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Abstract: Supramolecular host-guest interaction and sensing between cationic pillar[5]arenes
(CP5) and L-carnitine were developed by the competitive host-guest recognition for the first
time. The fluorescence sensing platform was constructed by CP5 functionalized Au nanoparticles
(CP5@Au-NPs) as receptor and probe (rhodamine 123, R123), which shown high sensitivity and
selectivity for L-carnitine detection. Due to the negative charge and molecular size properties of
L-carnitine, it can be highly captured by the CP5 via electrostatic interactions and hydrophobic
interactions. The host-guest mechanism between PP5 and L-carnitine was studied by 1H NMR and
molecular docking, indicating that more affinity binding force of CP5 with L-carnitine. Therefore,
a selective and sensitive fluorescent method was developed. It has a linear response of 0.1–2.0 and
2.0–25.0 µM and a detection limit of 0.067 µM (S/N = 3). The fluorescent sensing platform was also
used to detect L-carnitine in human serum and milk samples, which provided potential applications
for the detection of drugs abuse and had path for guarding a serious food safety issues.
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1. Introduction

Gold nanoparticles (Au-NPs) have the characteristics of facile synthesis, high chemical stability
and easy surface functionalization, which have attracted the great interest of researchers in the fields
of nanotechnology and nanomaterials because of their importance in biomedicine [1] sensing [2]
catalysis [3] nanoelectronics [4,5] et al. For this reasons, many novel hybrid nanomaterials are designed
to synthesis Au-NPs with morphology, size and compositional control [6,7]. The interactions of
nanoparticles with surface ligands are also a key aspect for many applications. For example, appropriate
surface modification of nanoparticles can improve their sensor potential.

Macrocyclic arenes play an important role in the field of supramolecular chemistry [8–11].
After crown ethers, calixarenes, cyclodextrins and cucurbiturils [12,13], pillar[n]arenes are the fifth
class of macrocyclic host molecules and they were first reported by Ogoshi [14] Pillar[n]arenes
mainly consist of pillar[5]arenes and pillar[6]arenes, which are linked by methylene bridges at
their para-positions to form a unique rigid pillar architecture. Pillar[n]arenes are important
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players in supramolecular chemistry due to their easy synthesis, unique pillar shape, symmetrical
structure, excellent host-guest properties and natural supramolecular assembly characteristics [15].
They have numerous potential applications in host-guest chemistry [16–18] hybrid nanomaterials [19]
and biomedical material [20–24]. At present, much research has focused on the synthesis of
pillar[n]arenes [25,26] their host−guest chemistry and supramolecular self-assembly. The combination
of metal nanoparticles and supramolecular macrocyclic compounds can produce strong synergistic
effects and improve the properties of nanoparticles, where host-guest chemistry can play an important
role [27]. However, the conjugation of pillar[n]arenes with Au-NPs and the application of the resulting
hybrid nanomaterials are still rarely reported [28].

The stabilization of ligands possessing carboxyl (−COOH), sulfhydryl (−SH) and amine (−NH2)
groups is crucial to the synthesis and stabilization of Au-NPs [29–31]. Yang et al. produced a new
carboxylatopillar[5]arene-modified Au-NPs with good dispersion and narrow size distributions in
aqueous solution, the supramolecular self-assembly of CP[5]A@Au-NPs is very useful for sensor and
detection of the paraquat [32]. Huang et al. first reported a novel type of amphiphilic Au-NPs with
bilayers of an amphiphilic pillar[5]arene modified on their surfaces, which can be used in the fabrication
of self-assembled composite microtubes (SCMTs) and these SCMTs are excellent catalysts [33].
Pastoriza-Santos et al. prepared an ammonium pillar[5]arene-stabilized Au-NPs with shape and
size control by using seeded growth. The ammonium pillar[5]arene-stabilized Au-NPs were applied
to detect 2-naphthoic acid and polycyclic aromatic hydrocarbons [34]. Recently, Yang et al. fabricated
the green synthesis of hydroxylatopillar[5]arene-modified Au-NPs (HP5@Au-NPs). The HP5@Au-NPs
can self-assemble into multiple well-defined architectures and employ as not only scaffolds but
energy acceptors for turn-on fluorescence sensor based on a competitive host−guest interaction [35].
Despite enormous development has been achieved in self-assembly of pillar[5]arene-based Au-NPs
in recent years, it still remains a great need to further develop their application of the resulting
hybrid nanomaterials.

