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Abstract: Highly accurate and easy-to-operate calibration (to determine the interior and distortion
parameters) and orientation (to determine the exterior parameters) methods for cameras in
large volume is a very important topic for expanding the application scope of 3D vision and
photogrammetry techniques. This paper proposes a method for simultaneously calibrating, orienting
and assessing multi-camera 3D measurement systems in large measurement volume scenarios.
The primary idea is building 3D point and length arrays by moving a scale bar in the measurement
volume and then conducting a self-calibrating bundle adjustment that involves all the image points
and lengths of both cameras. Relative exterior parameters between the camera pair are estimated by
the five point relative orientation method. The interior, distortion parameters of each camera and
the relative exterior parameters are optimized through bundle adjustment of the network geometry
that is strengthened through applying the distance constraints. This method provides both internal
precision and external accuracy assessment of the calibration performance. Simulations and real data
experiments are designed and conducted to validate the effectivity of the method and analyze its
performance under different network geometries. The RMSE of length measurement is less than
0.25 mm and the relative precision is higher than 1/25,000 for a two camera system calibrated by
the proposed method in a volume of 12 m × 8 m × 4 m. Compared with the state-of-the-art point
array self-calibrating bundle adjustment method, the proposed method is easier to operate and can
significantly reduce systematic errors caused by wrong scaling.

Keywords: stereo photogrammetry; 3D vision; self-calibration; relative orientation; scale bar

1. Introduction

Photogrammetry is a technique for measuring spatial geometric quantities through obtaining,
measuring and analyzing images of targeted or featured points. Based on different sensor configurations,
photogrammetric systems are categorized into offline and online systems [1]. Generally, an offline
system uses a single camera to take multiple and sequential images from different positions and
orientations. The typical measurement accuracy lies between 1/50,000 and 1/100,000. That substantially
results from the 1/20–1/30 pixels target measurement accuracy and the self-calibrating bundle
adjustment algorithm [2].

Unlike offline systems, an online system uses two or more cameras to capture photos synchronously
and reconstruct space points at any time moment. They are generally applied to movement and
deformation inspection during a certain time period. Online systems are reported in industrial
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applications such as foil material deformation investigation [3], concrete probe crack detection and
analysis [4], aircraft wing and rotor blade deformation measurement [5], wind turbine blade rotation
measurement and dynamic strain analyses [6,7], concrete beams deflection measurement [8], bridge
deformation measurement [9], vibration and acceleration measurement [10,11], membrane roof
structure deformation analysis [12], building structure vibration and collapse measurement [13,14],
and steel beam deformation measurement [15]. This noncontact and accurate technique is still finding
more potential applications.

Online systems can also be applied to medical positioning and navigation [16]. These systems are
generally composed of a rigid two camera tracking system, LED or sphere Retro Reflect Targets (RRT)
and hand held probes. NDI Polaris (NDI, Waterloo, ON, Canada) and Axios CamBar (AXIOS 3D,
Oldenburg, Lower Saxony, Germany) are the leading systems. Generally, the measurement distance
is less than 3 m while the coordinate measurement accuracy is about 0.3 mm and length accuracy
about 1.0 mm. In order to achieve this, these camera pairs are calibrated and oriented with the
help of Coordinate Measuring Machine (CMM) [17] or special calibration frames in laboratory in an
independent process before measurement.

Online systems equipped with high frame rate cameras are also employed in 3D motion tracking,
such as the Vicon (Vicon, Denver, CO, USA) and Qualisys (Qualisys, Gothenburg, Sweden) systems.
In these systems, the number of cameras and their positions vary with the measurement volumes
which puts forward the requirement for calibration methods that can be operated on-site. Indeed,
these 3D tracking systems are orientated by moving a ‘T’ or ‘L’ shaped object in the measurement
volume. Generally speaking, motion tracking systems are featured in real-time 3D data, flexibility and
easy operation, rather than high accuracy.

For multi-camera photogrammetric systems, interior, distortion and exterior parameters are
crucial for 3D reconstruction and need to be accurately and precisely calibrated before any
measurement. There are mainly two methods for calibrating and orienting multi-camera systems for
large volume applications: the point array self-calibrating bundle adjustment method and the moving
scale bar method. The point array self-calibrating bundle adjustment method is the most accurate
and widely used method. Using convergent and rotated images of well distributed stable 3D points,
bundle adjustment recovers parameters of the camera and coordinates of the point array. There is no
need to have any prior information about the 3D point coordinates. For example, a fixed station triple
camera system is calibrated in a rotatory test field composed of points and scale bars [18,19]. However,
sometimes in practice, it is difficult to build a well distributed and stable 3D point array, so the moving
scale bar method was developed.

