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Abstract: Modern supercomputers include hundreds of thousands of processors and they are thus
massively parallel systems. The interconnection network of a system is in charge of mutually connecting
these processors. Recently, the torus has become a very popular interconnection network topology.
For example, the Fujitsu K, IBM Blue Gene/L, IBM Blue Gene/P, and Cray Titan supercomputers all
rely on this topology. The pairwise disjoint-path routing problem in a torus network is addressed
in this paper. This fundamental problem consists of the selection of mutually vertex disjoint
paths between given vertex pairs. Proposing a solution to this problem has critical implications,
such as increased system dependability and more efficient data transfers, and provides concrete
implementation of green and sustainable computing as well as security, privacy, and trust, for instance,
for the Internet of Things (IoT). Then, the correctness and complexities of the proposed routing
algorithm are formally established. Precisely, in an n-dimensional k-ary torus (n < k, k ≥ 5),
the proposed algorithm connects c (c ≤ n) vertex pairs with mutually vertex-disjoint paths of lengths
at most 2k(c− 1) + nbk/2c, and the worst-case time complexity of the algorithm is O(nc4). Finally,
empirical evaluation of the proposed algorithm is conducted in order to inspect its practical behavior.

Keywords: parallel processing; interconnect; system dependability; fault tolerance; algorithm

1. Introduction

Since the development of parallel supercomputers, the number of included processors has been
continuously rising. The hardware component that is responsible for the connection of processors is
the interconnection network (a.k.a., interconnect). Hypercubes [1] were a popular topology for the
interconnection network of massively parallel systems in the eighties. Intel developed, for instance,
the iPSC supercomputer series, with the iPSC/1 device connecting 32 to 128 cores: the iPSC/d5 is
based on a five-dimensional hypercube, hence connecting 25 = 32 cores; the iPSC/6 is based on a
six-dimensional hypercube, hence connecting 64 cores, and the iPSC/d7 128 cores. A similar approach
was followed by the nCUBE company that built, for example, the nCUBE 10 device, which is based on
a 10-dimensional hypercube, hence connecting 1024 cores.

Nowadays, machines of the megaFLOPs era, such as the nCUBE, have been replaced by ones
featuring a computing power of several petaFLOPs, and with even the exaFLOP barrier possibly
being reached as soon as 2020 by the Cray company [2]. Regarding the number of processors
embodied, modern massively parallel systems rely on hundreds of thousands of them. One step
ahead, the Sunway TaihuLight supercomputer, ranked world number one in June 2017 and second
as of June 2018 [3], includes more than one million cores. Considering this very large number of
processors, it is easy to understand that data communication efficiency and interconnection networks
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in general are critical to achieving the highest computing performance. Indeed, in the case of
suboptimal core interconnection and data transfers, bottleneck situations would inevitably arise,
inducing underused cores.

Just as complete networks are not practical as interconnection networks of massively parallel
systems given the prohibitively high number of edges per processor induced, hypercubes are no more
a solution considering the number of nodes involved. Precisely, the vertex degree in the case of a
hypercube becomes rapidly impractical as n edges per vertex are required for the hypercube to connect,
in total, 2n vertices. As a result, various topologies designed for interconnection networks have been
introduced. For example, Li et al. proposed the dual-cube [4] and metacube [5] topologies, both based
on hypercubes. The star-graph [6] is another topology example, this time based on permutations, which
was used to introduce other topologies, such as burnt pancake graphs [7].

Topologies based on meshes [8] are another solution for interconnection networks. One of these,
the torus topology [9], is addressed in this paper. Thanks to a simple definition and an advantageous
network order compared with, for instance, hypercubes, the torus network topology is very popular as
interconnect of supercomputers. Indeed, numerous machines listed in the TOP500 world ranking are
based on the torus topology. For example, the Fujitsu K (Tofu interconnect [10,11]), IBM Blue Gene/L,
IBM Blue Gene/P, and Cray Titan (Gemini interconnect [12]) supercomputers [3]. The main topological
properties of tori and those of various other interconnection networks are given in Table 1. In this table,
the network cost is the product of network degree by network diameter.

Table 1. Comparing torus topological properties with other popular interconnection networks [9].

Network Order Degree Diameter Cost Links

(n, k)-torus kn 2n nbk/2c 2n2bk/2c nkn

n-hypercube 2n n n n2 2nn
n-dual-cube 22n−1 n 2n 2n2 22n−2n
n-star graph n! n− 1 b3(n− 1)/2c (n− 1)b3(n− 1)/2c n!(n− 1)/2

(k, m)-metacube 22km+k m + k 2k(m + 1) 2k(m + 1)(m + k) 22km+k−1(m + k)

In this paper, the torus pairwise disjoint-path routing problem is addressed. This critical data
communication problem consists of the selection of mutually vertex-disjoint paths between several
vertex pairs. As detailed next, this problem has numerous applications. Disjoint-path routing in general
is a very desirable property for routing algorithms, and this is for several reasons. First, disjoint-path
routing enables simultaneous data transfers over the network, and for that, without the need to
change switching patterns inside routers, on the one hand optimizing data transfer performance, and,
on the other hand, reducing network usage time. While the former consequence has obvious positive
implications, the latter thus induces concrete implementation of energy-harvesting communications
and networks, which contents green and sustainable computing [13,14], with applications, for instance,
to the Internet of Things (IoT) and cyber–physical systems. In addition, path disjointness enforced at
the hardware level with circuit switching means that an optimum degree of privacy is achieved as
a data transfer is never interrupted by another transmission. This research thus directly addresses
the issues of security, privacy, and trust for the IoT. Second, disjoint-path routing importantly ensures
that the notorious blocking situations of parallel processing, deadlocks, livelocks and starvations,
never occur, thus facilitating, for instance, distributed data processing in sensor applications. Third,
not only efficiency but, by selecting disjoint paths, system dependability is also significantly increased.
Effectively, where multiple nondisjoint paths could be rendered useless by a single faulty vertex
(i.e., the faulty vertex is common to several paths), disjoint paths are much more robust: one faulty
vertex can jeopardize, at most, one path, since any vertex of the network is included in at most one of
the selected paths. Such robustness has positive implications regarding, for instance, the quality of
experience and service in the IoT and cyber–physical systems.



