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Abstract: Using the drone base station (DBS) to alleviate the network coverage supply-demand
mismatch is an attractive issue. Found in DBS-assisted cellular mobile networks, the deployment of
DBSs to cope with the dynamic load requirements is an important problem. The authors propose
a proactive DBS deployment method to enhance the DBS deployment flexibility based on network
traffic. The proposed scheme uses potential value and minimum distance to decide the areas that
most need to be covered, which are named as proactive coverage areas (PCAs), whereby the DBSs
are assigned to cover those PCAs. Meanwhile, when the number of required DBSs is determined,
the energy consumption is related to the coverage radius and the altitude of DBSs. Therefore,
the proposed method further investigates the on-demand coverage radius and then obtains the
altitude of DBSs. Simulations show that the proposed proactive DBS deployment method provides
better coverage performance with a significant complexity reduction.
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1. Introduction

Accompanying the development of the mobile Internet and Internet of Things (IoT), ubiquitous
users and devices need access to a network, which is then followed by an increasing amount of traffic.
Dense deployment of small base stations (BSs) is one intuitive way to handle the ever-increasing data
traffic demands [1], however, the deployment strategy of current small BSs is in accordance with
long-term network traffic behaviors, and lacks flexibility in location adjustment. Moreover, such a rigid
access network is challenged in handling the difficult-to-predict traffic patterns caused by the temporal
and spatial variations in user densities and user application rates [2]. Hence, to enhance network
access flexibility for supporting massive dynamic connections and an uneven distribution of network
traffic, the use of the drone base station (DBS) is an efficient approach for handling the traffic with
better data rates in these heterogeneous scenarios [3,4].

The DBS, with the advantage of flexible deployment and low cost, can be deployed to help
a ground network in providing high data rate coverage whenever there is an excessive service demand
in space and time. Moreover, because a DBS is more robust against the change of environments
compared to a static ground BS, it can be deployed to provide emergency communication connectivity
in areas without infrastructure coverage, such as disaster scenes [4]. While there are several advantages
for the use of DBSs, there are some issues that have not yet been addressed in the literature. To find
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a suitable number of DBSs along with their placement, in order to provide coverage to a set of user
equipment (UE), is a very important question about the aerial wireless networks [5]. Therefore, at least
two problems should be considered for deploying DBSs to cope with the dynamic load requirements.

• The coverage area of DBSs: One of the greatest challenges is to identify the proactive coverage
area (PCA) that a DBS needs to cover. Especially in an overload condition caused by burst crowd
traffic, the PCAs enclosed with more UE covered by the DBS benefits the network the most.
Moreover, when the PCAs are determined, how to allocate DBSs to cover these areas is also one
of the problems to be solved.

• The number of DBSs and the total energy consumption need to be considered. The authors
assume that each DBS has a minimum and a maximum vertical altitude. Moreover, the energy
consumption of a DBS is related to its altitude. Indeed, the higher the altitude, the larger the
covered area, the higher the energy consumption. Thus, the on-demand coverage radius and the
optimal altitude, as two key cost metrics, should be considered.

The authors leverage the heterogeneity of the UE distribution to design algorithms for dynamically
placing DBSs. Obtaining the spatial UE distribution and modeling it in the space and time domains
plays an important role in characterizing and analyzing the performance of the network. The spatial
UE distribution also has an impact on the network deployment. Especially in a drone-assisted wireless
network, the placement of a DBS depends mainly on the distribution of UE [6]. Drawing inspiration
from the theory of data field [7], an efficient multiple DBS deployment scheme is investigated.
The proposed scheme uses potential value and minimum distance to decide the PCAs that most need to
be covered, whereby the DBSs are assigned to cover those PCAs, as shown in Figure 1. Moreover, when
the PCAs are determined, a “first-best-effort and second-patching” (FBE–SP) algorithm is designed to
assign corresponding DBSs to cover them. Further, the authors considered two cost metrics to minimize
the energy cost: the on-demand coverage radius and the optimal altitude. Generally speaking, the goal
is to find the PCAs being covered by the DBSs to maximize the number of covered UE while ensuring
the minimum energy cost.
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Figure 1. The deployment of multiple drone base stations (DBSs) in a drone-assisted wireless 
network. PCA: proactive coverage areas; UE: user equipment; MBS: macro base station. 