L-carnitine, also known as (3R)-3-hydroxy-4-(trimethylammonio)butanoate, is a naturally
occurring substance that is essential for fatty acid oxidation and energy production in the human
body [36,37]. Deficiency of L-carnitine leads to major energy loss and toxic accumulations of free fatty
acids. Though many methods have been used for detecting L-carnitine, such as chromatography [38],
capillary electrophoresis [39,40] voltammetric [41] fluorescence [42–44] and so forth, there are still
great challenges in finding selective sensitive tools to detect L-carnitine. Fluorescence technique as a
promising method for detection of L-carnitine has many advantages over other common detection
techniques, such as good portability, low-cost, high sensitivity and selectivity [45].

Herein, we describe a simple and convenient “turn-off-on” fluorescent sensing platform between
the cationic pillar[5]arenes (CP5) and L-carnitine. The fluorescence sensing platform is constructed
by CP5@Au-NPs as receptor and probe R123, which has high sensitivity and selectivity to detect
L-carnitine. A competitive fluorescence sensing platform based on CP5@Au-NPs is illustrated in
Scheme 1. This method is simple, low cost, sensitive and selective and has been applied to L-carnitine
detection in human serum and milk samples.
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Scheme 1. The corresponding cartoon representations of R123, L-carnitine, CP5 (A) and the 
illustration of CP5@Au-NPs hybrid nanomaterials-based fluorescent sensing method towards 
L-carnitine (B). 

2.2. Apparatus and Instruments 
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SCIENTIFIC Nicolet IS10 (MA, New York, USA) FTIR impact 410 spectrophotometer using KBr 
pellets at a wavelength of 4000–400 cm−1. The X-ray photoelectron spectroscopy (XPS) was 
performed on an ESCALAB-MKII spectrometer (VG Co., London, United Kingdom) with Al Ka 
X-ray radiation as the X-ray source for excitation. EDS was carried out in the JEM 2100 transmission 
electron microscopy (TEM, Tokyo, Japan) equipped with an energy dispersive X-ray spectrometry. 
The zeta potential of the sample was measured with a Malvern Zetasizer Nano series. Fluorescent 
titrimetric experiments were performed on a Hitachi F-4500 spectrophotometer (Tokyo, Japan). 1H 
NMR and 13C NMR spectra were recorded on a Bruker Avance DMX-400 spectrometer at 400 MHz 
and 500 MHz. The deionized water was obtained by the EU-K1-40TJ (Nanjing, China). 
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The CP5@Au-NPs composite was obtained based on similar work [28,34]. The CP5@Au-NPs 
was synthesized by reducing HAuCl4 in presence of CP5. In a typical synthetic procedure, an 
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were added to DW (10 mL), then the fresh aqueous solution of NaBH4 (40 μL, 0.1 M) was added into 
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pillar[5]arene-modified Au nanoparticles were prepared. 
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Scheme 1. The corresponding cartoon representations of R123, L-carnitine, CP5 (A) and the illustration
of CP5@Au-NPs hybrid nanomaterials-based fluorescent sensing method towards L-carnitine (B).

2. Experiment Section

2.1. Reagents and Apparatus

HAuCl4, Rhodamine 123 (R123), L-carnitine and NaBH4 were obtained from Shanghai Titan
Scientific Co. Ltd (Shanghai, China). CP5 was synthesized by the literature [46,47] and the synthetic
route is shown in Scheme S1. The structure and purity of all compounds were confirmed by 1H NMR
and 13C NMR (see Figures S1–S6). Detailed synthetic procedures and analytical data are given in the
Supporting Information (SI). Other chemicals were of analytical grade. Deionized water (DW, 18 MΩ
cm) was used to prepare all of the aqueous solutions.

2.2. Apparatus and Instruments

The samples were characterized by Fourier transform infrared (FTIR) spectroscopy via the
SCIENTIFIC Nicolet IS10 (MA, New York, USA) FTIR impact 410 spectrophotometer using KBr
pellets at a wavelength of 4000–400 cm−1. The X-ray photoelectron spectroscopy (XPS) was performed
on an ESCALAB-MKII spectrometer (VG Co., London, United Kingdom) with Al Ka X-ray radiation as
the X-ray source for excitation. EDS was carried out in the JEM 2100 transmission electron microscopy
(TEM, Tokyo, Japan) equipped with an energy dispersive X-ray spectrometry. The zeta potential of the
sample was measured with a Malvern Zetasizer Nano series. Fluorescent titrimetric experiments were
performed on a Hitachi F-4500 spectrophotometer (Tokyo, Japan). 1H NMR and 13C NMR spectra
were recorded on a Bruker Avance DMX-400 spectrometer at 400 MHz and 500 MHz. The deionized
water was obtained by the EU-K1-40TJ (Nanjing, China).