Sensors 2018, 18, 3912 3 of 16

In an arbitrary c-connected graph G(V, E), the existence of c disjoint paths for each of the
node-to-node disjoint paths, the node-to-set disjoint paths, and the set-to-set disjoint paths problems are
ensured by Menger’s theorem [15]. In fact, disjoint paths can be obtained by applying the maximum-flow
algorithm assigning unit capacity to each of the edges and the vertices. For c pairs of vertices in arbitrary
graph G(V, E), the problem whether there are c disjoint paths between the c pairs is NP complete if c is a
variable of the problem input [16]. For any fixed c, the problem can be solved in O(|V|3) [17] though it
is still a hard problem.

Due to higher complexity, the pairwise disjoint-path routing problem is typically addressed last
after introducing algorithms that solve the unicast (a.k.a., point-to-point, one-to-one, or node-to-node),
node-to-node disjoint-path, node-to-set disjoint-path and set-to-set disjoint-path routing problems.
In an n-dimensional k-ary torus, a node-to-node routing algorithm has been described in Reference [18]
and with fault tolerance in Reference [19], the latter selecting paths of lengths at most nbk/2c+ 1, with
a worst-case time complexity of O(k2). A node-to-set disjoint-path routing algorithm in a torus has
also been described in Reference [19], with paths of lengths at most nbk/2c+ 1, and a worst-case time
complexity of O(k3). A torus set-to-set disjoint-path routing algorithm has been given in Reference [20],
with paths of lengths at most 2(k + 1)n, and a worst-case time complexity of O(kn3 + n3 log n).

As for different topologies, Gu and Peng described a pairwise disjoint-path routing algorithm in
a hypercube [21] and in a star-graph [22]. Bossard and Kaneko solved the same problem in perfect
hierarchical hypercubes [23], as did Sawada et al. in pancake graphs [24], and Park focused on restricted
hypercube-like graphs [25]. The approach in this paper to select mutually vertex-disjoint paths is,
as used in several previous works, to rely on the recursive structure of a torus. Precisely, in an
n-dimensional k-ary torus, given c (c ≤ n) vertex pairs, the algorithm proposed here selects c mutually
vertex-disjoint paths of lengths at most 2k(c− 1)+ nbk/2cwith a worst-case time complexity of O(nc4).

Related research on disjoint-path routing can be found in Reference [26] where it is applied to
data-center networks. Close to disjoint-path routing, independent spanning tree construction has
been researched, for instance, in Möbius cubes in [27]. Other related works include the calculation
of various topological values of the network topology, such as topological indices [28] and the
least eigenvalue [29].

The rest of this paper is organized as follows. Definitions, notations and intermediary results are
established in Section 2. The proposed routing algorithm is described in Section 3 and exemplified
in Section 4. The proof of the algorithm correctness, including the fact that the selected paths are
disjoint, is given in Section 5, which relies on lemmas proved in Section 2. Complexities are formally
established in Section 6 and the proposed algorithm is empirically verified and evaluated in Section 7.
Finally, this paper is concluded in Section 8.

2. Preliminaries

For the sake of clarity, a vertex pair (in this paper, typically a source-destination vertex pair),
denoted by (u, v), can be considered as the set {u, v}. For vertex u, define set N(u) as the set of the
neighbor vertices of u.

In a graph, a path p is an alternate sequence of vertices and links u1, (u1, u2), u2, . . . , (un−1, un), un.
Path p can be similarly written as u1 → u2 → . . . → un and abbreviated as u1 ; un when explicit
mention of the vertices between u1 and un is not required. The length of a path is defined as its number
of links, hence p has length n− 1. Two paths are mutually vertex-disjoint (simply disjoint hereinafter)
if and only if they have no vertex in common.

Definition 1 ([8]). An n-dimensional k-ary torus, denoted by (n, k)-torus, is an undirected graph made of the
kn vertices induced by the set {0, 1, . . . , k− 1}n. Two vertices a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) of an
(n, k)-torus are adjacent if and only if ∃j (1 ≤ j ≤ n),∀i (1 ≤ i ≤ n, i 6= j), ai = bi, aj = (bj ± 1) mod k.
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Thus, a vertex of an (n, k)-torus is an n-dimensional vector. Therefore, two vertices of an
(n, k)-torus can be compared (i.e., equality testing) in linear O(n) time, by simply going through
each of all the n coordinates of the two vertices. A (2, 4)-torus is illustrated in Figure 1.

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 1. A two-dimensional four-ary torus, with vertex addresses in the top right-hand corner of
each vertex [9].

An (n, k)-torus is a recursive topology: for one dimension δ (1 ≤ δ ≤ n), it consists of
k (n− 1, k)-tori (called subtori). For instance, considering the horizontal dimension of the (2, 4)-torus of
Figure 1, that is the dimension δ = 1, this torus consists of four (1, 4)-tori: these subtori appear vertically
in the figure. It is said that a path goes through a subtorus T if and only if it includes a vertex of T.

Next, operator γ is defined for convenient vertex coordinate manipulation. In an (n, k)-torus,
for a vertex u = (u1, u2, . . . , un) and a dimension δ (1 ≤ δ ≤ n), let γ(u, δ) denote the δ coordinate of
vertex u. For instance, γ(u, 4) = u4. This definition is extended to subtori: let γ(T, δ) denote the δ

coordinate of subtorus T. For instance, considering the torus of Figure 1 and the dimension δ = 1,
we have γ(T, δ) = 0 where T is the leftmost subtorus (i.e., T consists of the vertices (0, 0), (0, 1), (0, 2)
and (0, 3)). Therefore, for dimension δ, a subtorus T can be unambiguously specified by the value
of γ(T, δ).

Then, still considering vertex u and dimension δ, candidate paths and the corresponding path sets
for traversing the dimension δ are defined as follows. Note that these paths specify how to traverse a
dimension, thus remaining “open” (i.e., with a start vertex, but no end vertex) for the sake of simplicity.