The main contributions of this work can be concluded as follows: 

• A novel method is proposed for deciding the PCAs. According to data field theory, a demand 
point with a larger potential value has more demand points gathered around it [8]. Then, the 
region centering on the demand point with local maximum potential value can be decided as a 
PCA. Compared to a heuristic DBS location decision, assigning DBSs to cover the decided PCAs 
has a lower complexity. 

Figure 1. The deployment of multiple drone base stations (DBSs) in a drone-assisted wireless network.
PCA: proactive coverage areas; UE: user equipment; MBS: macro base station.

The main contributions of this work can be concluded as follows:

• A novel method is proposed for deciding the PCAs. According to data field theory, a demand point
with a larger potential value has more demand points gathered around it [8]. Then, the region
centering on the demand point with local maximum potential value can be decided as a PCA.
Compared to a heuristic DBS location decision, assigning DBSs to cover the decided PCAs has
a lower complexity.
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• To cover the decided PCAs by the supplied DBSs, treated as which DBSs serve which PCAs
problem, the authors design the “first-best-effort and second-patching” (FBE–SP) algorithm to
solve the problem.

• Meanwhile, the minimum energy cost mechanism is employed in this paper. The authors
further consider the on-demand coverage radius and the optimal altitude as two cost metrics.
The on-demand coverage radius is determined by the size of the area that the DBS actually needs
to cover, while the corresponding optimal altitude can be more simply obtained by solving the
linear equation between altitude and coverage radius.

The remainder of the paper is organized as follows. Section 2 discusses the proposed work
in the context of related works. The system model and the problem formulation are presented in
Section 3. Section 4 gives an efficient solution for the optimal deployment problem. Section 5 presents
the simulation results. Finally, the work is concluded in Section 6.

2. Related Works

Recently, many researchers highlighted the important performance benefits achieved by the use of
DBSs for wireless communication. Through field experiments, the authors in Reference [9] demonstrate
the capability of DBSs for improving the signal strength in coverage holes when DBSs perform as
the aerial relays of static ground BSs. Zhang et al. study the spectrum sharing of the DBS-assisted
network modeled by the three-dimensional (3D) Poisson point process and find the optimal density
of DBSs to maximize the network throughput while ensuring the network efficiency constraint [10].
Andreev et al. put forward a novel vision of moving access infrastructure to match dynamic user
demand in a 5G network. They point out that the intelligent capable devices (drones or cars, for
example) performing as moving access points will offer the operators an opportunity to dramatically
boost system capacity [11]. To achieve fair performance among UE, Wu et al. maximize the minimum
downlink throughput over all ground UE by optimizing the multi-user communication scheduling
and association jointly with the DBS’s trajectory and power control [12]. These works are a significant
effort to investigate a DBS’s potential to expand the coverage and capacity of existing ground wireless
networks, but do not consider the optimal placement problem of a DBS.

The optimal placement of a set of DBSs is a very challenging issue, which has been proven to be
a NP-hard problem in most cases [13]. According to this problem, a set of waypoints is given by the macro
BS (MBS) where DBSs can be placed, and entropy is used to provide the base for facility location [4].
In fact, the number of waypoints is difficult to specify in advance. Leveraging the air-to-ground
(AtG) pathloss model in Reference [14], some researchers focus on the DBS deployment/placement
optimization that maximizes specific performance metrics. Al–Hourani et al. provide an analytical
approach to optimize the altitude of a DBS for providing maximum coverage for ground UE [15].
In contrast, by fixing the altitude, the horizontal locations of DBSs are optimized in Reference [16], and
a bisection search is performed to find the minimum number of DBSs needed to provide full wireless
coverage. As such, the altitude and the horizontal location of the DBS can be optimized jointly for
different quality-of-service (QoS) requirements, which can be treated as a 3D placement optimization
problem. The authors in Reference [17] highlight the properties of the DBS placement problem and
study the 3D placement of a single DBS with the objective of maximizing the numbers of UE covered
by the DBS. In reference [18], the 3D deployment problem of multiple DBSs has been formulated to
maximize the user coverage while maintaining DBS to ground BS link qualities, and designed a per-drone
iterated particle swarm optimization algorithm for solving the problem. Among these works, a heuristic
algorithm is adopted mostly to select the location that maximizes specific performance to deploy DBSs.
Thus, these approaches can be viewed as an optimal deployment problem from the network side.