2.3. Synthesis of the CP5@Au-NPs

The CP5@Au-NPs composite was obtained based on similar work [28,34]. The CP5@Au-NPs was
synthesized by reducing HAuCl4 in presence of CP5. In a typical synthetic procedure, an aqueous
solution of CP5 (100 µM, 2000 µL) and an aqueous solution of HAuCl4 (10 mM, 200 µL) were added to
DW (10 mL), then the fresh aqueous solution of NaBH4 (40 µL, 0.1 M) was added into the mixture under
vigorous stirring. And the solution got wine red, which indicated that cationic pillar[5]arene-modified
Au nanoparticles were prepared.
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2.4. Experiments for Titration L-carnitine

Aqueous solutions of R123 (200 µM), L-carnitine (400 µM) and CP5@Au-NPs (1.0 mg mL−1) were
prepared. A final concentration of 2 µM R123 was also obtained via dilution. By gradually addition of
CP5@Au-NPs dispersion to the R123 solution and the fluorescence of the R123 was gradually quenched.
The competitive displacement experiments were performed as follows: the L-carnitine solution was
gradually added to a complex of R123-bound CP5@Au-NPs to displace the R123 molecule from the
cavity of CP5 by L-carnitine. The fluorescence signal was measured and recorded after the combined
solution was mixed by vortexing for 3 min.

3. Results and Discussion

3.1. Characterization of the CP5@Au-NPs

Firstly, the UV-vis absorption of [CP5]/[HAuCl4] at different concentrations was obtained
according to the surface plasmon resonance (SPR) of Au-NPs at ~520 nm, as shown in Figure S7.
The SPR peak maximum was almost unchanged when the value of [CP5]/[HAuCl4] was increased
from 0.05 to 1, which suggested that the excess CP5 had little influence on the sizes of Au-NPs.
The synthesized CP5@Au-NPs was wine red (Figure S8) and the UV-vis spectroscopy absorption
was shown at ~520 nm (Figure 1A), which demonstrated that CP5 stabilized and modified Au-NPs
were successfully synthesized. We further studied the morphology features of CP5@Au-NPs by TEM.
As shown in Figure 1B, CP5 modified Au nanoparticles (CP5@Au-NPs) with spherical structure were
successfully prepared and the size of CP5@Au-NPs was greatly uniform and homogeneous dispersion,
which was ascribed to the outstanding size regulating and stabilized effect of CP5 by the coordination
between Au-NPs and quaternary ammonium salt groups of CP5. The high resolution transmission
electron microscopy (HRTEM) images of CP5@Au-NPs (Figure 1C,D) shown that the corresponding
CP5@Au-NPs diameter and crystal lattice spacing were approximately 7 nm and 0.285 nm, respectively.
The small size and homogeneous dispersion of CP5@Au-NPs lead to the high catalytic activity and
fluorescence quenching property, indicating that CP5@Au-NPs have potential applications in sensing
and catalysis.
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The CP5@Au-NPs were characterized by zeta potential and the results were shown in Figure 2A,B.
The ξ-potential value of Au-NPs is almost zero mV in general because the surface of Au-NPs has
no charge. Therefore, different charge groups modified Au-NPs will lead to different ξ-potential
value. By comparing the zeta potential value 12.5 mV of CP5 (Figure 2B), the zeta potential value of
CP5@Au-NPs (Figure 2A) are 35.2 mV that is almost three times than that of CP5, which suggests
that CP5 successfully modified Au-NPs to form CP5@Au-NPs. FTIR spectroscopy was used to verify
whether the macrocyclic molecule CP5 was capped on the Au-NPs. From the FTIR spectroscopy of
CP5@Au-NPs and CP5 (Figure 2C), as compared to bare CP5, typical absorption peaks at 1625, 1491
and 1407 cm−1 of the benzene ring in CP5 and absorption peaks at 2975 and 2846 cm−1 of –CH3 and
–CH2− in CP5 were observed, which shown that the Au-NPs were capped by CP5. We used XPS for
proving the presence of CP5 on the surface of Au-NPs. As shown in Figure 2D, for pure CP5, three
peaks were observed at 532.5, 402.1 and 285.1 of O 1s, N 1s and C1s, respectively. However, for the
CP5@Au-NPs, a pronounced Au 4f peak was observed, which further indicated that the Au-NPs had
successfully been modified by CP5. As shown in Figure 2E, the Au 4f5/2 peak at 87.6 eV and Au
4f7/2 peak at 83.8 eV were observed and the results were similar with those reported [48–50], which
illustrated that CP5@Au-NPs successful were obtained. The prepared CP5@Au-NPs were further
characterized by EDS to investigate the elements of CP5@Au-NPs and shown in Figure 2F. Obvious
Au elements were observed at CP5@Au-NPs, which further indicated that the modified processes had
been taken place between CP5 and Au-NPs. Therefore, the above results could suggest that CP5 had
successfully grafted onto the Au-NPs and form CP5@Au-NPs hybrid nanomaterials.
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3.2. Fluorescence Spectra Analysis