Definition 2. Given two vertices a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) of an (n, k)-torus,
define a⊕ b = ((a1 + b1) mod k, (a2 + b2) mod k, . . . , (an + bn) mod k) and a 	 b = ((a1 − b1) mod
k, (a2 − b2) mod k, . . . , (an − bn) mod k).

Definition 3. n unit vectors ei (1 ≤ i ≤ n) are defined as (u1, u2, . . . , un) where uj = 0 (1 ≤ j ≤ n, i 6= j) and
ui = 1.

First, define the path:

p+(u, δ) : u→ u⊕ eδ → (u⊕ eδ)⊕ eδ → . . .

which can be similarly written as u→ (u1, u2, . . . , (uδ + 1) mod k, . . . , un)→ (u1, u2, . . . , (uδ + 2) mod
k, . . . , un)→ . . .

Next, define the two path sets:

P+
1 (u, δ) :

⋃
1≤i≤n

i 6=δ

{
u→ u⊕ ei → (u⊕ ei)⊕ eδ → ((u⊕ ei)⊕ eδ)⊕ eδ → . . . ,
u→ u	 ei → (u	 ei)⊕ eδ → ((u	 ei)⊕ eδ)⊕ eδ → . . .

}
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and

P+
2 (u, δ) :

⋃
1≤i≤n

i 6=δ


u→ u⊕ ei → (u⊕ ei)⊕ ei → ((u⊕ ei)⊕ ei)⊕ eδ

→ (((u⊕ ei)⊕ ei)⊕ eδ)⊕ eδ → . . . ,
u→ u	 ei → (u	 ei)	 ei → ((u	 ei)	 ei)⊕ eδ

→ (((u	 ei)	 ei)⊕ eδ)⊕ eδ → . . .


Path p−(u, δ) and path sets P−1 (u, δ), P−2 (u, δ) are defined similarly but with 	 eδ instead of

⊕ eδ (details in the appendix). In other words, path p+(u, δ) (resp. p−(u, δ)) makes no detour when
traversing dimension δ, while the paths of P+

1 (u, δ) and P+
2 (u, δ) (resp. P−1 (u, δ) and P−2 (u, δ)) make a

detour of one and two links, respectively.
Finally, define the two path sets:

P+(u, δ) =
{

p+(u, δ)
}
∪ P+

1 (u, δ)∪ P+
2 (u, δ)

and
P−(u, δ) =

{
p−(u, δ)

}
∪ P−1 (u, δ)∪ P−2 (u, δ)

The paths of P+(u, δ) and P−(u, δ) in the case of a (3, 5)-torus are illustrated in Figure 2, where δ

is the dimension used to distinguish subtori.

u

(a)

u

(b)

u

(c)

Figure 2. Considered paths (represented by arrows) for traversing the subtori of a (3, 5)-torus from the
vertex u. (a) p−(u, δ), p+(u, δ), (b) P−1 (u, δ), P+

1 (u, δ) and (c) P−2 (u, δ), P+
2 (u, δ).

For the sake of conciseness, for torus vertex u and dimension δ, paths p+(u, δ) and p−(u, δ),
as well as path sets P+

1 (u, δ), P−1 (u, δ), P+
2 (u, δ) and P−2 (u, δ) are abbreviated to p(u, δ), P1(u, δ) and

P2(u, δ), respectively, when no ambiguity arises.
Next, a torus point-to-point routing algorithm is recalled. Unicast routing in a torus can be

achieved simply with a dimension-order routing algorithm. A dimension-order routing algorithm for
packet forwarding in two dimensional meshes is presented by Duato et al. [8]. It can be easily adjusted
for routing in an n-dimensional torus as listed in Algorithm 1. The maximum length of a path selected
by this algorithm between any two vertices is thus nbk/2c.

To conclude this section, we introduce two essential lemmas on which the algorithm proposed in
this paper is based (Section 3).

Lemma 1. In an (n, k)-torus (n ≥ 2, k ≥ 5), given c ≤ n vertex pairs (si, di) satisfying {si, di}∩ {sj, dj} = ∅
(1 ≤ i, j ≤ c, i 6= j) with thus si = di allowed, and one subtorus T on a dimension δ (1 ≤ δ ≤ n), disjoint paths
(at the exception that the paths for si and di (1 ≤ i ≤ c) need not be disjoint) that route each of all vertices si, di
to T can be found in O(nc2) time. Maximum path length is k + 1.
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Algorithm 1: Point-to-point simple routing in a torus with a dimension-order routing algorithm.
Input: Source vertex s = (s1, s2, . . . , sn) and destination vertex d = (d1, d2, . . . , dn) of an

(n, k)-torus.
Output: A shortest path s ; d.

R := s; // Result initial value (path of length 0).
u := s;
for i := 1 to n do

∆ := di − si;
if (∆ < 0 AND |∆| < k/2) OR (∆ > 0 AND |∆| > k/2) then
� := 	; // Define � as the 	 operation.

else
� := ⊕; // Define � as the ⊕ operation.

end

while γ(u, i) 6= di do
u := u� ei;
R := R→ u; // One link added to the path.

end
end
return R;

Proof. First, assume without loss of generality that si is to be routed to T, and that γ(si, δ) ≤ γ(T, δ).
The same discussion holds for di and for the case γ(si, δ) > γ(T, δ). We show that there always remains
at least one path of P+(si, δ) that is not blocked by another source vertex, destination vertex or their
respective paths towards T.

First, the paths of P+(si, δ) consist of shortest path p+(si, δ), and of the two sets P+
1 (si, δ) and

P+
2 (si, δ). The paths of these two sets are not disjoint: a neighbor u of si is included in one single path

of each of the two path sets. Hence, if u = sj (i 6= j), two candidate paths are blocked by one single
vertex (sj). The reason for considering P1 and P2 paths is that vertex di can indirectly block a candidate
path for si. Effectively, di may trigger the selection of a non-shortest path for a vertex sj towards T
(i 6= j), and thus in total di and sj each block one path for si. See Figure 3.