Originally, the moving scale bar method was developed for exterior parameter determination.
Hadem [20] investigated the calibration precision of stereo and triple camera systems under different
geometric configurations. Specifically, he simulated and experimented with camera calibration in a
pure length test field, and he mentioned that a moving scale bar can be easily adapted to stereo camera
system calibration. Patterson [21,22] determined the relative orientation of a stereo camera light pen
system using a moving scale bar. For these attempts, interior orientations and distortion parameters of
the cameras are pre-calibrated before measurement. The accuracy is assessed by length measurement
performance according to VDI/VDE CMM norm. Additionally, the author mentioned that length
measurement of the scale bar provides on-site accuracy verification. Mass [23] investigated the moving
scale bar method using a triple camera system and proposed that the method is able to determine
interior orientations and is reliable enough to calibrate multi-camera systems. However, it is required
that the cameras be fully or partially calibrated in an offline process [24], and the measurement volume
be small, for example 1.5 m × 1.7 m × 1.0 m [23].

This paper proposes a method for calibrating and orienting stereo camera systems. The method
uses just a scale bar and can be conducted on-site. Unlike previous moving scale bar methods,
this method simultaneously obtains interior, distortion and exterior parameters of the cameras without
any prior knowledge of the cameras’ characteristics. Additionally, compared with traditional point
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array bundle adjustment methods, the proposed method does not require construction of 3D point
arrays, but achieves comparable accuracy.

The paper is organized as follows: Section 1 introduces the background of this research, including
development of online photogrammetry, state-of-the-art techniques for calibrating and orienting
online photogrammetric cameras and their limitations. Section 2 elaborates the mathematical models,
computational algorithms and the precision and accuracy assessment theory of the proposed method.
Sections 3 and 4 report the simulations and experiments designed to test the method. Advantages of
the method, advices for improving calibration performance and potential practical applications are
summarized in the conclusions.

2. Materials and Methods

A scale bar is an alloy or carbon fiber bar that has two photogrammetric RRTs fixed at each
end. The length between the two RRTs is measured or calibrated by instruments with high (several
micrometer) accuracy. One of the measurement instruments is composed by an interferometer,
a microscope and a granite rail [25,26]. Generally, a scale bar performs in photogrammetry as a
metric for true scale, especially in multi-image offline systems. In this paper, the scale bar is used as a
calibrating tool for multi-camera online systems.

After being settled according to the measurement volume and surroundings, the camera pair is
calibrated and oriented following the proposed method outlines in Figure 1.
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2.1. Construction of 3D Point and Length Array

The bar is moved in the measurement volume to different locations that are uniformly distributed
in the measurement volume. At each location, the bar is rotated in different orientations. The position
and orientation is called an attitude of the bar. After the moving and rotating process, a virtual 3D
point array is built by the RRTs of the bar in each attitude. Meanwhile, because the distance between
the two RRTs is the length of the scale bar, a virtual 3D length array is built by the bar length in
each attitude. The cameras synchronically capture images of the measurement volume and the bar in
each attitude.

2.2. Locating and Matching the RRTs in Images

The 2D coordinates of the two RRT in every image are determined by computing the grey value
centroid of the pixels in each RRT region. Correspondences of the two RRTs between each image pair
is determined by relative position of the points in image. More specifically, the right/left/up/down
RRT in one image is matched to the right/left/up/down RRT in the other image. The 2D coordinates
of the matched RRTs in all image pairs are used for exterior parameter estimation and all-parameter
bundle adjustment.

2.3. Estimating the Relative Exterior Parameters

The five-point method [27] is used to estimate the essential matrix between the two cameras.
At this stage, we only know a guess of the principle distance. The principle point offset coordinates,
distortion parameters of each camera are unknown and set to zeros.

Improperly selected five image point pairs may lead to computing degeneration and thus failure
of the method. So to avoid this problem, an algorithm is designed for automatically selecting the most
suitable five point pairs, taking into account both maximizing distribution dispersion and avoiding
collinearity. The strategy is to find five point pairs that are located near the center and four corners of
the two camera images by minimizing the following five functions:∣∣xi

l

∣∣+ ∣∣yi
l

∣∣+ ∣∣xi
r
∣∣+ ∣∣yi

r
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r (1)

Figure 2 illustrates all the image RRT points and the selected five point pairs.
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Figure 2. All the 2D RRTs centroids (blue dots) and the selected five correspondences (red circle) for
relative orientation. (a) RRT points of the left camera; (b) RRT points of the right camera.

The computed essential matrices are globally optimized by the root polish algorithm [28] using
all the matched RRTs. After that, the essential matrices are decomposed into the rotation matrices and
translation vectors from which we can get the exterior angle and translation parameters. Generally,
at least two geometric network structures of the cameras can be obtained and only one is physically
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correct. In this method, the equalization of the reconstructed lengths in the 3D length array is employed
as a spatial constraint to determine the true solution, which is more robust than the widely used image
error analysis.