Although the above proposals have addressed the problem of optimizing the deployment of DBSs,
no other works have provided a comprehensive view of quickly deciding the PCAs and assigning the
appropriate DBSs to cover them. The objective of this paper is an optimization problem formulated
as a maximum coverage problem, while ensuring the minimum energy cost, which is recorded as
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the MCMC problem. To solve the MCMC problem, the data field theory is introduced, in which the
demand point with local maximum potential values is selected as the coverage center point (CCP) of
a PCA, ensuring the coverage maximization. Further, to minimize the energy cost, the on-demand
coverage radius is determined by the size of the area that the DBS actually needs to cover, while the
corresponding optimal altitude can be more simply obtained by solving the linear equation between
altitude and coverage radius. The experimental results show that the current scheme is more suitable
for operators to handle the difficult-to-predict traffic demand, especially in the environment involving
large data sets.

3. System Model and Problem Formulation

Since the numbers of UE randomly distributed and deployed in the coverage area of a MBS
is greater than the capacity of a MBS, a cost-efficient and high-unloading method must be devised.
The authors limit the analysis to downlink, so DBSs are used to transmit data and the co-channel
interference is ignored. Mobility is an important feature of a DBS, therefore an area does not need to be
covered while there is few or no UE there. As UE moves, DBSs might follow them if needed, so here is
the deployment of the DBSs for one snapshot of the UE positions.

3.1. System Model

A downlink wireless system is considered in this paper, where the MBS is used to provide
generalized coverage, and a set of K = {1, 2, . . . , K}. DBSs are deployed to relieve the overload caused
by flash congested UE. When there is coverage overlap between the MBS and an active DBS, the authors
assume that the DBS has the priority to serve the UE in the overlapped region once deployed. Placing
a DBS with Rmax over a PCA obviously might cover as much UE as possible, but it also might cause
a ring-shaped excess coverage area when the Rmax is greater than the radius of the PCA, as shown
in Figure 1. Denoted by U = {1, 2, . . . , M} the set of UE is to be offloaded in the coverage range of
MBS, and their locations are given by {(xu, yu); u = {1, 2, . . . , M} . Apparently, the minimum number
of DBSs required to handle the congested UE is K =

⌈
N−UMBS

UDBS

⌉
, where d·e denotes the round up

calculation and UMBS and UDBS account for the amount of UE that the MBS and a DBS can handle,
respectively, while the 3D coordinates of the DBS can be denoted as {Zk = (xk, yk, hk); k = 1, 2, . . . , K}.

The authors assume that UE is in the coverage region of the DBS if the AtG link satisfies its
guaranteed QoS requirement. A statistically generic AtG path loss model was studied in Reference [14].
The authors of Reference [19] refined the AtG path loss model and provided the useful mathematical
formulae. The AtG communication links are mainly line-of-sight (LoS) and non line-of-sight (NLoS)
links. Since fading is an essential factor in DBS-assisted networks, the authors consider Rician fading
in LoS links, while using Rayleigh fading in NLoS links [20]. Considering a generic AtG path loss
model, the received signal power of UE i from the DBS j is given by:{

PLoS(su,k, hk) = P0d−ς
u,kµLoS

PNLoS(su,k, hk) = P0d−ς
u,kµNLoS

(1)

where P0 is the given transmit power of the DBS, su,k is the horizontal distance between UE u and

the DBS k, while du,k is the spatial distance and du,k =
√

s2
u,k + h2

k , ς is the path loss exponent, µLoS

and µNLoS are fading factors corresponding to the LoS and NLoS connection, respectively. The NLoS
connection only has multiple reflection links, and µNLoS follows an exponential distribution with
an average of v. Compared with the NLoS connection, the LoS connection has not only a LoS link, but
also multiple reflection links, which cause a Z-factor that should be considered.

