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Abstract: Digital source identification is one of the most important problems in the field of multimedia
forensics. While Standard Dynamic Range (SDR) images are commonly analyzed, High Dynamic
Range (HDR) images are a less common research subject, which leaves space for further analysis.
In this paper, we present a novel database of HDR and SDR images captured in different conditions,
including various capturing motions, scenes and devices. As a possible application of this dataset,
the performance of the well-known reference pattern noise-based source identification algorithm was
tested on both kinds of images. Results have shown difficulties in source identification conducted
on HDR images, due to their complexity and wider dynamic range. It is concluded that capturing
conditions and devices themselves can have an impact on source identification, thus leaving space
for more research in this field.

Keywords: dataset; multimedia forensics; image forensics; HDR; source identification

1. Introduction

Digital media have become a crucial source of information worldwide. The increase in popularity
of smartphone devices, camcorders, cameras and other digital media devices has brought many
advantages, but the security aspects are endangered. The obtained data can easily be transferred
and edited to change their perspective altogether. This phenomenon has led to difficulties pertaining
to the authentication of the information shared in the form of multimedia content. Multimedia
forensics is a branch of forensic sciences that deals with this problem. Its role ranges from the
investigation of operational problems to the recovery of intentionally or unintentionally caused
damage of the original information [1,2]. One of the cornerstones of this branch is accumulation of
and fetching data regarding criminal activities [3,4], sharing of the data that have been tampered
with and content manipulation [5]. The main problem is that alterations and manipulations can be
performed at such a high level that it becomes very difficult to distinguish the original content from
the one that has been tampered with or is fake. Authentication of the information involves tracing of
specific codes, links, logos, ambiance, lighting or any sort of clue that was present when the original
content was made. Identifying the source of the information can therefore be of high importance.
Numerous algorithms have been developed to perform digital image source identification. The process

Sensors 2018, 18, 3801; doi:10.3390/s18113801 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4295-7340
https://orcid.org/0000-0002-3047-0519
http://dx.doi.org/10.3390/s18113801
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3801?type=check_update&version=2


Sensors 2018, 18, 3801 2 of 17

can be conducted using approaches such as artifact detection [6,7], detection of pixel defects [8] and
supervised learning [9]. Source identification based on detection of the reference pattern noise [10,11],
better known as Photo-Response Non-Uniformity noise (PRNU), has proven to be very successful.
It was first introduced in [12] as a general solution for reliable source identification. This approach
is based on the fact that pixels have different sensitivity to illumination, which provides the ability
to recognize the source device, even if the manufacturer did not imprint an invisible watermark
on the images. Despite the significant success of the PRNU method, there is still space for further
research. Image capturing devices have developed rapidly in the past decade, providing a wide range
of options, such as image stitching [13] enabled by multi-lense mobile devices [14], various techniques
of image composition [15,16] and fusing. Smartphone devices are commonly equipped to provide not
only image stitching, but also a wide range of image post-processing options that the user can apply
without knowing which processes are performed to get the final result. The High Dynamic Range
(HDR) is a very popular option, which provides the ability of representing a wider luminance range,
in comparison to the conventional Standard Dynamic Range (SDR) images, and generate much more
realistic visual content [17], as shown in Figure 1. While the SDR profile does not allow big luminosity
adjustments and is therefore sensitive in cases of bad lighting conditions and facing the source of light,
the HDR profile copes with these problems and simulates the way the human visual system adjusts
to these kinds of lighting changes. This can be noticed by comparing the images given in Figure 1.
HDR images are believed to become important multimedia files in the near future. As their possibilities
are still a common research topic, new standards have been created for still HDR images [17], and
a number of researchers in the field of multimedia security have studied steganography [18] and
watermarking [19] for this image type. However, as far as we know, no research or dataset focusing on
source camera identification based on HDR images captured by smartphone devices is available up to
this date. This fact gave us a strong motivation to build a novel image dataset.