In this part, the relative exterior parameters are inaccurate, the principle distance is just a guess
and principle point offset as well as distortions are not dealt with. All of the inaccurate and unknown
parameters need further refinement through bundle adjustment to achieve high accuracy and precision.

2.4. Self-Calibrating Bundle Adjustment and Precision Estimation

For traditional 3D point array self-calibrating bundle adjustment, large amount of convergent
images are essential to handle the severe correlations between unknown parameters and to achieve
reliable and precise results, so in theory, calibrating cameras through bundle adjustment using only one
image pair of pure 3D point array is impossible, but moving a scale bar gives not only 3D points but
also point-to-point distances which, as spatial constraints, greatly strengthen the two-camera network
and can be introduced into bundle adjustment to enable self-calibration.

The projecting model of a 3D point into the image pair is expressed by the following implicit
collinear equations [29,30]:

xyli
(2×1)

= f( Il
(8×1)

Xi
(3×1)

)

xyri
(2×1)

= f( Ir
(8×1)

Er
(6×1)

Xi
(3×1)

)
. (2)

In Equation (2), the subscripts l and r mean the left and right camera; xy is the image coordinate
vector. I is the interior parameter vector including the principle distance, the principle point offset,
the radial distortion and decentering distortion parameters; Er is the exterior parameter vector of the
right camera relative to the left including three angles and three translations; and Xi is the coordinate
vector of a 3D point. The linearized correction equations for an image point observation are:

vli
(2×1)

+ lli
(2×1)

= Ali
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In Equation (3), v is the residual vector of an image point that is defined by the disparity vector
between the “true” (without error) coordinate xi and the measured image point coordinate xi; l is
the reduced observation vector that is defined by the disparity vector between the measured image
point coordinate xi and the computed image coordinate x0

i using the approximate camera parameters.
Figure 3 illustrates the x axis component of v and l of an image point i. A is the Jaccobian matrix of
f with respect to camera interior, distortion and exterior parameters; B is the Jaccobian matrix of f
with respect to space coordinates; δ and

.
δ are the corrections of the camera parameters and the spatial

coordinates, respectively.
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n scale bars provide 2n 3D points and n point-to-point distances. Considering the m-th bar length:

sm = g( Xm1 Xm2 ) =
√
(Xm1 − Xm2)

2 + (Ym1 −Ym2)
2 + (Zm1 − Zm2)

2, (4)
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where, m1 and m2 denote the two endpoints of the bar. Because Equation (4) is nonlinear, they need
to be linearized before participating the bundle adjustment. The linearized correction equation for a
spatial point-to-point distance constraint is:

vsm
(1×1)

+ lsm
(1×1)

= Cm1
(1×3)

.
δm1
(3×1)

+ Cm2
(1×3)

.
δm2
(3×1)

, (5)

where, C is the Jaccobian matrix of Equation (4) with respect to the coordinates of each endpoint.
Point-to-point distances are incorporated into bundle adjustment to avoid rank defect of the

normal equation and also to eliminate correlations between unknown parameters. For a two camera
system imaging n scale bars, the extended correction equation that involves all the image point
observations and point-to-point distance constraints can be written as:
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where the subscripts (i, j, k) denote the k-th (k = 1, 2) endpoint of the j-th (j = 1, 2, . . . , n) distance in the
i-th (i = 1, 2) image. The normal equation is:
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In Equation (7), P is a diagonal weight matrix of all the image point coordinate and spatial distance
observations. Items in Equation (7) are determined by block computation:
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i,12Ppli,12 + ls1PlC12

...
2
∑

i=1
BT

i,n1Ppli,n1 + lsnPlCn1

2
∑

i=1
BT

i,n2Ppli,n2 + lsnPlCn2


.

Assuming that the a priori standard deviations of the image point observation and the spatial
distance observation are sp and sl, respectively, and the a priori standard deviation of unit weight is s0,
the weight matrices Pp and Pl are determined by:

Pp =

 s2
0

s2
p

0

0 s2
0

s2
p

, Pl =
s2

0
s2

l
. (8)

Solving Equation (7), we obtain the corrections for camera parameters and endpoint coordinates:

δ = (N11 − N12N−1
22 N21)

−1
(W1 − N12N−1

22 W2).
δ = N−1

22 (W2 − N21δ)
. (9)

Again, using the block diagonal character of N22, δ can be computed camera by camera and
.
δ

can be computed length by length. The estimated camera parameters and 3D point coordinates are
updated by the corrections iteratively until the bundle adjustment converges. The iteration converges
and is terminated when the maximum of the absolute coordinate corrections of all the 3D points is
smaller than 1 µm.