The LoS probability of the connection between UE u and the DBS k is given by:

pLoS = α(180/π·arctan(hk/su,k)− 15)β (2)
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where α and β are constants which depend on the environment (suburban, urban, and ultra-dense
urban, etc.). Correspondingly, the probability of NLoS is:

pNLoS = 1− pLoS. (3)

Therefore, the average received power of UE u from the DBS k can be calculated by:

P(su,k, hk) = PLoS(su,k, hk)pLoS + PNLoS(su,k, hk)pNLoS. (4)

The received power P(su,k, hk) is a function of distance su,k and altitude hk, meaning that,
considering a generic AtG path loss model, the received power depends on horizontal distance
and vertical altitude. To guarantee QoS, it needs to guarantee that the received power P(su,k, hk) must
exceed a certain given threshold Pmin corresponding to the QoS requirement. According to Equation
(4), for a given Pmin = −70 dBm, the relationship between the altitude and the coverage radius for
a DBS can be obtained, as shown in Figure 2.
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Figure 2 shows, by increasing the altitude of a DBS, the coverage radius first increases and then
decreases. That is because, when in higher altitudes, the increased LoS probability is higher than the
NLoS probability and, in turn, the coverage radius increases. Conversely, the received power also is
dependent on the spatial distance between the UE and the DBS, so, after the altitude exceeds a specific
height, the coverage radius decreases. When the altitude reaches the specific value h∗, the maximum
coverage radius Rmax is obtained, as the extreme point (h∗, Rmax) shown in Figure 2.

3.2. Problem Formulation

Deploying the DBSs with Rmax over every PCA obviously might cover as much UE as possible,
but it also might cause a ring-shaped excess coverage area, as shown in Figure 1. Furthermore, when
multiple DBSs cover the same PCA, more overlap is created. Therefore, the on-demand coverage
radius is considered. Conversely, the DBS’s energy consumption is related to the coverage radius and
the altitude [21]. To minimize cost, it is essential to find an optimal altitude hopt that minimizes the
cost while ensuring the service of the covered UE. The objective is treated as a maximum coverage and
minimum cost (MCMC) optimization problem, as previously noted.
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Denoted by Al the set of UE enclosed in the PCA l and |Al | is the cardinality of the set Al , and
the objective function is to maximize the total amount of coverage for UE in all the PCAs:

max
L

∑
l
|Al | (5)

subject to (1)L ≤ K
(2)su,k ≤ Rmax ∀u ∈ Al , ∀k ∈ K

(3)hk ≤ Hmax ∀k ∈ K
(4)P(su,k, hk) ≥ Pmin ∀u ∈ Al , ∀k ∈ K

where L is the number of PCAs, Hmax is the maximum altitude of the DBS, and the constraints in
Equation (5): (1) indicates that the number of PCAs is no more than the number of supplied DBSs;
(2) is the horizontal distance constraint, which means that the distance from any UE u in PCA l to
the corresponding DBS k must be less than Rmax; (3) denotes that the altitude of each DBS should
be less than the given Hmax; (4) denotes that the received power P(su,k, hk) must exceed the given
threshold Pmin.

Regarding a given K DBS being deployed, it is not easy to find the optimal 3D locations that
satisfy the objective function of Equation (5). First, determine L horizontal coverage areas for DBS
deployments and then optimize the flight altitude for minimizing the cost, which is a NP-Hard
combinatorial optimization problem, which is very complex to find the optimal solution by solving
the mathematical model. One way to reduce the computational complexity and still reach a feasible
solution is to split the target task into different domains. Thus, a low complexity algorithm is proposed
to solve the MCMC problem.