(a) Examples of SDR images

(b) Examples of HDR images

Figure 1. Examples of (a) Standard Dynamic Range (SDR) and (b) High Dynamic Range (HDR) images.

In contrast to the SDR images, their HDR counterparts are characterized by a high irradiance
dynamic range and localized contrast [20,21]. Currently, there are three major tools for generating
HDR images: Computer Graphics (CG), HDR cameras and SDR cameras. As smartphone devices
are commonly used for HDR image acquisition using ‘HDR MODE’, they are worth being paid
attention. In general, the acquisition [22–25] includes several important stages: multi-exposure image
capturing [23], image alignment [26], image fusion [22–24,27] and tone mapping [28,29]. During the
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stage of image alignment, geometric transformation can be executed on the misaligned images.
Furthermore, image fusion and tone mapping can lead to a non-linear transformation of pixel values.
Considering the previous statements, it can be concluded that the PRNU-based method, an effective
way to identify the source camera for SDR images, is facing new challenges in the case of HDR images.
Therefore, it is of high importance to test the performance of the PRNU-based method on HDR images.

This paper highlights a forensics analysis of HDR images deploying the novel datasets acquired
through mobile camera applications. It caters to the authentication techniques of forensic analysis
through the source identification process and forgery detection. This will be profitable in backtracking
the rightful owner of the content and will be helpful in determination of the information’s authenticity.
Moreover, forgery detection will analyze the amount of tampering with or manipulation done to the
original information, as well as techniques or processes through which it has been performed.

The remainder of paper is organized as follows: Section 2 gives the dataset description.
The principles of PRNU detection are briefly introduced in Section 3. Sections 4 and 5 present
the performed experiments and their results, respectively. Finally, Section 6 gives the conclusions to
this research.

2. The Dataset

Following the procedure adopted to build the VISION Dataset [30], a novel dataset with
compressed HDR images was created. The term CDR (Compressed Dynamic Range), which describes
compressed HDR images, is not commonly used in the literature, but is often referred to as HDR.
Therefore, we adopt the term HDR in the remainder of this paper. Twenty three mobile devices were
used for capturing a total of 5415 images in different scenarios. All images described in this paper
will be available at https://lesc.dinfo.unifi.it/en/datasets. This approach enabled the analysis of
differences between HDR and SDR images, their application and usability in source identification.

The brands of the employed devices included Huawei, Samsung, Xiaomi, Gionee, One Plus,
Asus and Apple. Among them, there were seven different models of Huawei, four of Samsung,
three of Xiaomi, six of Apple and one for each of Asus, Gionee and OnePlus. Seventeen of the
employed devices used the Android operating system, while six of them used iOS. Further information
about the devices, the image resolutions they provide and the number of images taken is given
in Table 1. Devices were named in accordance with their operating system, e.g., “A” stands for a
device that uses Android, while “I” indicates the iOS operating system. Images were further named
in the format “device_category_movement_number”, where “device” represents the abbreviated
name of the device model, as previously explained, “category” refers to HDR or SDR, “movement”
defines camera movements during the acquisition, which can be TRIPOD, HAND or SHAKING, while
“number” represents the ordinal number of the captured image. All the selected mobile devices were
configured to capture photos in the default camera settings of the software system. Photos were taken
without using flash, in different atmospheres, including both indoor and outdoor scenes. As the
analysis requires both HDR and standard SDR images of the same scene, two photos of each scene
were captured.

For source identification purposes, the images were divided into two categories: FLAT and NAT.
FLAT images represent approximately uniform surfaces, which are flattish in terms of texture and
allow computing a clearer PRNU reference, in comparison to the images representing natural scenes.
Thus, FLAT images are devoted to sensor-noise-based source identification. Specifically, images of
walls and skies are in this category. On the other hand, NAT images are available for any image
forensic application. While FLAT images are homogeneous, NAT images can contain a large number
of details and colors. Therefore, the NAT category includes generic images, which contain a large
span of scenes. Depending on the way they were created, NAT images were further divided into
three categories:

- images taken from the tripod (TRIPOD),
- images taken by hand (HAND),

https://lesc.dinfo.unifi.it/en/datasets
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- images taken by a shaky hand (SHAKING).

