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Abstract: A NiFe alloy nanoparticle/graphene oxide hybrid (NiFe/GO) was prepared for
electrochemical glucose sensing. The as-prepared NiFe/GO hybrid was characterized by transmission
electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that NiFe alloy
nanoparticles can be successfully deposited on GO. The electrochemical glucose sensing performance
of the as-prepared NiFe/GO hybrid was studied by cyclic voltammetry and amperometric
measurement. Results showed that the NiFe/GO-modified glassy carbon electrode had sensitivity of
173 µA mM−1 cm−2 for glucose sensing with a linear range up to 5 mM, which is superior to that
of commonly used Ni nanoparticles. Furthermore, high selectivity for glucose detection could be
achieved by the NiFe/GO hybrid. All the results demonstrated that the NiFe/GO hybrid has promise
for application in electrochemical glucose sensing.
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1. Introduction

Glucose sensing is important in many fields, such as medical diagnostics and the food industry [1].
The earliest glucose sensing was reported by Clark and Lyons in 1962, using a biological enzyme [2].
Since then, biological enzymes such as glucose oxidase and glucose dehydrogenase have been widely
used for glucose sensing. However, biological enzymes are susceptible to external conditions such
as temperature, humidity, and pH, among others, which lead to the instability of the biological
enzymes [3–5]. The expensive price and complicated mobilizing methods of biological enzymes
also restrict their application [6]. Therefore, to address these problems, the research focus has been
transferred to the development of electrochemical nonenzymatic glucose sensors.

Due to its high stability and sensitivity, nonenzymatic electrochemical technology is a good choice
for glucose sensing [7]. Various nanoparticles have been reported for constructing electrochemical
nonenzymatic biosensors, such as noble metal Pt nanoparticles (Pt NPs) [3,8,9], Au NPs [10,11], and Pd
NPs [12,13]. However, the expensive price of these noble metals restricts their practical application.
Furthermore, noble metal-constructed electrochemical glucose sensors are usually poisoned by chloride
ions present in the body’s blood [14]. In order to exploit cheap electrochemical nonenzymatic
glucose biosensors, considerable attention has been focusing on non-noble metal materials, such as
Ni NPs [15–17], Co(OH)2 nanotubes [18], and Cu NPs [19,20]. Recent studies reveal that bimetallic
materials [21], especially bimetal alloys, exhibit better catalytic performance than that of monometallic
counterparts [22]. Xu et al. and Chen et al. both found that a Pt–Ni alloy exhibited enhanced sensitivity
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for glucose sensing [23,24]. Besides, a PtRu alloy [25], PtAu alloy [26], PtCo alloy [27], CoCu alloy [28],
and NiCo alloy [29] have been used in glucose sensing.

A support material is also important in electrochemical glucose sensors [30]. Carbon-based
materials (especially carbon nanotubes and graphene) have been extensively used to load the
electrochemical catalyst due to their excellent conductivity, such as in loading cupric oxide [31]
or growing copper nanoparticles [32] on carbon nanotubes (CNTs) for electrochemical glucose
sensing. Graphene and its oxide (graphene oxide, GO) have triggered researchers’ interest since
2004 because of their good electrical conductivity and large specific surface area. Due to these
exceptional properties, graphene and GO have often been chosen as the supporting material in
electrochemistry [33]. GO loaded with NiS [34], NiCo alloy [29], and CuS NPs [35] have been applied
for electrochemical glucose sensing.

Based on the above considerations, we tried to study the alloying of commonly used
Ni NPs in the scope of glucose detection with Feon GO, because the NiFe alloy shows high
electrochemical performance in various processes [36–39]. To the best of our knowledge, the NiFe alloy
nanoparticle/graphene oxide hybrid (NiFe/GO) has never been reported for electrochemical glucose
sensing. The NiFe/GO hybrid reveals better electrocatalytic performance towards glucose oxidation
than the commonly used Ni NPs. The high performance of NiFe alloy nanoparticles and the superior
conductivity of GO endow the NiFe/GO biosensor with the capacity to achieve the electrochemical
sensing of glucose in a wide concentration range.