The fluorescence quenching performance with CP5 and CP5@Au-NPs towards R123 were
developed and shown in Figure 3A. As we can distinctly see from Figure 3A, the fluorescence intensity
of R123 was quenched by CP5@Au-NPs for the reason of fluorescence resonance energy transfer
between R123 and Au-NPs. R123 was connected by CP5 to Au-NPs and the fluorescence was quenched.
Therefore, the fluorescence intensity of R123 was continuously quenched with the increasing of the
CP5@Au-NPs amount and shown in Figure 3B. The probe R123 can enter the cavity of CP5 via the
host-guest recognition because of the suitable structure/size, which leads to fluorescence quenching
by effective energy transfer from the probe to the Au-NPs. Figure 3C shows that the successive
reversion of the fluorescence signal of R123 as the successive increase of L-carnitine in the pre-formed
R123@CP5@Au-NPs inclusion complex. The fluorescence signal reversion was caused by the adding
of the amount of L-carnitine, which suggested that the successful detection of L-carnitine by this
fluorescence approach. Therefore, it can be concluded that R123 entered into the cavity of CP5 and
formed an inclusion complex with CP5@Au-NPs. In addition, the R123 molecule was released from
the cavity of CP5 by the addition of L-carnitine based on the competitive supramolecular recognition.
Herein, the phenomenon of the “turn−off−on” fluorescence process was developed. Besides, R123
was incubated with CP5@Au-NPs to form R123@CP5@Au-NPs composite and attached the Au-NPs
and accompanied by the phenomena of indicator fluorescence ‘turn off’ on account of the fluorescence
resonance energy transfer (FRET) [35,51–53]. Some control experiments had been performed to
confirm that the observed fluorescence intensity recovery was caused by the displacement of R123 by
L-carnitine from the cavity of host molecule CP5. We further researched the fluorescence reversion
of R123 in the presence of Au-NPs. As shown in Figure S9A,B, although the fluorescence quenching
phenomenon obviously was apparent between Au-NPs and R123, the fluorescence reversion did not
occur with the addition of L-carnitine. Therefore, the process could conclude that the dye indicator
R123 was firstly combined with CP5@Au-NPs and then released from CP5@Au-NPs upon the addition
of L-carnitine to form a fluorescence “switch-off-on”.
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Figure 3. The fluorescence intensity of 2 µM R123 in the presence of 10 µM CP5 and 16 µM
CP5@Au-NPs (A). The effect of increasing concentrations of CP5@Au-NPs (concentrations ranging
from 0 µM to 16 µM) on the fluorescence intensity of R123 dispersion (B). Fluorescence spectra of the
R123@CP5@Au-NPs composites via different concentrations of L-carnitine (C). Calibration curves of
fluorescent intensity for R123@CP5@Au-NPs vs. L-carnitine concentrations (D).