The stability of the image highly depends on the camera steadiness, which was the reason for
capturing the images with three different motions. Tripod allows the camera to be as still as possible.
Capturing the image with the device held in a steady hand is the most common way of taking
photographs, which usually causes small pixel artifacts that are not very noticeable to the human eye.
Finally, images taken by a shaky hand can be blurred, because of the pixel shifting, caused by the
camera shaking. As HDR images are usually obtained from multiple SDR images, it is expected that
the motion could have an impact on the source identification results for HDR images. The previously
described structure of the dataset is shown in Figure 2. A sample of images from the created dataset is
given in Figure 3.

Figure 2. The dataset structure.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Sample pictures from the dataset: (a) FLAT SDR, (b) FLAT HDR, (c) Tripod SDR, (d) Tripod
HDR, (e) Shaky hand SDR, (f) Shaky hand HDR, (g) Hand SDR and (h) Hand HDR.
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Table 1. Characteristics of the employed devices and captured images.

Device
Class

Device
Name Brand Model OS Image

Resolution
SDR
Flat

HDR
Flat

SDR
Hand

HDR
Hand

SDR
Shaking

HDR
Shaking

SDR
Tripod

HDR
Tripod

A12 Huawei-Honor6plus Huawei PE-TL10 Android 6.0 2448 × 3264 50 (wall) 50 (wall) 20 20 20 20 20 20
A13 Huawei-Honor6plus Huawei PE-TL20 Android 4.4.2 2448 × 3264 50 (wall) 50 (wall) 20 20 20 20 20 20
A02 Huawei-P8 Huawei GRA-L09 Android 6.0 4160 × 3120 50 (wall) 50 (wall) 24 24 24 24 24 24
A06 Huawei-Y5 Huawei CUN-L21 Android 5.1 3264 × 2448 50 (wall) 50 (wall) 24 24 24 24 24 24
A04 Huawei-P10 Huawei VTR-AL00 Android 7.0 3968 × 2976 51 (wall) 50 (wall) 15 15 20 20 26 28
A03 Huawei-Honor9 Huawei STF-AL00 Android 7.0 3264 × 1840 50 (sky) 50 (sky) 20 20 20 20 20 20
A05 Huawei-Mate10Pro Huawei BLA-L29 Android 8.0 3968 × 2976 50 (wall) 50 (wall) 24 24 24 24 24 24
A09 Galaxy-Note5 Samsung SM-N920C Android 7.0 5312 × 2988 50 (sky) 50 (sky) 24 24 24 24 24 24
A07 Galaxy-S7 Samsung SM-G930F Android 7.0 4032 × 3024 52 (wall) 50 (wall) 21 21 24 24 21 21
A08 Galaxy-S7 Samsung SM-G930F Android 7.0 4032 × 2268 50 (sky) 50 (sky) 24 24 24 24 24 24
A10 Galaxy-J7 Samsung SM-J730F Android 7.0 4128 × 3096 50 (sky) 50 (sky) 24 24 24 24 24 24
A15 Xiaom-3 Xiaomi Redmi Note3 Android 7.1 4608 × 2592 50 (wall) 50 (wall) 24 24 24 24 24 24
A11 Xiaomi5 Xiaomi MI 5 Android 7.0 3456 × 4608 50 (wall) 87 (wall) 21 21 21 21 21 21
A14 Xiaomi-5A Xiaomi Note 5A Prime Android 7.1 4160 × 2340 50 (sky) 50 (sky) 24 24 24 24 24 24
A01 GioneeS55 Gionee GN9000 Android 4.4 3120 × 4208 50 (sky) 50 (sky) 20 20 20 20 20 20
A17 AsusZenfone-2 Asus ASUS_Z00ED Android 6.1 3264 × 1836 50 (sky) 50 (sky) 24 24 24 24 24 24
A16 OnePlus-3t OnePlus A3003 Android 8.0 4640 × 3480 50 (wall) 50 (wall) 24 24 24 24 24 24
I06 iPhone 5S Apple 15A372 iOS 11 3264 × 2448 50 (wall) 50 (wall) 24 24 24 24 24 24
I04 iPad Air Apple A1475 iOS 11.0.1 2592 × 1936 50 (wall) 50 (wall) 24 24 24 24 24 24
I05 iPhone 6 Apple A1586 iOS 11.3 2448 × 3264 50 (wall) 50 (wall) 21 21 21 24 21 21
I02 iPhone se Apple A1723 iOS 10.3.3 4032 × 3024 54 (sky) 54 (sky) 19 19 19 19 19 19
I03 iPhone 7 Apple A1778 iOS 11.3 4032 × 3024 50 (wall) 50 (wall) 24 24 24 24 24 24
I01 iPhone-8 Apple A1863 iOS 11.3 3024 × 4032 50 (sky) 50 (sky) 15 15 15 15 15 15