Vertex di on its own is not a blocker for si. Thus, we consider the case where di is an indirect
blocker through vertex say sj.

So, by considering the paths of P1 and P2, we ensure that either there remains one of the two
paths, (si → u→ . . .) ∈ P+

1 (si, δ) and (si → u→ . . .) ∈ P+
2 (si, δ) that is not blocked by di, sj, or, if not,

di, sj block two nondisjoint paths of P+
1 (si, δ) ∪ P+

2 (si, δ). In the first situation, we necessarily have
sj, di /∈ N(si), thus p+(si, δ) and one path of P+

1 (si, δ) are blocked but the path si → u→ . . . of P+
2 (si, δ)

remains unblocked. In the second situation, two nondisjoint paths are blocked by di, sj; thus, di, sj
count as one blocker for si (they block only one of the disjoint candidate paths). Therefore, it is sound
to assume that di does not count as a blocker for si.

At the exception of di, each of all 2(n − 1) other blockers for si (i.e., (S ∪ D) \ {si, di}) can
block at most one of the disjoint candidate paths. In total, it is possible to select 2(n − 1) + 1
disjoint paths from si to T (i.e., considering the candidate paths {p+(si, δ)} ∪ P+

1 (si, δ) ∪ P+
2 (si, δ)).

Therefore, considering that at most 2(n− 1) of these disjoint paths are blocked, there always remain
[2(n− 1) + 1]− 2(n− 1) = 1 path to route si to T. See Figure 4.

Maximum path length would be obtained if si is routed to T with a path of P2, hence of length
(k− 1) + 2 = k + 1. To route si to T, we first enumerate the paths of {p+(si, δ)} ∪ P+

1 (si, δ) (starting
with p+(si, δ)). If all are blocked, it means that di is an (indirect) blocker, thus inducing the check of
at most one path of P2 (i.e., if the first checked path of P2 is blocked, the second one will always do).
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Hence, the worst-case time complexity to route si to T is O(nc), and, in total, O(nc2) is required to
route all vertices si, di (1 ≤ i ≤ c) to T.

si

sj

di

Figure 3. Vertex di can be indirectly a blocker for vertex si (selected paths in blue) [9].

si

sj
si

sj

sl

Figure 4. A vertex of (S ∪D) \ {si, di} can block at most one of the disjoint candidate paths for a vertex
si (selected paths in blue) [9].

Lemma 2. In an (n, k)-torus (n ≥ 3, k ≥ 5), given 3 ≤ c ≤ n vertex pairs (si, di) satisfying
{si, di} ∩ {sj, dj} = ∅ (1 ≤ i, j ≤ c, i 6= j) with thus si = di allowed, and two subtori T, T′ on a dimension
δ (1 ≤ δ ≤ n), disjoint paths (at the exception that the paths for si and di (1 ≤ i ≤ c) need not be disjoint) that
route the vertices of one pair to T′ without going through T and the vertices of the other pairs to T without going
through T′ can be found in O(nc2) time. Maximum path length is k.

Proof. Assume that, given the pair (si, di) routed to T′, there exists vertex sj (i 6= j) that cannot be
disjointly routed to T without going through T′, that is, each of all candidate paths to T for sj as per
Lemma 1 are blocked. See Figure 5. If such a vertex sj does not exist, all vertices st, dt (1 ≤ t ≤ c, t 6= i)
can be routed to T provided that if there exists a unique pair (sj, dj) (j 6= i) with 3 disjoint candidate
paths to T without going through T′ blocked by the paths for (si, di) it is routed first to T, (i.e., before all
the other pairs (st, dt) (1 ≤ t ≤ c, t 6= i, t 6= j)), and there is thus nothing to prove.

For sj to be fully blocked, vertex si or di (i 6= j) needs to be on dimension δ, that is, blocking path
p(sj, δ). By definition of the candidate paths (see Lemma 1), this vertex si or di is the only one that
can block two candidate paths for sj, as all the other vertices sl , dl (l 6= j, l 6= i) can block, at most, one
candidate path for sj. Hence, the 2(n− 1) + 1 candidate paths for sj are blocked by at least 2(n− 1)
vertices si or di (i 6= j). In other words, for vertex sj to be fully blocked, vertex si or di needs to be
on p(sj, δ), the unique direct path to T for sj. Since at least 2(n− 1) vertices si or di are required to
fully block sj, it means that one of these 2(n − 1) blockers blocks p(sj, δ) in addition to one of the
two candidate paths for sj on another dimension, say α (α 6= δ). All other 2(n− 1)− 1 blockers are
positioned 2 per dimension β (β 6= δ, β 6= α), at the exception of one blocker that is on the dimension
α (on the other side of sj compared with the blocker that blocks two paths at once for sj). Hence,
there exists one unique such vertex of S ∪ D (here sj) that is not routable to T.

So, for a vertex sj to be fully blocked, T ∩ (S ∪ D) = ∅ is induced, otherwise it would mean that
at least one pair vertex needs not be routed at all (i.e., a path of zero length will do for that vertex),
and, thus, all other vertices can be routed to T, T′ by Lemma 1.

Furthermore, since c ≥ 3, either there exists a pair (st, dt) with {st, dt} ⊂ N(sj) that can be routed to
T′ without going through T (in place of the pair (si, di)) with the paths p(st, δ) and p(dt, δ) (see Figure 6a).
Or, if dj blocks one of these two paths, the pair (sj, dj) can be routed to T′ without going through T (in
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place of the pair (si, di)) with the paths p(sj, δ) and p(dj, δ) (see Figure 6b). Because of the uniqueness
of such a vertex sj not routable to T, we have shown that it is possible to disjointly route one pair to T′

and the other pairs to T.
Considering the two subtori T and T′, the value of |γ(T, δ)− γ(T′, δ)| is at most k− 1. Given that

the pair vertices are to be routed towards T (resp. T′) not going through T′ (resp. T), and by Lemma 1,
the maximum path length is (k− 2) + 2 = k.