The proposed algorithm is time efficient because block computations eliminate the need for
massive matrix inverse or pseudo inverse computation. In addition, the algorithm is unaffected
by invisible observations and allows for gross observation detection in the progress of adjustment
iteration. Additionally, this method allows both internal precision and external accuracy assessment of
the calibrating results. The internal precision is represented by the variance-covariance matrix of all
the adjusted unknowns:

C
((22+6n)×(22+6n))

= ŝ2
0 N−1

((22+6n)×(22+6n))
, (10)

where N is the normal matrix in Equation (7) and the a posteriori standard deviation of unit weight is
determined by:

ŝ0 =

√
vT Pv

8n− (22 + 6n) + n
, (11)

where n is the number of point-to-point distances and the size of v equals 8n for a two camera system.

2.5. Global Scaling and Accuracy Assessing of the Calibration Results

After bundle adjustment, 3D endpoints can be triangulated using the parameters. Generally,
the adjusted results include systematic errors that are caused by wrong scaling and cannot be eliminated
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through bundle adjustment. Again, the point-to-point distances are utilized to rescale the results.
Assuming that the triangulated bar lengths are:

L1, L2, . . . Ln. (12)

The rescaling factor is calculated by:

Ks =
L
L

, (13)

where L is the nominal length of the scale bar and L is the average of the triangulated bar lengths in
Equation (12). Then the final camera parameters, 3D coordinates and triangulated bar lengths are:

I′l = Il , I′r = Ir, E′r =
[

Er(1 : 3)T KsEr(4 : 6)T
]T

, X′i = KsXi and L′i = KsLi. (14)

Besides internal precision, this method provides on-site 3D evaluation of the calibration accuracy.
The triangulated lengths L′i(i = 1, 2, . . . n) provide large amount of length measurements that are
distributed in various positions and orientations in the measurement volume. As a result, an evaluation
procedure can be carried out following the guidelines of VDI/VDE 2634 norm. Because all the lengths
are physically identical, calibration performance assessment through length measurement error is
much easier.

Since the length of the scale bar is calibrated by other instruments, the nominal length L has error.
Assuming that the true length of the scale bar is L0, we introduce a factor K to describe the disparity
between L and L0:

L = KL0, (K 6= 1), (15)

Essentially, Equation (15) describes the calibration error of the scale bar length in another way.
The triangulated bar lengths L′i(i = 1, 2, . . . n) in Equation (14) can be rewritten as:

L′i = K
L0

L
Li, (K 6= 1). (16)

The absolute error of L′i is:

e′i = KL0(
Li

L
− 1), (K 6= 1). (17)

It can be derived that the Average (AVG) and Root Mean Square (RMS) values of the error are:

AVG(e′i) = 0, and RMS(e′i) =
KL0

L
RMSE(Li), (18)

where, RMSE(Li) is the Root Mean Square Error (RMSE) of the triangulated scale lengths.
Further, we define the relative precision of length measurement by:

r(L′i) =
RMSE(L′ i)

L
=

RMS(e′ i)
L

=
RMSE(Li)

L
. (19)

In Equation (19), the relative precision is independent of factor K and it keeps unchanged under
different K value. For example, in a calibration process using a nominal L = 1000 mm (K = 1) bar, ten of
the triangulated bar lengths Li(i = 1, 2, . . . 10) are:

[999.997 999.986 1000.041 999.969 999.997 999.991 999.998 999.988 1000.024 1000.017]

whose RMSE is 0.020 mm and the relative precision r(Li) is 1/50,068.
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If K of the instrument is 1.000002 (the absolute calibration error is 0.002 mm), the nominal length
is 1000.002 mm. According to Equation (16), the rescaled lengths L′i are:

[999.999 999.988 1000.043 999.971 999.999 999.993 1000.000 999.990 1000.026 1000.019]

whose relative precision r(L′i) is also 1/50,068.
And further, if K is amplified to 1.2 (the absolute calibration error is 200 mm, which is not possible

in practice), the rescaled lengths L′′i are:

[1199.996 1199.983 1200.050 1199.963 1199.997 1199.989 1199.998 1199.985 1200.029 1200.021]

whose relative precision r(L′′i ) is again 1/50,068.
The above example proves Equation (19). The relative precision of length measurement is invariant

under different scale bar nominal lengths (different K values in Equation (15)), which makes it a good
assessment of the calibrating performance of the camera pair.

Additionally, interior, distortion parameters and the relative rotating angles between the two
cameras are not affected by the scale factor K. These parameters are calibrated with a uniform accuracy,
no matter how large the instrument measurement error is, even if we assign a wrong value to L.
The two cameras can be calibrated precisely without knowing the true length L0.