4. Efficient Solution for the MCMC Problem

Finding PCAs being covered by the supplied DBSs that maximize the numbers of covered UE is
a very complicated optimization problem. Adding two new dimensions to the problem, which are the
altitude and on-demand coverage radius of the DBS, makes the MCMC problem even more complex.
Hence, to solve the MCMC problem, the idea is to divide the problem into three sub-problems: deciding
PCAs, duly placing-and-operating the DBSs, and optimal 3D location decisions. The solution to the
first sub-problem is to determine the PCAs enclosed with maximum UE, while the second is to assign
the DBSs to the PCAs, and the last is to find the optimal 3D location of each DBS.

4.1. Deciding Proactive Coverage Areas

Within the coverage range of MBS, each item of UE i is considered a data demand point fi, where
fi = (xi, yi), and the xi and yi are the coordinates of the UE i in the X, Y axes. Thus, the physical field
is extended to a data field. Moreover, a potential function is given for calculating the potential value
of any point in data space, which is used to describe quantitatively the effect of each point on other
points in the field. Denoted by F = { f1, f2, . . . , fn} a data set made of n demand points, the potential
value of demand point fi can be expressed as:

ψi = ∑n
j=1 mje−(

si,j
σ )

ηn

(6)

where mj is the mass of demand point fi, σ is an impact factor, and si,j is the distance between fi and
f j, while η is the distance index. Please note that the mass of each demand point must satisfy mj ≥ 0
and ∑n

j=1 mj = 1.
Reference [22] has proven that the spatial distribution of the data field mainly depends on impact

factor σ and is insensitive to the value of η. When set η = 2, a Gaussian potential function which has
a favorable mathematical property is obtained. Thus, η = 2 is fixed. The impact factor σ has an impact
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on the final potential distribution. This paper will optimize σ using the potential entropy method. The
potential entropy E is given by:

E = −∑n
i=1

ψi log
(

ψi
Z

)
Z

(7)

where Z = ∑n
i=1 ψi is a normalization factor.

The potential entropy E is used to measure the uncertainty of potential field distribution. When
the potential value of one demand point is equal to that of another demand point, then the uncertainty
of the potential field distribution is the largest, which corresponds to the maximum potential entropy.
Otherwise, minimum potential entropy is generated if the potential values are unevenly distributed.
Therefore, the optimal impact factor σ could be obtained by the minimum potential entropy E.

The δi is the minimum distance between the point fi and any other point with higher potential
value, which can be calculated as follows:

δi = min
j:ψj>ψi

(
si,j
)
. (8)

Regarding the demand point with the highest density, the authors conventionally take maxj
(
si,j
)

as δi.
According to data field theory, the potential value of a demand point stands for the aggregate

degree of its surrounding demand points. The larger its potential value, the more demand points are
gathered around it. As anticipated, CCP is usually the demand point with local maximum potential
value. Thus, the demand point fi, with relatively high ψi and large δi, can be regarded as a CCP.
The authors identify a CCP by computing the thresholds of the potential value and distance. To avoid
any two CCPs being in an area with radius Rmax, the authors set δth > Rmax, where δth is the threshold
of distance δi, while the threshold ψth of potential value ψi is determined by searching an ‘elbow point’
according to the method presented in Reference [23]. Further, the area with a certain radius, and
centering on a CCP, can be considered as a PCA. The PCA decision algorithm proposed is able to spot
PCAs of any size and shape, therefore, maximum coverage performance can be achieved if such PCAs
are duly served. The PCA decision algorithm is detailed in Algorithm 1.

Algorithm 1. PCAs decision algorithm for DBSs placement

1: Obtain the impact factor σ that minimizes the entropy potential E, and calculate the potential value ψi for
each demand point fi using Equation (6).

2: Use Equation (8) to calculate the minimum distance δi for each demand point fi.
3: Obtain the threshold values, ψth, δth, ψmin.
4: Exclude the noisy demand points the demand points i characterized by ψi < ψmin.
5: Identify the coverage center points (CCPs) of all those demand points fi characterized by ψi > ψmin and

δi > δth.
6: Assign each remaining demand point to the nearest CCP characterized by a higher potential value and

form the clusters.
7: Decide PCAs: The area centering on the CCP and enclosing all the members of the i-th cluster is decided

as a PCA. Obtain the finalized PCAs.