Regarding time complexity, pair vertices can be routed to T and T′ as follows. Let (si, di) be the
pair routed to T′. By Lemma 1, this takes O(nc) time. If either si or di blocks a path p(u, δ) for u a vertex
of a pair (sj, dj) (1 ≤ j ≤ c, j 6= i), do as follows, and otherwise each of all pairs except the one routed
to T′ is routed to T with a path as per Lemma 1 that does not go through T′. Check if u is routable to T
with a path as per Lemma 1 that does not go through T′; this takes O(nc) time. If u is routable to T,
starting with the pair (sj, dj), each of all pairs except (si, di) is routed to T with a path as per Lemma 1
that does not go through T′. If u not routable to T, discard the paths for (si, di) to T′ and instead route
an arbitrary pair (st, dt) (t 6= i, t 6= j) to T′ with the paths p(st, δ), p(dt, δ) not going through T, with the
possibility that dj blocks (st, dt) when routed to T′, in which case it is the pair (sj, dj) that is routed to
T′, with the paths p(sj, δ), p(dj, δ) not going through T. Each of all pairs except the one routed to T′ is
routed to T with a path as per Lemma 1 that does not go through T′. Hence, the induced total time
complexity is that of Lemma 1: O(nc2).

T′ T

sj

st si

di

dt
- δ
6

α

�	
β

Figure 5. Illustration of the case n = c = 3 with the pair (si, di) blocking 3 paths for the pair (sj, dj)

when routed to the subtorus T′. Vertex sj is not routable to subtorus T without going through T′.
(Dimension names are given on the right for reference.)

T′ T

sj

dj
st

si

di
dt

(a)

T′ T

sj

dj st
si

di

dt

(b)

Figure 6. Illustration of the case n = c = 3 with the pair (si, di) blocking 3 paths for the pair (sj, dj)

when routed to the subtorus T′. Vertex sj is not routable to the subtorus T. (a) Pair (st, dt) is routed to
T′ in place of (si, di). (b) Pair (st, dt) is not routable to T′ (because of dj), so pair (sj, dj) is routed to T′

in place of (si, di).

3. Routing Algorithm

In an (n, k)-torus (n < k, k ≥ 5), given c pairs (si, di) (1 ≤ i ≤ c ≤ n) satisfying {si, di} ∩ {sj, dj} =
∅ (1 ≤ i, j ≤ c, i 6= j); thus, si = di allowed, this problem consists in finding a path connecting each
(si, di) pair (1 ≤ i ≤ c), and such that the selected c paths are mutually vertex-disjoint. The algorithm
execution trace of a sample instance of the pairwise routing problem is given in Section 4.

First, one should note that a torus of dimension 1 (i.e., n = 1) is isomorphic to a ring. Hence,
in this case, c = 1, and it is trivial to connect the unique source-destination vertex pair by traversing
the ring. So, we henceforth assume that n ≥ 2. The main idea of the proposed routing algorithm is
to follow a divide-and-conquer approach by considering the (n, k)-torus as a k-set of (n− 1, k)-tori,
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connecting one source-destination pair in one such subtorus, and solving the problem recursively for
the remaining pairs in another, distinct subtorus. We proceed according to the following cases.

3.1. Base Case: c = 1

This is point-to-point routing in a torus, and thus dimension-order routing can be applied to find
a shortest path s1 ; d1.

3.2. General Case: n ≥ 3

Step 1 Find a subtorus T′ such that the following three conditions hold:

∀γ = {si, dj} ∈ S× D, i 6= j, γ 6⊂ T′

∀γ′ = {si, sj} ∈ S2, i 6= j, γ′ 6⊂ T′

∀γ′′ = {di, dj} ∈ D2, i 6= j, γ′′ 6⊂ T′

In other words, subtorus T′ either includes no source vertex and no destination vertex,
includes at most one source vertex and no destination vertex, includes at most one destination
vertex and no source vertex, or includes one single source vertex, say si, and one single
destination vertex di.

The selection of subtorus T′ sets dimension δ to reduce the original (n, k)-torus to a set of k
(n− 1, k)-subtori.

Step 2 First, source-destination pair ρ is selected as follows. If T′ ∩ (S ∪ D) = ∅, any pair will do,
so select one arbitrarily, say ρ = (si, di) (1 ≤ i ≤ c). If ∃i (1 ≤ i ≤ c), T′ ∩ (S ∪ D) = {si},
let ρ = (si, di). Otherwise, that is ∃i (1 ≤ i ≤ c), T′ ∩ (S ∪ D) = {di}, let ρ = (si, di). In the
remaining of this section, assume without loss of generality that ρ = (si, di), in other words
that the source-destination pair to be connected inside T′ is (si, di).

Second, considering selected pair ρ = (si, di), select subtorus T distinct from T′, such that
ρ ∩ T = ∅.

Step 3 Route one source-destination pair to T′ and the other pairs towards T as per Lemma 2.
Step 4 If for the pair (si, di) that is routed to T′, say with the paths ps : si ; s′i ∈ T′ and pd : di ;

d′i ∈ T′, we have U 6= ∅ with U = (ps ∩ pd) \ T′, consider the vertex u ∈ U that is the closest
to si. Select the subpath si ; u of ps and the subpath di ; u of pd, and discard the subpath
u ; s′i of ps and the subpath u ; d′i of pd. Otherwise, apply the algorithm recursively in T′ to
connect si to di.

Step 5 For each pair (sj, dj) routed to T, say with the paths ps : sj ; s′j ∈ T and pd : dj ; d′j ∈ T,
such that U 6= ∅ with U = (ps ∩ pd) \ T, consider the vertex u ∈ U that is the closest to sj.
Select the subpath sj ; u of ps and the subpath dj ; u of pd, and discard the subpath u ; s′j
of ps and the subpath u ; d′j of pd. Define E the set of all such source-destination pairs.

Step 6 For each source-destination pair not in E, apply the algorithm recursively in T.

An illustration of the algorithm general case is given in Figure 7.

3.3. Special Case: n = 2 and c = 2

Select subtorus T′ as in Step 1 of the general case, and deduce a pair ρ as in Step 2 of the general
case. Route pair ρ to T′ without going through T, and the other pair to T with at most one possible
path going through T′ (this may require exchanging the roles of T and T′ as explained in the proof of
correctness below).