3. Simulations and Results

A simulation system is developed to verify the effectiveness and evaluate the performance of
the proposed method. The system consists of the generating module of control length array, camera
projective imaging module, the self-calibrating bundle adjustment module and the 3D reconstruction
module. The generating module simulates scale bars that evenly distribute over the measurement
volume. The length, positions, orientations of the bar and the scale of the volume can be modified.
The imaging module projects endpoints of the bars into the image pair utilizing assigned interior,
distortion and exterior parameters. The bundle adjustment module implements the proposed method
and calibrates all the unknown parameters of the camera pair. The reconstruction module triangulates
all the endpoints and lengths by forward intersection utilizing the calibrating results.

3.1. Point and Length Array Construction and Camera Pair Configurations

The bar is set to be 1 m long. Bar positions are evenly distributed in the volume and is one bar
length apart from each other. The scale bar is moved to each position and posed in different orientations.
It is worth noticing that, if the bar is moved and rotated in a single plane, self-calibrating of the camera
parameters fails. That is because there is a great correlation between the interior parameters (principle
distance, principle point coordinates) and the exterior translation parameters, and planar objects do
not provide sufficient information to handle the correlation. As a result, after bundle adjustment,
these parameter determinations show very large standard deviations, which means that the calibration
results are not precise and thus not reliable.

We use multi plane motion and out-of-plane rotations to provide the bundle adjustment process
with diverse orientation length constraints and thus optimize the parameters to adapt to different
orientations. As a result, uniform 3D measurement accuracy can be achieved in different orientations.
Figure 4 shows the six orientations of the bar in one position. Figure 5 demonstrates the simulated
point and length array and the camera pair.

In this simulation, the measurement volume is 12 m (length) × 8 m (height) × 4 m (depth).
The resolution of the cameras is 4872 × 3248 pixels and the pixel size is 7.4 µm × 7.4 µm. The interior
and distortion parameters are set with the values of the real cameras.

The cameras are directed at the center of the measurement volume, and they are 8 m away from
the volume and 5 m apart from each other which thus forms a 34.708 degrees intersection angle.
Normally distributed image errors of σ = 0.2 µm are added to the projected image coordinates of each
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endpoint. For the cameras simulated, σ = 0.2 µm indicates a 1/37 pixels image measurement precision
which can be achieved through utilizing RRTs and appropriate image measurement algorithm.
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Figure 5. The simulated control length array and the camera pair.

3.2. Accuracy and Precision Analysis

In the simulation, only a guess value of 20 mm is assigned to the principle distance. Other
interior and distortion parameters are set to zeros. The five point and root polish methods give
good estimations of the relative exterior parameters and thus the proposed self-calibrating bundle
adjustment converges generally within three iterations.

In the simulation, sp and sl are set to 0.0002 mm and 0.2 mm respectively, and s0 is set to equal sp.
The self-calibrating bundle adjustment refines and optimizes all of the camera parameters and spatial
coordinates. A posterior standard deviation of unit weight ŝ0 = 0.00018 mm is obtained, which indicates
a good consistency between the a priori and a posterior standard deviation.

The standard deviations of the interior and distortion parameters of the two cameras, the relative
exterior parameters and the 3D coordinates of the endpoints can be computed following Equation (10).
Table 1 lists the interior, distortion parameter determinations and their standard deviations from the
bundle adjustment. The undistortion equation of an image point (x, y) is:

xu = x− x0 + ∆x
yu = y− y0 + ∆y

(20)

in which, xu and yu are the distortion-free/undistorted coordinates of the point; x0 and y0 are the offset
coordinates of the principle point in the image; ∆x and ∆y are the distortions along image x and y axis
respectively. ∆x and ∆y are calculated by:

∆x = x(K1r2 + K2r4 + K3r6) + P1(2x2 + r2) + 2P2xy
∆y = y(K1r2 + K2r4 + K3r6) + P2(2y2 + r2) + 2P1xy

(21)
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in which, x = x− x0, y = y− y0, r =
√

x2 + y2; K1, K2 and K3 are the radial distortion parameters; P1

and P2 are the tangential distortion parameters.

Table 1. Self-calibrating bundle adjustment results of the camera parameters.

Interior
Parameters

Left Camera Right Camera

Calibration
Results

Standard
Deviations

Calibration
Results

Standard
Deviations

c (mm) 20.325 1.542 × 10−3 20.320 1.493 × 10−3

x0 (mm) −0.105 2.245 × 10−3 −0.135 2.409 × 10−3

y0 (mm) 0.168 7.423 × 10−4 0.247 7.857 × 10−4

K1 (mm2) 2.788 × 10−4 2.727 × 10−7 2.795 × 10−4 2.859 × 10−7

K2 (mm4) −4.866 × 10−7 1.372 × 10−9 −5.034 × 10−7 1.575 × 10−9

K3 (mm6) −1.657 × 10−11 2.209 × 10−12 1.404 × 10−11 2.721 × 10−12

P1 (mm) −7.030 × 10−6 1.551 × 10−6 −3.102 × 10−6 1.620 × 10−6

P2 (mm) −8.630 × 10−6 4.916 × 10−7 −8.606 × 10−6 5.267 × 10−7

Table 2 lists the relative exterior parameter determinations and their standard deviations from the
bundle adjustment, and Table 3 lists the mean standard deviations of the 3D coordinates of all the end
points from the bundle adjustment.