4.2. Placing-And-Operating the DBSs

Once the PCAs are decided, the next task is to determine which DBSs serve which PCAs, which is
treated as an on-demand assign problem. Conceivably, how to place the supplied DBSs to cover the
decided PCAs can significantly affect the coverage performance, which is one of the main performance
metrics that the authors aim to improve. The authors do not consider the distance between the DBS
and the target PCA to be covered, for simplicity.
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Next, the authors describe the “first-best-effort and second-patching” algorithm (FBE–SP) for
solving the above on-demand assign problem in detail.

First-Best-Effort: The authors divide the numbers of congested UE in a PCA by the service
capability of a DBS; thus, the quotient and remainder are outputted. The quotient is the number of
DBSs for first-best-effort covering the PCA to offload the congested UE.

Second-Patching: The remaining available DBSs will share a certain number of remainders for
patching coverage. Then follows Algorithm 2 (FBE–SP).

Following the FBE–SP process, the number of DBSs required for covering each PCA can
be obtained.

Cj =

{
qj + 1 if the jth PCA is executed second patching
qj otherwise

(9)

where Cj is the number of DBSs assigned to cover the j-th PCA.
The visual example of the proposed algorithm phases is shown in Figure 3. According to the

decision graph in Figure 3a, three demand points are selected as CCPs by the threshold method
and each CCP has a high potential value ψ and large distance δ. To form PCAs, the demand points
are assigned to the nearest CCP characterized by a higher potential value. Figure 3b shows three
areas centered on each CCP are selected as PCAs, and these PCAs are marked in color. The FBE–SP
determines the number of required DBSs for covering each PCA, and assigns these DBSs to cover the
corresponding PCA, as shown in Figure 3c.

Algorithm 2. First-Best-Effort and Second-Patching algorithm (FBE–SP)

Initialization: Set the number of supplied DBSs as K, and the corresponding capacity is UDBS of each DBS,
a set of congested UE of PCA, A = {a1, a2, . . . , aL}, where aj represents the numbers of UE in the j-th PCA, |.|
denotes the cardinal number.

1: Regarding each PCA j, calculate
(

qj, pj

)
=
⌊

aj/UDBS

⌋
where b·c denotes the round down calculation,

and qj, pj denote the quotient and remainder, respectively.

2: Assign qj DBSs to PCA j for first-best-effort covering.

3: Obtain the number of the first required DBSs, K1 = ∑
|A|
j=1 qj.

4: When K > K1, sort the |A| remainders in descending order and select the top K − K1 remainders. Each
remainder corresponds to a Second–Patching PCA.

5: Assign the remaining K − K1 DBSs to cover the Second–Patching PCAs.
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4.3. 3D Location Optimizing for Energy Efficiency

Subsequently, the authors give a mechanism to optimize the 3D location of a DBS. The authors
decouple the 3D placement problem in the horizontal and vertical dimensions for simplicity. Since the
coverage area of a DBS is a circular disc, placing the circular disc on the horizontal plane corresponds
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to placing the DBS horizontally. Further, placing a DBS centering on a CCP ensures that the summation
of the distance to all the UE covered by the DBS is kept to a minimum. Thus, the coordinates of the
CCP can be seen as the horizontal location of the DBS. Concurrently, the optimal altitude is the vertical
dimension. The procedure of which can be summarized as the following.

Use Algorithm 1 to analyze the UE distribution information currently calculated by the data field.
As a result, the actual PCAs needed to be covered by the DBSs can be obtained, assuming the number
of PCAs is J. The FBE–SP algorithm determines the number of DBSs required to cover each PCA. Given
Cj DBSs for covering the j-th PCA, should decide the locations {Zn

j , n = 1, 2, . . . Cj} of these DBSs,
where Zn

j = (xn
j , yn

j , hn
j ).