For each of the two pairs (si, di) (1 ≤ i ≤ 2), if the selected paths ps : si ; s′i ∈ T′ ∪ T and
pd : di ; d′i ∈ T′ ∪ T are not disjoint, that is both include a same vertex u, discard the subpath u ; s′i
of ps and the subpath u ; d′i of pd. Otherwise, complete the connection of si to di by traversing the
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subtorus of s′i, d′i. The subtori T′, T are 1-dimensional and thus isomorphic to a ring. It is thus trivial to
connect s′i, d′i, possibly avoiding one vertex.

di

s′j

dj

si s′i

d′i

sj

T T′

dimension δ

k subtori induced by the dimension δ
. . .

Figure 7. Disjointly connecting one source-destination pair inside subtorus T′ and the other pairs
inside subtorus T [9].

4. Execution Trace Example

In this section, considering the following disjoint pairwise routing problem instance, a possible
execution trace of the proposed routing algorithm is detailed. In a (4, 5)-torus, let S = {s1 = (2, 1, 0, 4),
s2 = (0, 2, 1, 2), s3 = (2, 4, 0, 2), s4 = (4, 4, 4, 1)}, D = {d1 = (0, 0, 4, 4), d2 = (3, 2, 0, 2), d3 = (0, 4, 0, 3),
d4 = (0, 4, 0, 2)} and {(s1, d1), (s2, d2), (s3, d3), (s4, d4)} be the set of vertex pairs to be disjointly
connected. Algorithm steps such as subtorus and subpath selection are given in Table 2. The torus
arity, here k = 5, never changes and does thus not appear in the table.

Table 2. A possible algorithm execution trace in a (4, 5)-torus and the four vertex pairs {(s1, d1),
(s2, d2), (s3, d3), (s4, d4)} where S = {s1 = (2, 1, 0, 4), s2 = (0, 2, 1, 2), s3 = (2, 4, 0, 2), s4 = (4, 4, 4, 1)}
and D = {d1 = (0, 0, 4, 4), d2 = (3, 2, 0, 2), d3 = (0, 4, 0, 3), d4 = (0, 4, 0, 2)}.

n Pairs δ γ(T ′, δ) γ(T , δ) Selected paths to T ′

4

(s1, d1),
(s2, d2),
(s3, d3),
(s4, d4)

1 1 3

s1 → (1, 1, 0, 4) = s′1
d1 → (1, 0, 4, 4) = d′1
Selected paths to T

s4 → (3, 4, 4, 1) = s′4
d4 → (0, 3, 0, 2)→ (4, 3, 0, 2)→ (3, 3, 0, 2) = d′4
s3 → (3, 4, 0, 2) = s′3
d3 → (4, 4, 0, 3)→ (3, 4, 0, 3) = d′3
s2 → (4, 2, 1, 2)→ (3, 2, 1, 2) = s′2
d2

Path completion in T′: s′1 → (1, 0, 0, 4)→ d′1.

n Pairs δ γ(T ′, δ) γ(T , δ) Selected paths to T ′

3
(s′2, d2),
(s′3, d′3),
(s′4, d′4)

2 0 1

s′2 → (3, 3, 1, 2)→ (3, 4, 1, 2)→ (3, 0, 1, 2) = s′′2
d2 → (3, 2, 4, 2)→ (3, 3, 4, 2)→ (3, 4, 4, 2)→ (3, 0, 4, 2) = d′2
Selected paths to T

s′3 → (3, 4, 0, 3)→ (3, 3, 0, 3)→ (3, 2, 0, 3)→ (3, 1, 0, 3) = s′′3
d′3 → (3, 3, 0, 3)→ (3, 2, 0, 3)→ (3, 1, 0, 3) = d′′3
s′4 → (3, 3, 4, 1)→ (3, 2, 4, 1)→ (3, 1, 4, 1) = s′′4
d′4 → (3, 3, 0, 1)→ (3, 2, 0, 1)→ (3, 1, 0, 1) = d′′4

Path completion in T′: s′′2 → (3, 0, 0, 2)→ d′2, and en route to T: s′3 → d′3.

n Pairs Selected path

2 (s′′4 , d′′4 ) s′′4 → d′′4 (base case c = 1: dimension-order routing)
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5. Proof of Correctness

First, dimension-order routing is applied in the base case of the recursion when there is one
single source-destination pair. As recalled in Section 2, this process consists in traversing the torus one
dimension after the other, concretely for each dimension δ starting from source vertex δ coordinate
and traversing dimension δ until reaching destination vertex δ coordinate. This common algorithm is
trivially correct.

For Step 1, it is required to show the existence of a subtorus T′. Along an arbitrary dimension
δ, there are k (k > n) subtori Ti (0 ≤ i ≤ k− 1). Amongst them, if there is a subtorus Ti∗ that satisfies
|(S ∪ D) ∩ Ti∗ | ≤ 1, we can select it as T′. Now, let us assume that such a subtorus Ti∗ does not exist.
Then, because |(S ∪ D) ∩ Ti| ≥ 2 (0 ≤ i ≤ k− 1), we have ∑k−1

i=0 |(S ∪ D) ∩ Ti| ≥ 2k > 2n. This induces
|S ∪ D| > 2n, which is a contradiction. Hence, Ti∗ always exists.

For Step 2, the existence of pair ρ is trivial. Regarding the existence of a subtorus T 6⊃ ρ, it is
recalled that the selection of T′ fixes dimension δ inducing subtori. Therefore, on the one hand,
excluding T′, there remain k− 1 candidate subtori for T. On the other hand, selected pair ρ = (si, di)

induces at most two additional unavailable subtori for T (i.e., if si, di in the same subtorus, only
1 additional unavailable subtorus is induced, and zero additional unavailable subtorus is induced if
ρ ⊂ T′). Hence, there remain at least k− 3 available subtori for T. Since k ≥ 5, we have k− 3 ≥ 2.