Sensors 2018, 18, 3927 7 of 12

Figure 3D shown a calibration curve for the quantitative determination of L-carnitine and the
fluorescence ratio F/F0 was proportional to the concentration of L-carnitine. The linear response
ranges for L-carnitine were 0.1–2.0 and 2.0–25.0 µM. The detection limit was 0.067 µM (S/N = 3) and
the corresponding regression equations of F/F0 = 0.41 C (µM) + 1.13 and F/F0 = 0.07 C (µM) + 1.48
with correlation coefficients of 0.925 and 0.995 were obtained. This approach was compared to other
methods for detection L-carnitine (Table S1). This competitive fluorescent method exhibited a wider
linear range, lower detection limit and high selectivity than previously reported approaches. Moreover,
this method is very convenient and simple for the determination of L-carnitine and has potential
applications in the detection of L-carnitine in human blood and food.

3.3. The Analysis of Host–Guest Recognition

The recognition process between CP5 and L-carnitine was studied by the molecular docking.
The inclusion model of L-carnitine with CP5 was obtained by using the AutoDock 4.2.6 [54] and
illustrated in Figure 4A,B. Due to the cavity size of CP5 and the molecular size of L-carnitine, they could
be recognized by a 1:1 guest–host composite. As we can see from the Figure 4A,B, the negative charge
of carboxylate in L-carnitine could form a higher capacity electrostatic interaction with positive charge
groups of –N(CH3)3

+ in CP5 (Figure 4C). In addition, the quaternary ammonium salt of L-carnitine
could form the cation-π interaction with the five benzene rings of CP5 and the quaternary ammonium
salt of L-carnitine entered the cavity of CP5 by hydrophobic interaction (Figure 4D). However, it was not
insufficiency to explain the recognized mechanism by molecular docking. The host-guest recognition
between CP5 and L-carnitine was also studied by the 1H NMR and the result was shown in Figure 5.
It is clear that the proton Ha and Hb of L-carnitine disappeared after complexation and the H1 and
H5 of CP5 have shifted upfield, suggesting that CP5 can bind L-carnitine with more affinity to release
R123 and other interference. Therefore, a selective platform of detection L-carnitine by CP5@Au-NPs
was obtained. The more affinity electrostatic interaction has taken place between L-carnitine and CP5
due to the negative charge of L-carnitine and the positive charge of CP5, which plays an important
role in host-guest interaction [17,55–57]. And the guest L-carnitine can be recognized by the host CP5
via electrostatic interactions and hydrophobic interactions.

3.4. Selectivity and Practical Samples Analysis

The interference study for detection of L-carnitine with the R123B-bound CP5@Au-NPs was
measured with 100-fold concentrations of L-carnitine analogues (DA, UA and AA) and the structures
of these interferences were shown in Figure S10. Besides, the interferences with common interferences
(100-fold concentration) including NaCl, KCl, MgSO4, glucose, sucrose, BSA and tween 20 were also
tested. Figure 6A shown that the fluorescence intensity did not change when these interferences
were added to R123@CP5@Au-NPs by comparing L-carnitine in the presence of R123@CP5@Au-NPs.
Figure 6B shown a significant fluorescence increase upon the addition of L-carnitine. However,
the addition of other competitive interferences did not cause significant fluorescence changes,
indicating that these interferences did not cause false-positive signal. To assess the R123@CP5@Au-NPs
in practical applications, L-carnitine was detected in human serum and milk samples with a standard
addition method (Table 1). The recoveries were 93.5–101.7% and the RSDs obtained by this method
were 1.6–4.1%. The accuracy and precision of this proposed approach were satisfactory, which indicated
that the method could be applied for the determination of L-carnitine in serum and milk samples.
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Table 1. Determination of the L-carnitine in human serum and milk samples.

Sample Added (µM) Founded (µM) RSD (%) Recovery (%)

serum

0 0.00 - -
2 1.87 ± 0.04 2.1 93.5
4 4.07 ± 0.17 4.1 101.7
6 5.82 ± 0.22 3.8 97.0

milk

0 0.00 - -
2 1.91 ± 0.03 1.6 95.5
4 3.97 ± 0.13 3.3 99.2
6 6.02 ± 0.24 3.9 100.3

4. Conclusions

In summary, we describe a simple and convenient “turn-off-on” fluorescent sensing platform
that uses cationic water-soluble pillar[5]arene modified Au-NPs and dye Rhodamine 123 as energy
donor-acceptor pair. The outstanding host–guest recognition capability of CP5 and the excellent
quenching performance of Au-NPs make this sensing system suitable for L-carnitine detection in
human serum and milk samples. This work demonstrates that the CP5@Au-NPs composite is a good
energy acceptor for fluorescence sensing platforms with potential applications in many fields.
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