To discover the horizontal locations of the Cj DBSs, divide the j-th PCA into Cj sub-PCAs, and
each sub-PCA is covered by a DBS. Use Equation (6) to calculate the potential value for each item of
UE in sub-PCA and select the UE with a local maximum potential value as the CCP of each sub-PCA.
The locations of these CCPs are denoted by {Γn

j , n = 1, 2, . . . Cj}, where Γn
j = (sn

j , tn
j ) denotes the X, Y

axes of the CCP. Thus, the DBS horizontal location (xn
j , yn

j ) over the n-th sub-PCA can be calculated as:(
xn

j , yn
j

)
= (sn

j , tn
j ). (10)

Next, decide the optimal altitude of DBS. Reference [19] proves that there is a linear relationship
between the altitude and horizontal coverage radius. Then, determine the coverage radius of DBS.
Calculate the distance λn

j between the CCP Γn
j and the farthest UE in n-th sub-PCA.

λn
j = max

f n
j εDn

j

(dΓn
j , f n

j
) (11)

where Dm
j denotes the UE set enclosed in the n-th sub-PCA.

To reduce the ring-shaped excess coverage area caused by deploying the DBS with Rmax, the
on-demand coverage radius is needed. The on-demand coverage radius rn

j is determined by the size of
the area that the DBS actually needs to cover.

rn
j =

{
λn

j if the distance λn
j is less than Rmax

Rmax otherwise
(12)

Considering Equation (3), the received power is related to the altitude and coverage radius of the
DBS. Mathematically speaking, P(rn

j , hn
j ) only depends on hn

j and rn
j . Thus, for a given rn

j , the optimal
altitude problem can be formulated as:

max
hn

j

P(rn
j , hn

j ) (13)

s.t. P(rn
j , hn

j ) ≥ Pmin.

Let h∗nj be the optimal DBS altitude and the h∗nj can be obtained by solving the problem (13).
As evidenced in Reference [19], the optimal altitude is proportional to coverage radius. Therefore,
when the on-demand coverage radius rn

j of DBS is decided, the problem (13) can be solved.

4.4. Complexity Analysis

The complexity of the proposed scheme is analyzed for further comparison. The authors
mainly consider the influence of computational complexity in placing and operating DBSs. First,
the authors compare the computational complexity of finding PCAs. In order to decide PCAs, the main
computational operations are to calculate potential value and the minimum distance, as in Equations (6)
and (8), respectively. Thus, the complexity of deciding PCAs is O

(
M2), even in the worst case. Once

the PCAs are decided, the main complexity depends on determining which DBSs serve which PCAs,
as described in Algorithm 2. Considering the FBE–SP algorithm, the main computational operations
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are to calculate the numbers of UE in each PCA, and the complexity is O(M × L), where L is the
number of PCAs. Another main computational operation depends on obtaining the optimal altitude
by solving the maximum problem, as in Equation (13). Since the problem (13) is a linear problem,
the complexity is O(1). Based on the above analysis, the overall complexity of the proposed scheme
is O

(
M2) + O(K×M) + O(1). Since the number of PCAs L is far less than the numbers of UE M,

the overall complexity is approximately O
(

M2).
5. Simulation Analysis

The authors test the proposed scheme in urban and suburban environments. According to the
methods used by Reference [24], the AtG propagation parameters of the two environments are shown
in Table 1.

Table 1. Air-to-ground (AtG) propagation parameters.

Urban Suburban

(µLoS, µNLoS) (1,20) (0.1,21)

(a, β) (9.61,0.16) (4.88,0.43)

5.1. Simulation Implementation

The authors use MATLAB software as a simulation platform. During the simulation, the authors
consider a 2 × 2 km area, in which 1000 items of UE are distributed in a number of different ways.
As a statistical parameter related to the distribution of UE, the coefficient of variation (CoV) is first
proposed in Reference [25]. The current authors use the value of CoV as the index of UE aggregation.
CoV = 1 indicates that the UE is distributed uniformly in the area, while CoV > 1 indicates the
aggregation of UE located around hotspots [19]. The simulation has the following numerical parameter
settings: number of DBSs K = 6, the service capability of a DBS UDBS = 200 UE, the transmit power
P0 = 30 dBm, and the given threshold Pmin = 70 dBm.