The feasibility of Step 3 is proved by Lemma 2. For Step 4, at most one source-destination pair is
to be connected recursively inside T′. Since n ≥ 3, the dimension of T′ is at least 2, and the problem can
thus be solved recursively in T′ (this is the base case c = 1 of the algorithm). In Steps 4 and 5, the two
paths to the appropriate subtorus, say T, for a pair (sj, dj) are checked for the inclusion of a common
vertex outside T. The only case for such a common vertex to exist is when the two paths are in the
same direction (i.e., both taken either from P+ or P−), otherwise this would mean that the common
vertex is in T. Hence, the common vertex outside T that is the closest to sj is also the closest to dj.

For Step 6, because one path is connected inside T′ (or on the way to T′), the number of paths
to select recursively in T is at most c− 1 ≤ n− 1. Since T is of dimension n− 1, the problem can be
solved recursively inside T.

Finally, regarding the second base case of the recursion, the special case c = 2, n = 2, two
source-destination pairs need to be connected inside a (2, k)-torus. Each of these two pairs is connected
in a distinct subtorus. The existence of the two subtori T and T′ has already been shown previously for
the general case.

The vertices of pair ρ, say (s1, d1), are first routed to T′ without going through T. Since k ≥ 5,
there always remains at least one path disjoint with the vertices (s2, d2) of the other pair to route (s1, d1)

towards T′. For the second pair (s2, d2), the paths of (s1, d1) to T′ may fully block (i.e., not routable
as per Lemma 1 to T without going through T′) one or both vertices of (s2, d2). If one single vertex
of (s2, d2), say u, is fully blocked, route u towards T by going through T′ with the path q : p(u, δ) to
T through T′. This path q always remains unblocked since, for u to be fully blocked to T, one vertex
of (s1, d1), say v, is on p(u, δ) to T, blocking two candidate paths to T for u, and the other vertex is
in N(u), precisely the neighbor of u that is opposite to the neighbor of u that is included in the path
to T′ for v. Hence, path p(u, δ) to T through T′ is always disjoint with the paths to T′ selected for
(s1, d1). Since with the selection of s2, d2 /∈ T′, and by the selection of the path q, subtorus T′ includes
one single vertex of the path q. See Figure 8a. If both vertices of (s2, d2) are fully blocked by the
paths to T′ for (s1, d1), it means that (T ∪ T′) ∩ (S ∪ D) = ∅ and that s2, d2 are blocking both p(s1)

and p(d1) towards T. Hence, route instead (s2, d2) to T′ (with p(s2, δ), p(d2, δ) to T′) and (s1, d1) to T
(with p(s1, δ), p(d1, δ) to T). See Figure 8b.

The two subtori T, T′ are one-dimensional, that is, isomorphic to a ring. It is thus trivial to
complete the connection of each of the two pairs inside their respective subtori, even if there is one
vertex to be avoided in subtorus T′: either the clockwise or counter-clockwise ring traversal will do.



Sensors 2018, 18, 3912 12 of 16

T′ T

s2

d2d1

s1

(a)

T′ T

s2

d2
s1

d1

(b)

Figure 8. Illustration of the case n = c = 2 with the pair (s1, d1) originally selected to be routed to T′.
(a) The vertex s2 is fully blocked to T if not going through T′. (b) Both s2, d2 are fully blocked to T:
(s2, d2) is routed instead to T′, and (s1, d1) to T.

6. Complexities

Let function T(c, n) represent the time complexity of the proposed algorithm in an (n, k)-torus
with c source-destination pairs (c ≤ n). And, let the function L(c, n) represent the maximum length of
a path selected by the algorithm inside an (n, k)-torus with c source-destination pairs (c ≤ n).

The base case c = 1 of the recursion induces the selection of a path with a dimension-order routing
algorithm, thus inducing an O(nk) time complexity and a maximum path length of nbk/2c. Hence,
T(1, n) = O(nk) and L(1, n) = nbk/2c.

For Step 1, subtorus T′ is selected. A subtorus is selectable as T′ if the stated three conditions hold.
The first condition can be checked by iterating the source and destination vertices, testing inclusion
inside the current subtorus. Testing vertex inclusion in a subtorus is achieved by checking the vertex
coordinate for each dimension, inducing then an O(n) time complexity. Hence, the first condition
is checked for one subtorus in O(nc2) time. Checking the second and third conditions induces the
same time complexity. Therefore, since for an arbitrary dimension δ at most c subtori are unavailable
as T′, it is needed to check at most c subtori for the three conditions, thus inducing an O(nc3) total
time complexity.

For Step 2, selecting the pair ρ is done by iterating each source-destination pair, each time testing
the inclusion of the pair source and destination vertices inside T′. A total time complexity of O(cn)
is thus induced. The time complexity of Step 3 is directly induced by Lemma 2: O(nc2). For Step 4,
the two paths to T′ are checked similarly, which thus induces an O(nk) time complexity. In addition,
if these two paths do not collide, the pair connection is completed in an (n− 1, k)-torus, thus inducing
an O(nk) time complexity. For Step 5, the two paths to T for each pair are checked for inclusion of
a common vertex. The paths for one pair are thus checked in O(nk) time. Hence, all pair paths are
checked in O(cnk) time. For Step 6, time complexity is T(c− 1, n− 1).

In the special case n = 2, c = 2, two subtori T, T′ are selected as in Step 1 of the general case,
thus inducing an O(1) time complexity. The selection of the paths for the two pairs may require
checking all the candidate paths as per Lemma 1, thus inducing an O(n) time complexity. An additional
O(nk) is required to check whether the selected pair paths are disjoint. Finally, routing inside
one-dimensional subtori is possible, checking whether the selected path includes the vertex to avoid
(O(1)), thus being O(k) time. Hence, in total, this special case is O(nk) time. The maximum path length
is obtained when k links are taken to route both the source and destination vertices to the designated
subtorus, and with k− 1 links for routing inside one-dimensional subtori, thus in total 3k− 1.

The above discussion can be summarized in the following theorem.

