different depth in the Equatorial Pacific Region.
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Figure 10. Comparison of performances at different depth in the South China Sea.

Table 2. Comparison of TD-LSTM performance improvement rates.

Region Coral Sea Equatorial Pacific Region South China Sea

Methods 0 m 200 m 500 m 0 m 200 m 500 m 0 m 200 m 500 m

8-LSTM 1.7% 17% 5.7% 13.2% 14.2% −6.0% 16.0% 13.9% 8.8%
24-LSTM 4.6% −0.4% 7.9% 15.5% 8.3% 0.03% 10.3% 11.9% 10.1%
TD-SVR 4% 51.7% 50.8% 32.4% 62.1% 46.5% 7.2% 36.8% 36.4%
8-SVR 25.2% 31.5% 41.9% 26.4% 71.6% 35.8% 20.3% 31.8% 35.2%
24-SVR 5.9% 51.8% 48.1% 35.4% 66.7% 52.6% 3.9% 33.7% 37.1%

TD-MLPR 11.9% 57.1% 54.6% 40.3% 62.5% 56.1% 31.4% 45.4% 43.4%
8-MLPR 40.9% 38.3% 53.6% 41.4% 71.3% 42.1% 53.7% 34.5% 41.2%

24-MLPR 36.2% 55.4% 60% 45.2% 70.0% 64.6% 32.9% 54.5% 58.0%

5. Conclusions

In this paper, we analyzed the temporal dependence (closeness, period, and trend) of marine
temperature, and proposed a method based on temporal dependence parameter matrix fusion
for historical observation ocean temperature data. Using the fusion data, the LSTM network,
a time-dependent LSTM ocean temperature prediction model is trained and the method is proposed.
We evaluated our model using BOA_Argo data. Experiments have shown that the TD-LSTM and its
variants are better than SVR and MLPR in multiple seas (the Coral Sea, the Equatorial Pacific Region,
and the South China Sea). The input sequence length that we used to train the model can be reduced
by using the TD-LSTM method. In terms of prediction accuracy, the performance of TD-LSTM is
close to or even better than those methods, whose time span are similar to TD-LSTM, but the input
sequence length is much longer than it. The superior performance of the TD-LSTM was demonstrated
at multiple depths in multiple sea areas.
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