Sensors 2018, 18, 3801 6 of 17

3. PRNU-Based Source Identification

PRNU is also known as a unique stochastic fingerprint of imaging sensors, and it is obtained from
a set of N images taken by the same device, using the Maximum Likelihood Estimator (MLE) [11].
It is shown that the best estimation performances can be achieved if the number of images N is a
sufficiently large integer and the images are uniformly white, but not fully saturated [11]. In this paper,
an improved PRNU estimator, presented in [11], is employed. The improvement is primarily reflected
in the reduced number of images (minimum of 30 instead of 50 images) required for PRNU estimation,
retaining the basic concepts of the original method.

MLE is modeled from the simplified sensor output model [11], defined by Equation (1), which
applies to each pixel of the image. Symbol I denotes the luminance value of the analyzed pixel; Y is
illumination; g stands for the channel color gain; γ is the correction factor; Θq is the quantization noise;
while Λ includes a combination of other noise sources [31]. Finally, K is the PRNU factor, which is a
noise-like signal responsible for the fingerprint [11] and which is estimated from N images taken by
the camera.

I = gγ × [(1 + K)Y + Λ]γ + Θq (1)

The fingerprint is obtained as an approximation to the Photo Response Non-Uniformity (PRNU)
noise [12]. The framework of the PRNU-based algorithm is shown in Figure 4. N images from the set
are first denoised using the wavelet-based denoising filter. Noise residuals W are then averaged in
order to compute the fingerprint. In particular, the maximum likelihood estimate K̂ is obtained from
partial derivation of the log-likelihood L(K) of ratio W

I solved for K [11], as shown in Equation (2),
where σ2 denotes the variance of White Gaussian Noise (WGN). WGN is accepted as a simplified
model of the noise term, without significant impact on the results of the procedure.

δL(K)
δK

=
N

∑
k=1

Wk/Ik − K
σ2/(Ik)2 = 0 =⇒ K̂ =

∑N
k=1 Wk Ik

∑N
k=1(Ik)2

(2)

In order to perform a source identification, the noise is extracted from the image under
analysis and then correlated with the previously found camera reference pattern noise (fingerprint).
The maximum of the normalized correlation ρ is considered to be a good approximation of the
generalized likelihood ratio test [32] and is therefore computed, in accordance with the statistical
signal theory relation for the correlation computation. Finally, the Neyman–Pearson approach can be
employed for correlation thresholding and final source identification.

Due to the dependence of the correlation factor on the image size, it is not a suitable parameter
for further analysis of the results. The Peak to Correlation Energy ratio (PCE) is a better comparison
factor [33], and it can be defined by Equation (3), where speak denotes the coordinates of the peak,
m and n are the image dimensions and M is a small neighborhood around the peak [33].