Theorem 1. In an (n, k)-torus (n < k, k ≥ 5), given c (1 ≤ c ≤ n) vertex pairs (si, di) (all pair vertices are
distinct, yet si = di is acceptable), it is possible to select c mutually vertex-disjoint paths si ; di (1 ≤ i ≤ c) of
lengths at most 2k(c− 1) + nbk/2c in O(nc4) time.

Proof. A path of maximum length could be selected as follows: each recursive step induces k links
to route the source vertex to the designated subtorus, k links to route the destination vertex to the
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designated subtorus, and this until reaching a base case, either c = 1 with a path of nbk/2c links
selected by dimension-order routing, or n = 2, c = 2 with two paths each of length at most 3k− 1.
This is summarized with the following recursive expression:

L(1, n) = nbk/2c.
L(2, 2) = 3k− 1.

L(c, n) = 2k + L(c− 1, n− 1).

Hence, the maximum path length is max{2k(c − 1) + nbk/2c, 2k(c − 2) + (3k − 1)}, which is
equal to 2k(c− 2) + 3k− 1 if n = 1 and to 2k(c− 1) + nbk/2c otherwise, given that k ≥ 5. However,
since in the n = 1 case we have, on the one hand, c = 1 and, on the other hand, L(1, 1) = bk/2c,
the maximum path length can be expressed as 2k(c− 1) + nbk/2c for any n.

The total worst-case time complexity is given by the following recursive expression:

T(1, n) = O(nk).

T(2, 2) = O(nk).

T(c, n) = O(nc3) + T(c− 1, n− 1).

Hence, the total time complexity of the proposed routing algorithm is O(nc4).

7. Empirical Evaluation

We have implemented the algorithm proposed in this paper in order to realize its empirical
evaluation, and especially to inspect its practical behavior: how the algorithm performs in average.
The computer used for this experiment was equipped with an Intel Core i5-7300U CPU (clocked at
2.60 GHz), 8 GB RAM and ran Windows 10 64-bit.

By using this computer implementation, we have repetitively and automatically solved a large
number of random instances of the pairwise disjoint-path routing problem in a torus. Precisely, in an
(n, max{5, n + 1})-torus, we have solved for each value of n (2 ≤ n ≤ 7) a total of 10,000 random
routing problem instances. For each of these instances, the correctness of the selected paths has
been checked (e.g., path disjointness), and the maximum length of the selected paths was stored.
Then, for each value of n, the average of the stored maximum path lengths for this value of n was
computed. Hence, our results include for each n both the maximum and the average of the obtained
10,000 maximum path lengths. The number of vertex pairs was set to c = n to maximize the routing
difficulty. For each n, the maximum and average of the maximum path lengths are given in Figure 9;
the theoretical upper bound on the maximum path length is also given for reference.

Then, we have measured the average execution time for one problem instance: see Figure 10;
the worst-case time complexity is also plotted for reference.

Regarding maximum path lengths, one can first note that there is some distance between the
theoretical upper bound on the maximum path length and the obtained results. This is a good indicator
of the efficiency of the proposed algorithm, especially given that for small values of n the upper bound
is almost tight on the maximum path length. Regarding time complexity, it can be observed from
the obtained results that the average performance of the algorithm is significantly better than the
theoretical worst-case time complexity.
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Figure 9. Empirical evaluation: maximum and average maximum (with standard deviation) path
lengths of paths selected by the proposed algorithm in an (n, max{5, n + 1})-torus.
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Figure 10. Empirical evaluation: average execution time to solve one problem instance with the
proposed algorithm in an (n, max{5, n + 1})-torus.

8. Conclusions

The torus topology is very popular for the interconnection network of massively parallel systems
such as the modern supercomputers Fujitsu K, IBM Blue Gene/L, IBM Blue Gene/P, and Cray Titan.
In this paper, an algorithm that solves the pairwise disjoint-path routing problem in a torus has been
proposed. This routing problem consists in the selection of mutually vertex-disjoint paths between
given vertex pairs, and it is critical to maximize system dependability and data communication
efficiency. We have then formally shown that in an n-dimensional k-ary torus, for c (c ≤ n) vertex
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pairs, the described algorithm selects disjoint paths of lengths at most 2k(c − 1) + nbk/2c with a
worst-case time complexity of O(nc4). Furthermore, the practical behavior of the proposed algorithm
has been inspected by conducting computer experiments, showing that performance on average was
significantly better than the established formal worst-case complexities.

As for future works, it will be meaningful to investigate whether the theoretical maximum path
length is attainable, and if not, try to refine it. For example, this might be achieved by more wisely
selecting the subtori used for disjoint routing. Even though the selection of subtorus T′ may not leave
many options, the selection of subtorus T that was used to solve the problem recursively could be
done such that shorter paths to route pair vertices to T are selected.
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Appendix A. Additional Details of Candidate Paths

In an (n, k)-torus, given vertex u = (u1, u2, . . . , un) and dimension δ (1 ≤ δ ≤ n), path p−(u, δ)

and path sets P−1 (u, δ), P−2 (u, δ) are defined similarly to p+(u, δ), P+
1 (u, δ), and P+

2 (u, δ), respectively,
as described in Section 2. The formal definitions of the path p−(u, δ) and the path sets P−1 (u, δ),
P−2 (u, δ) are given below.

p−(u, δ) : u→ u	 eδ → (u	 eδ)	 eδ → . . .

P−1 (u, δ) :
⋃

1≤i≤n
i 6=δ

{
u→ u⊕ ei → (u⊕ ei)	 eδ → ((u⊕ ei)	 eδ)	 eδ → . . . ,
u→ u	 ei → (u	 ei)	 eδ → ((u	 ei)	 eδ)	 eδ → . . .

}

P−2 (u, δ) :
⋃

1≤i≤n
i 6=δ


u→ u⊕ ei → (u⊕ ei)⊕ ei → ((u⊕ ei)⊕ ei)	 eδ

→ (((u⊕ ei)⊕ ei)	 eδ)	 eδ → . . . ,
u→ u	 ei → (u	 ei)	 ei → ((u	 ei)	 ei)	 eδ

→ (((u	 ei)	 ei)	 eδ)	 eδ → . . .


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