Table 2. Bundle adjustment results of the relative exterior parameters.

Relative Exterior Parameters Bundle Adjustment Determinations Standard Deviations

Tx (mm) 4772.757 0.325
Ty (mm) −0.023 0.068
Tz (mm) −1491.147 0.410
ϕ (Deg.) −34.710 2.845 × 10−5

ω (Deg.) 0.915 × 10−3 8.871 × 10−5

κ (Deg.) −1.300 × 10−3 2.622 × 10−5

Table 3. Mean standard deviations of the 3D point coordinate determinations.

Axes Mean Standard Deviations

X (mm) 0.094
Y (mm) 0.076
Z (mm) 0.203

From the above results, it can be seen that the bundle adjustment successfully and precisely
determines the interior, distortion, and exterior parameters of both cameras as well as the spatial
coordinates of the endpoints. Besides internal standard deviations, the reconstructed lengths of the
scale bar provide an external evaluation of the calibration accuracy. Table 4 exhibits the results of the
triangulated distances versus the known bar length.

Table 4. Mean Error, RMSE and Maximum Error of the reconstructed distances.

Mean Error (mm) RMSE (mm) Maximum Error (mm)

0.005 0.204 1.157

Figure 6 shows the histogram of the errors of the reconstructed lengths. The errors demonstrate a
normal distribution which means that no systematic error components exist and that the functional
and the stochastic models of the method are correctly and completely built up.
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3.3. Performances of the Method under Different Spatial Geometric Configurations

In this part, simulations are carried out to analyze the performance of the proposed method when
calibrating camera pairs in different measurement volume scales, using different bar lengths and with
different intersection angles.

For a stereo camera system with a specific intersection angle, the scale of measurement volume is
dependent on the measuring distance. Figures 7–9 exhibit the calibrating performances, represented
by bar length measurement errors, under different geometric configurations.
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Calibration accuracy improves in smaller volumes and with larger intersection angles, which is
consistent with normal knowledge. What is interesting is that, calibrating accuracy almost keeps
unchanged when using scale bars with different lengths. Thus, it can be deduced that, the measuring
error of longer distances in the same volume using the calibrated camera pair will be similar to the
scale bar length measuring error. Further, the extended relative precision of length measurement in
this volume is:

re =
k
D

RMSE(Li), (22)

where, k is a confidence interval integer, D is the scale of the measurement volume, RMSE(Li) is the
RMSE of bar length measurement as in Equation (18). For the calibrating results in Table 4, the relative
precision is nearly 1/25,000 when k equals 3.

3.4. Accuracy Comparison with the Point Array Self-Calibrating Bundle Adjustment Method

The point array self-calibration bundle adjustment method is widely used in camera calibration
and orientation. This method takes multiple photos of an arbitrary but stable 3D array of points,
and then conducts a bundle adjustment to solve the interior, distortion, extrinsic camera parameters and
3D point coordinates. Generally, only one camera is calibrated by the point array bundle adjustment
while in our method the two cameras are calibrated simultaneously.

The scale bar endpoints in Figure 5 are used to calibrate each camera by the point array
self-calibrating bundle adjustment method. For each camera, seventeen convergent pictures of the
point array are taken at stations evenly distributed in front of the point array. One of the pictures is
taken at the station for stereo measurement and at least one picture is taken orthogonally. Figure 10
demonstrates the camera stations and the point array (the scene is rotated for better visualization of
the camera stations).

Image errors of σ = 0.2 µm are added to each simulated image point. Then, point array
self-calibration bundle adjustment is conducted using these image data to solve the parameters
of the two cameras respectively. Besides reconstruction errors of the bar lengths, measurement errors
of a 10 m length along the diagonal of the volume are also introduced to make the comparison between
these two methods. Table 5 lists the results of 200 simulations of each method. It can be seen that the
proposed method is more accurate and precise. The point array bundle adjustment method shows
larger systematic errors and Maximum Errors.
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Table 5. Length measurement errors of the two methods.