PCE =
ρ(speak; X, Y)2

1
mn−|M| ∑s/∈M ρ(s; X, Y)2

(3)

PCE considers a possible special shifts between the fingerprint and the noise extracted from the
image due to possible cropping or use of the image. Then, a correlation is conducted for each shift,
and if correlation proof is found, the corresponding shift is considered to give the correct output.
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Figure 4. The framework of the Photo Response Non-Uniformity (PRNU)-based algorithm. PCE,
Peak to Correlation Energy ratio.

4. Experiments

The experiment was conducted by computing a camera fingerprint over three different sets of flat
images, for each employed device, namely:

- HDR, which contained a set of 50–87 flat HDR images per device,
- SDR, which contained a set of 50–59 flat SDR images per device,
- MIX, which contained a set of 100–137 images, including both flat HDR and flat SDR images

per device.

Each fingerprint was used for further computation of the correlation with the noise extracted
from each image belonging to one of the natural datasets.

After performing the PCE computation for all of the images taken by the device of interest, plots
of PCE values for single images were generated for each of the three analyzed categories. These results
served as a starting point of digital source identification reliability analysis. If the PCE value of
an image was above the threshold, the image was considered to be reliably paired with a digital
source with which it was captured. The threshold value was chosen to be 45, in accordance with the
conclusions drawn in [11].

5. Results

The analysis was first conducted by comparison of the PCE values of single SDR and HDR images
when the noise extracted from them was correlated with fingerprints created from flat SDR, HDR
and MIX sets of images. The impact of image and fingerprint types, as well as the impact of motions
that occurred during image capturing were observed. The reliability of source identification was
examined afterwards.

It is worth noting that PCE computation was performed for all the analyzed images captured by a
certain camera model and was subsequently averaged. Results have shown that averaged PCE was
less prone to result variations, and camera movements had less impact on the results in the case of
using this parameter.

5.1. Analysis in Terms of Image Type: SDR vs. HDR

First of all, we analyzed the correlation of images with the flat SDR-based fingerprint. As expected,
generally higher PCE values were obtained using SDR images and a flat SDR-based fingerprint,
considering they were of the same type. The results can be seen in Figure 5. Devices A01–A06 have
shown the biggest difference between PCE values in the case when the captures were taken using a
tripod. While SDRs were characterized by high PCE values in that case, the PCEs of most HDRs were
low and sometimes were even below the threshold. The difference in terms of a higher PCE value
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for SDRs in comparison to HDRs was noticeable in the case of captures taken using a tripod, as well.
In the case of captures made by a shaky hand, an analogy to the previous two cases cannot be applied.
While Devices A02, A04 and A05 were shown to have similar PCE values for both SDR and HDR
images, the other half of the devices were shown to have higher PCE values when SDR images were
employed in combination with the SDR-based fingerprint.

Figure 5. PCE values obtained for SDR and HDR images when compared with a flat SDR-based fingerprint.

Similar results were obtained with Devices A07–A17. The differences between PCE values of
SDR and HDR images were not as emphasized as for the previously analyzed set of devices, rather
similar in the case of Devices A07–A10. On the other hand, A11–A17 followed the same behavior as
A01–A06. Images captured by a shaky hand did not follow any pattern. While PCEs were similar for
Devices A08–A11 and A15, they were distinctively higher for SDR than HDR images captured by other
devices from the mentioned set.
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Finally, an analysis of Devices I01–I06 showed similar PCE values for both image types, regardless
of the camera motion. While PCE values obtained by analyzing SDR images from Devices I02–I06
were slightly higher than the ones corresponding to the HDR images, I01 showed unexpected results.
Indeed, with this device, the PCE values for images taken by a steady and by a shaky hand were
shown to be higher for HDR images correlated with the SDR-based fingerprint.