Figure 4 illustrates the received power versus DBS altitude for suburban and urban environments.
It is noticed that on each performance curve exists a crest point, where the X and Y axes of the point
represent maximum received power of the UE and the optimal DBS altitude, respectively. Furthermore,
the optimal DBS altitude hopt increases as the on-demand coverage radius r increases, while the
maximum received power Pmax is reversed. Note that the optimal DBS altitude hopt is proportional to
the given r, and the slope is determined by the environment. Therefore, once the on-demand coverage
radius r of the DBS is decided, the corresponding hopt can be obtained more simply by solving the
linear equation.
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The authors compare the proposed scheme with the uniform deployment scheme proposed
in Reference [20]. The uniform deployment is a greedy heuristic scheme, which randomly selects
a location to place a DBS with maximum coverage radius and removes the covered region from
consideration when placing the next DBS. Figure 5 shows the 3D placement of the DBSs of the two
schemes in an urban environment. It can be seen that using the proposed scheme, the DBSs are
placed to serve maximum numbers of UE with on-demand coverage radius and dynamically adjust
the altitude to guarantee the QoS requirement. Therefore, the horizontal location of each DBS is
corresponding to the coordinate of the CCP and the vertical coordinate is the optimal altitude hopt.
Using the uniform deployment scheme, the DBSs are distributed almost evenly on the horizontal
plane, while in the vertical dimension they have fixed altitude.
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5.2. Performance Evaluation

In the following experiments, we evaluate the performance of the proposed scheme using three
indicators including the covered ratio, delay time, and average transmit power. Note that the delay
time considered for the mapping is included as the processing delay in the general deployment
governing of the network. In order to measure the performance in DBS deployment based on the
proposed scheme, the performance is evaluated against with the uniform deployment pattern.

The coverage ratio of covered UE versus the CoV is depicted in Figure 6. As seen in this figure,
more UE is covered in the suburban environment than in the urban environment because the former
has a larger coverage radius of the DBS. Moreover, for the proposed scheme, the coverage ratio
increases as the CoV increases and performs better than the uniform deployment scheme over the
entire range of the CoV.
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Figure 7 illustrates the average transmit power versus the CoV for urban and suburban
environments. When CoV = 5, compared with the uniform deployment scheme, the average transmit
power of the proposed scheme has significant reductions of 4.4 and 2.5 dBm for urban and suburban
environments, respectively. Moreover, with the increasing CoV, which means the higher aggregation
of UE located around PCAs, the average transmit power decreases for the two schemes.
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The environmental impact is not compared for delay time, mainly refers to processing time, and
is not able to authenticate results of delay time. The plot in Figure 8 shows the comparison of the delay
time observed in DBS deployment.
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From Figure 8, it can be seen that the overall deployment governing delay of the proposed scheme
is less than the uniform scheme. Furthermore, the delay time for the uniform scheme varied with
an increase in DBSs since more iterations are required to deploy the additional DBSs. However, for the
proposed scheme, the overall positioning delay is mainly related to the density of UE, and the number
of DBSs has little influence on it.
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6. Conclusions

A multiple DBS placement scheme is investigated in this paper. The proposed model uses
potential value and minimum distance to decide the PCAs, whereby DBSs are assigned to cover the
PCAs based on an FBE–SP algorithm. Moreover, to minimize the energy cost, the on-demand coverage
radius and optimal altitude are considered. Due to the linear relationship between the coverage radius
and altitude of DBS, the corresponding altitude can be obtained simply when the on-demand coverage
radius is determined. The proposed scheme is compared favorably against a well-known benchmark
scheme in the coverage performance.

Additionally, the proposed scheme has a lower complexity and higher operability, and is
very suitable for operators to handle the difficult-to-predict traffic demand quickly by dynamically
deploying DBSs and effective DBS migration strategies.
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