Two Bundle
Adjustment Methods

Scale Bar Length
Measurement Error (mm)

Spatial Length
Measurement Error (mm)

Mean Error RMSE Maximum Error Mean Error RMSE Maximum Error

Length array 0.008 0.204 1.186 0.101 0.215 0.710
Point array 0.043 0.295 1.664 0.243 0.205 0.820

4. Real Data Experiments and Results

Two industrial cameras (GE4900, AVT, Stadtroda, Germany) equipped with two consumer-level
lenses (Nikkor 20 mm F/2.8D, Nikon, Tokyo, Japan) are used for real experiments. The resolution of the
CCD is 4872× 3248 pixels and the dimension is 36 mm× 24 mm. Two flashlights (YN 560 III, Yongnuo,
Shenzhen, China) are incorporated to provide illumination. A specially designed and manufactured
carbon fiber scale bar is employed for calibrating. Figure 11 shows the bar, the spherical and planar
RRTs. The bar has symmetrically three bushing holes at each end to brace and fasten the plug-in
shafted RRTs. It is convenient to make substitutions for RRTs of different sizes and types. Plugging a
pair of RRTs symmetrically in different bushing holes makes three different bar lengths. The lengths
are measured on a granite linear rail by a laser interferometer and a microscopic imaging camera.
The length measurement accuracy is higher than 2.0 µm.

Three experiments were carried out to validate the proposed method and the simulation results.
The cameras are 4 m away from the measurement volume that is 4 m × 3 m × 2 m. The centroid
method is employed to measure image RRTs. Target eccentricity is neglected because the computed
magnitude according to [31] is less than 0.2 µm across the entire image.
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4.1. Calibration Performances Using Spherical and Planar Targets

Two types of RRTs are used for camera pair calibration: 9 mm diameter planer circular target and
6 mm diameter spherical target. The length of the bar is set to 0.8 m. Bar positions and orientations
in the measurement volume are nearly the same for the two types of target. Table 6 lists the errors.
The spherical targets achieve better accuracy because they provide better visibility of the bar from
large viewing angle.

Table 6. Calibration accuracy under different target types.

Target Types Bar Length Measurement Errors (mm) RMS of Image Residuals (µm)

RMSE Maximum Error x Axis y Axis

Planar Target 0.192 0.520 0.21 0.33
Sphere Target 0.106 0.296 0.12 0.19

4.2. Calibration Performances under Different Intersection Angles and Bar Lengths

By changing the baseline, we have five different intersection angle configurations and the errors
are shown in Figure 12. The plot shows a similar decline tendency as in Figure 8 when intersection
angle increases.
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The three length configurations of the bar are used respectively for calibrating and the results
are listed in Table 7. Almost unchanged RMSE and Maximum Error verify the simulation results in
Figure 9.
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Table 7. Bar length measurement errors under different scale bar lengths.

Bar Lengths (mm) RMSE (mm) Maximum Error (mm)

880.055 0.123 0.331
970.421 0.132 0.354

1078.405 0.136 0.368

4.3. Comparison with the Ponit Array Bundle Adjustment Method

The comparison experiment is carried out to measure an object that is specially designed for
photogrammetric tests. The object is shown in Figure 13.
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Figure 13. The 3D object used for the comparison experiment.

The size of the object is 3.5 m × 2.3 m × 1.5 m. The object contains 58 RRTs (the bright dots) in
which 56 are used for point array calibration. The other two RRTs locate in the left-up and right-down
corner (indicated by red circles) of the object and are measured by a Laser Tracker (API, LTS 1100,
Jessup, MD, USA) and measurement adaptors. The distance between them is called the test length
and is used for 3D measurement assessing of the calibration results just like the 10 m diagonal length
in simulation. The test length is 4139.810 mm. The cameras are set with the same intersection angle
as in the simulations and are calibrated by the proposed method using the bar with planar RRTs and
1078.405 mm length configuration. All the bar lengths and the test length are triangulated using the
calibration results. Figure 14 demonstrates rotation of the bar in six orientations.
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Each camera is also calibrated by the point array method with a similar photo-taking style as in
Figure 10. Then the bar is moved to construct a length array while the system measures the bar lengths
and the test length. Figure 15 shows the network of the point array and the camera stations.Sensors 2018, 18, x FOR PEER REVIEW  17 of 19 

 

 
Figure 15. The point array and the photo-taking stations. 

The Mean Error, RMSE and Maximum Error of bar length and test length measurement results 
in 10 different experiments are listed in Table 8. A very similar comparison result is achieved as 
Table 5. The proposed method gives better spatial length measurement results. 

Table 8. Length measurement errors of the two methods. 