The analysis was further conducted by comparison of the PCE values when noise from the SDR
and HDR images was correlated with the HDR-based fingerprint. The results are shown in Figure 6.
All the devices showed analogous behavior as the previously described one.

Figure 6. PCE values obtained by SDR and HDR images when compared with a flat HDR-based fingerprint.

It is worth noting that the majority of SDR images combined with SDR-based fingerprints, as well
as HDR images combined with HDR-based fingerprints produced PCE values higher than the threshold
value. On the other hand, the combination of different types of images and fingerprints resulted in
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varying PCE values, depending on the employed camera device. An example of the results obtained by
a single device is shown in Figure 7. It is noticeable that the PCE values of the HDR images captured
by the I02 device model were above the threshold value for all the tested images, when they were
correlated with the fingerprint of the SDR image set. This occurred regardless of camera movements.
Similar results were obtained by using SDR images captured by a completely different device model,
A07, and correlating them to the fingerprint of HDR images. The obtained result is shown in Figure 8.
The analysis results led us to the conclusion that some of the devices can be identified more easily than
other, and that the correct identification of those devices can be provided regardless of the type (HDR
or SDR) of images. On the other hand, most of the devices have shown significantly different PCE
values of images, depending on their type.

Figure 7. Example of the result obtained when correlating noise from HDR images captured by the I02
model with the SDR image fingerprint. I, iOS.

Figure 8. Example of the result obtained when correlating noise from SDR images captured by the A07
model with the HDR image fingerprint. A, Apple.
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5.2. Analysis in Terms of Fingerprint Type

As it was concluded that, in most cases, the combination of different types of images and one
fingerprint type gave a lower PCE value in comparison to the case of employing only SDRs or HDRs
in the analysis, it is useful to analyze the impact of different fingerprints on the same sets of images.
Comparing Figures 5 and 6, it is noticeable that SDR images had a higher PCE value when the
HDR-based fingerprint is employed in the case of A01, A05, I01 and I03, for each of the motion
scenarios. A difference in terms of PCE values between scenarios cannot be seen for these devices.
On the other hand, images taken by Devices A11, A15 and A17 had a significantly higher PCE value
when the correlation of SDRs was computed with the SDR-based fingerprint. Images captured by all
of the other devices are shown to have similar PCE values for both of the fingerprints.

The analysis of fingerprint impact on PCE values was performed for HDR images, as well.
Images from Devices A11 and A15 were shown to have higher PCE values in correlation with the
SDR-based fingerprint. While A11 showed no differences in the amount of PCE improvement for
different motion scenarios, images from A15 had a significantly higher PCE in the case of capturing
by a shaky hand. Improvements were noticeable in the case of images captured using a tripod,
but there were no differences in the case of images taken by a steady hand. In contrast to the
previously-mentioned devices, A01, A17, I01 and I03 showed better performances when their HDR
images were correlated with the HDR-based fingerprint. Differences in terms of camera motions were
not noticeable in these cases.

The obtained results for Devices A13 and A14 were especially interesting, because they showed
a distinctive difference between SDR and HDR images taken by those devices. SDR images were
shown to have high PCE values, no matter if the correlation were performed using the flat SDR- or
HDR-based fingerprint, while HDR images obtained low PCE values, except from the images captured
while shaking the camera device. Therefore, fingerprint type did not have a big influence on the results
in this case, but the type of images did.

5.3. MIX Category Results’ Analysis

The previously described analysis has shown that sources were, very often, identifiable in the
cases when correlation was computed between the HDR image noise and SDR image fingerprint and
vice versa. Considering this fact, it is natural that fingerprints computed from the MIX FLAT set of
images provided good results, as well. They are shown in Figure 9. As the MIX category includes both
HDR and SDR images, it was considered to be the most relevant for the analysis.

The averaged PCE of images captured by most of the devices was above the threshold when the
MIX category was used as a reference, as can be seen from Figure 9. SDR images from Devices A01–A06
showed better performances than their HDR counterparts when they were captured by hand and a
tripod. Images captured by a shaking hand using Devices A02, A04 and A05 were shown to have
similar PCE values, regardless of the image type, in correlation with the MIX flat fingerprint. The other
half of the devices from this set had shown better results for SDR images in the case of shaking
motion. Captures made by a shaky hand led to bigger variations in the results, compared to more
steadily captured images. This observation was expected and can be explained by the fact that the
camera movement shifted the fingerprint matrices, making different offsets for the analyzed images.
The offset depended on the velocity of the camera, which had not been measured during the dataset
formation process.
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Figure 9. PCE values obtained by SDR and HDR images when compared with a flat MIX-based fingerprint.

The difference between SDRs and HDRs in terms of the PCE value was not significant for
Devices A07–A10 when the MIX flat fingerprint was employed. SDRs have shown better performances
for Devices A11 and A12, with the exception of images taken by a shaky hand using A11. In that
case, the PCEs were comparable for both SDRs and HDRs. Similar conclusions can be made by
analyzing the results obtained for Devices A13–A17, where only captures in shaking motion taken by
Devices A15 and A17 have similar PCE values for both SDR and HDR images, while the rest of the
devices and scenarios show the advantage of SDR images in the source identification process using the
PRNU method.
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Deviation from the previous results occurred in the analysis of iPhone devices. Images taken by
I01–I06 with different motions have shown comparable PCE values for both SDR and HDR images.
All the values were above the threshold, with the exception of the part of the images taken by I04
using the tripod. These results led us to the conclusion that iPhone devices are more easily identifiable
image sources than other devices included in this research, no matter the type of analyzed image.
This conclusion corresponds to the one conducted after analyzing the impact of using different types
of images and the same SDR- or HDR-based fingerprint for PRNU computation.

5.4. Reliability of Source Identification

The threshold value was chosen to be equal to 45. Results have shown that both SDR and
HDR image sources can be detected using this value, with the exception of HDR images taken from
Devices A12, A14 and partially A6 and A17. Considering this fact, it is clear that the PRNU method
cannot be generally applied, because the devices themselves can introduce variable hidden digital
content to the images they produce or affect the procedure in another manner.

The most reliable source identification was made for Devices A07, A09, A10, I01, I02, I03, I05 and
I06. Camera movements and usage of flat images were shown to have a minimal effect on the PCE value
for the previously mentioned devices. Images taken by iPhone devices were shown to have a PCE value
above the threshold and therefore provided digital source identification using the PRNU method. On the
other hand, Devices A06, A12 and A16 were shown to give better PCE values for SDR, than HDR images.
Furthermore, source identification from SDR images was less prone to camera movements for those devices.
Taking the previous statements into account, it can be concluded that the complexity of HDR images
introduces difficulties in digital source identification for some devices. This phenomenon requires further
analysis of the HDR images creation procedure for the devices of interest.