Methods 
Scale Bar Length (mm) Test Length (mm) 

Mean Error RMSE Maximum Error Mean Error RMSE Maximum Error 
Length array 0.005 0.150 0.352 0.038 0.151 0.227 
Point array 0.031 0.152 0.507 0.134 0.179 0.312 

5. Conclusions 

This paper proposes a method for simultaneously calibrating and orienting stereo cameras of 
3D vision systems in large measurement volume scenarios. A scale bar is moved in the measurement 
volume to build a 3D point and length array. After imaging the 3D array, the two cameras are 
calibrated through self-calibration bundle adjustment that is constrained by point-to-point distances. 
External accuracy can be obtained on-site through analyzing bar length reconstruction errors. 
Simulations validate effectiveness of the method regarding to the self-calibrating of interior, 
distortion and exterior camera parameters and meanwhile test its accuracy and precision 
performance. Moreover, simulations and experiments are carried out to test the influence of the scale 
bar length, measurement volume, target type and intersection angle on calibration performance. The 
proposed method does not require stable 3D point array in the measurement volume, and its 
accuracy will not be affected by the scale bar length. Furthermore, cameras can be accurately 
calibrated without knowing the true length of the bar. The method achieves better accuracy over the 
state-of-the-art point array self-calibration bundle adjustment method. 

In order to accurately calibrate the interior and distortion parameters, plenty of well/evenly 
distributed image points are needed, so the bar needs to be moved uniformly in as many positions 
as possible within the measurement volume. In order to handle the correlation between interior and 
exterior parameters in bundle adjustment, and thus to guarantee the reliability of the calibration 
results, the bar needs to be moved in a 3D manner, such as in multi planes and with out-of-plane 
rotation. Additionally, to achieve uniform triangulation accuracy in different orientations, the bar 
needs to be rotated uniformly in diverse orientations. 

This method can be easily conducted in medium scale volumes within human arm reach, and 
can be extended to large scale measurement applications with the help of UAVs to carry and operate 
the scale bar. It can also be used in calibrating small or even micro scale stereo vision systems such as 
structured light scanner. Compared with planer calibration patterns, scale bars are easier to 
calibrate, less restricted by camera viewing angle, and has higher image measurement accuracy 
which will improve calibration accuracy and convenience. Our future works include studies of a 
rigorous relationship between the motion of the bar and the measurement volume, the relationship 
between calibrating performance and the number as well as distribution of bar motion positions in 
the volume, and application of this method in practice. 

Figure 15. The point array and the photo-taking stations.

The Mean Error, RMSE and Maximum Error of bar length and test length measurement results in
10 different experiments are listed in Table 8. A very similar comparison result is achieved as Table 5.
The proposed method gives better spatial length measurement results.

Table 8. Length measurement errors of the two methods.

Methods
Scale Bar Length (mm) Test Length (mm)

Mean Error RMSE Maximum Error Mean Error RMSE Maximum Error

Length array 0.005 0.150 0.352 0.038 0.151 0.227
Point array 0.031 0.152 0.507 0.134 0.179 0.312

5. Conclusions

This paper proposes a method for simultaneously calibrating and orienting stereo cameras of
3D vision systems in large measurement volume scenarios. A scale bar is moved in the measurement
volume to build a 3D point and length array. After imaging the 3D array, the two cameras are calibrated
through self-calibration bundle adjustment that is constrained by point-to-point distances. External
accuracy can be obtained on-site through analyzing bar length reconstruction errors. Simulations
validate effectiveness of the method regarding to the self-calibrating of interior, distortion and exterior
camera parameters and meanwhile test its accuracy and precision performance. Moreover, simulations
and experiments are carried out to test the influence of the scale bar length, measurement volume,
target type and intersection angle on calibration performance. The proposed method does not require
stable 3D point array in the measurement volume, and its accuracy will not be affected by the scale
bar length. Furthermore, cameras can be accurately calibrated without knowing the true length of the
bar. The method achieves better accuracy over the state-of-the-art point array self-calibration bundle
adjustment method.

In order to accurately calibrate the interior and distortion parameters, plenty of well/evenly
distributed image points are needed, so the bar needs to be moved uniformly in as many positions
as possible within the measurement volume. In order to handle the correlation between interior and
exterior parameters in bundle adjustment, and thus to guarantee the reliability of the calibration results,
the bar needs to be moved in a 3D manner, such as in multi planes and with out-of-plane rotation.
Additionally, to achieve uniform triangulation accuracy in different orientations, the bar needs to be
rotated uniformly in diverse orientations.

This method can be easily conducted in medium scale volumes within human arm reach, and can
be extended to large scale measurement applications with the help of UAVs to carry and operate
the scale bar. It can also be used in calibrating small or even micro scale stereo vision systems
such as structured light scanner. Compared with planer calibration patterns, scale bars are easier to
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calibrate, less restricted by camera viewing angle, and has higher image measurement accuracy which
will improve calibration accuracy and convenience. Our future works include studies of a rigorous
relationship between the motion of the bar and the measurement volume, the relationship between
calibrating performance and the number as well as distribution of bar motion positions in the volume,
and application of this method in practice.
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