5.5. Analysis of Low PCE Values

The result obtained from A01 is provided in Figure 10. Twenty groups of images were captured
in different motions and modes. Each group was provided the same image content as the controlled
variable. Considering the difference of acquisition processes of SDR and HDR images, it can be
concluded, by comparing the PCE values among three different motions, that image alignment had
a serious impact on the performance of the PRNU-based method. As shown in Figure 10, the PCE
values of SDR images were higher than the ones of HDR images captured with the hand motion.
However, situation is opposite with the tripod motion. The reason could be that the image alignment
operation with the hand motion changed the positions of pixels, which led to the mismatch between
the noise image extracted from the HDR image and R-PRNU. In the case of the tripod motion, multiple
images with perfect alignment were used to extract the noise image. It is well known that the more
images are employed, the more precisely is the PRNU calculated. Therefore, higher PCE values
would be obtained for HDR images in this case. In the case of the shaking motion, depending on
the algorithms used in each device, on the one hand, the shift among the images would be too big to
align them, which improved the PCE value of HDR images. On the other hand, image alignment was
executed, reducing the PCE value of HDR images.
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In order to further explore the reason behind the change of PCE value between SDR and HDR
images, the PRNU method based on the pixel patches was applied. Firstly, the images and R-PRNU
were cropped into non-overlapping pixel patches with a 128 × 128 size. Then, the PCE values for
each pixel patch were calculated, and for each image pair (SDR and HDR images), they were mapped
into the same scale with the log function, in order to obtain the PCE map. PCE maps of SDR and
HDR images given in Figure 1 captured with the hand motion are shown in Figure 11. An interesting
phenomenon occurred at smooth image regions with low luminosity, such as the ground with low
brightness, where PCE values of HDR images had higher values than their SDR counterparts. The same
results were obtained for both over- and under-exposed image regions. On the contrary, PCE values
were decreased for the pixel patches with smooth and high luminance, such as the blue sky. The reason
could be that HDR images kept a balance between the dark and bright areas, and the PRNU-based
method performed better for the images with much smoother and higher luminance. According to the
above analysis, we can make the conclusion that for the smooth pixel patches with higher luminance,
but not saturation, HDR and SDR images both had high PCE values. Moreover, image regions with
over-/under-exposure usually led to a low PCE value. In addition, the images captured with a strong
amount of noise, such as the night scene shown in the last column of Figure 11, also had a low
PCE value.

Figure 10. Example of the result obtained correlating noise from HDR images captured by A01 with
the SDR image fingerprint.

The above presented analysis is more specific, rather than general, due to the fact that each device
has its own specifics, which directly influence the results of PCE values obtained on images acquired
by them. Considering that, further analysis in terms of image acquisition [34] and sensor pattern noise
specifics [35] is required. The proposed dataset provides the ability for this and wider research, such as
estimation of displacement fields from pairs of digital images [36] and characterization of the dynamic
behavior of a mechanical chain tensioner by functional tolerancing [37].
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(a) PCE map for examples of SDR images

(b) PCE map for examples of HDR images

Figure 11. PCE maps for examples of SDR and HDR images.

6. Conclusions

With the help of powerful editing software programs, digital media has become vulnerable to
manipulation. One of the possibilities of coping with this problem is digital source identification.
This process is challenging, especially for non-standard images, such as HDRs, due to the complexity
of their creation and wider dynamic range.

In this paper, we have presented a novel image dataset composed of both SDR and HDR images
captured by several smartphone devices. The dataset has been built under controlled acquisition
conditions, ensuring that it can be used by the image forensic community for several applications.
As an example of using the dataset, this paper represented source identification performed using
reference pattern noise, by employing PRNU matching. The analysis has shown that standard SDR
images provide more reliable source identification in comparison to HDR images when the PRNU
method is applied. Out of the total of seven brands of employed devices, only one brand has shown
very small differences in the results for SDR and HDR images, which implies that source identification
depends on the device characteristics themselves. This fact can serve as a motivation for the analysis of
the acquisition processes adopted by each device. Research focusing on this topic can provide valuable
results for the digital source identification process, due to the fact that hardware components leave
their marks during the acquisition stage, thus producing a unique camera fingerprint.

The types of single images, as well as the types of images used for fingerprint computation
were shown to have an impact on the obtained PCE values used for identification purposes.
Moreover, examination of the effect of camera motions at the moment of capturing has shown that
motions have a bigger impact on source identification in the case of HDR images, compared to SDR
images. Differences in the results were less noticeable in the case of images captured by a steady
camera, although they were generally dependent on the device type.

Despite difficulties in processing HDR images and identifying the source camera, the PRNU
algorithm has shown its robustness, enabling correct source identification for a large number of tested
devices. However, the novel dataset introduced in this paper can be employed in research on the topic
of improving the performances of source identification based on HDR images.
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