2. Materials and Methods

2.1. Chemicals and Reagents

All reagents used in experiments were of analytical grade. Graphite powder was purchased
from Alfa Aesar (Shanghai, China). Nickel sulfate hexahydrate, iron sulfate heptahydrate, hydrazine
hydrate (80 wt%), and glucose were procured from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Ascorbic acid (AA), uric acid (UA), and dopamine (DA) were purchased from Acros (Shanghai,
China). Deionized water (18.2 MΩ·cm) was used in all experiments.

2.2. Preparation of GO

GO was prepared by a modified Hummers’ method [40]. Two grams of graphite and 1 g NaNO3

were mixed with 50 mL H2SO4 (95%) in a 250 mL flask within an ice bath to keep a low temperature
(note that the ice bath is important and necessary). Then, 6 g KMnO4 was added slowly into the above
suspension with vigorous stirring. In this adding process, the reaction temperature was kept below
20 ◦C. After that, the mixture was stirred at room temperature overnight. Subsequently, 60 mL H2O
was added slowly with vigorous agitation. The reaction temperature was increased rapidly up to
95 ◦C, and the color of the suspension changed to yellow. Then, 10 mL of 30% H2O2 was added to
the mixture. Finally, the obtained product was washed by rinsing with 5% HCl and then deionized
water for several times until the pH of filtrate reached 7. After drying in a vacuum dryer, GO as a gray
powderwas obtained.

2.3. Preparation of the NiFe/GO Composite

For the preparation of the NiFe/GO composite (for example, the ratio of Ni to Fe is 1:1, denoted
as NiFe/GO), 0.1 g of the as-prepared GO, 278.1 mg FeSO4·7H2O (1 mmol), and 262.9 mg NiSO4·6H2O
(1 mmol) were added to 10 mL deionized water. The mixture was sonicated for 30 min to get an
evenly dispersed solution. Then, 15 mL hydrazine hydrate was dropped slowly into the above solution
followed by refluxing at 100 ◦C for 3 h under N2 atmosphere. After reaction, the obtained NiFe/GO
composite was washed using deionized water for several times. Finally, the washed NiFe/GO
composite was dried in a vacuum for further use. Other composites (different Ni-to-Fe mass ratios,
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such as Ni1Fe4/GO, Ni4Fe1/GO, Ni/GO, and Fe/GO) were prepared by adjusting the ratio of Ni and
Fe. NiFe alloy NPs were also prepared for comparison using the same method without adding GO.

2.4. Preparation of the NiFe/GO Hybrid Modified Electrode

Five milligrams of NiFe/GO hybrid was dispersed in 1 mL of solution containing 0.5 mL ethyl
alcohol and 0.5 mL deionized water. The above solution was sonicated for 30 min to get an evenly
dispersed mixture. After sonicating, a certain amount of the mixture was dropped onto a bare glassy
carbon electrode (GCE), followed by adding 2 µL Nafion solution (0.5%) to entrap the NiFe/GO.
The prepared electrode was denoted as NiFe/GO/GCE. For comparison, Ni/GO/GCE, Fe/GO/GCE,
and NiFe/GCE were fabricated similarly.

2.5. Apparatus and Measurements

The morphologies of the NiFe/GO composite were collected with a G2F30 electron microscope
(Tecnai, Hillsboro, OR, USA). XRD data were conducted on a D/max-2400 diffractometer (Rigaku,
Beijing, China ) operating at a voltage of 40 kV and a current of 40 mA, using Cu-K radiation as
the X-ray source. Electrochemical characterization was performed on a CHI 660C electrochemical
workstation (CH Instruments Ins, Shanghai, China) with the modified GCE as the working electrode,
Pt wire as the counter electrode, and Ag/AgCl (3 M KCl) as the reference electrode. All voltages used
in the manuscript refer to the Ag/AgCl (3 M KCl) electrode.

3. Results and Discussion

3.1. Structural Characterization

The TEM image of the NiFe/GO composite is displayed in Figure 1. As shown in Figure 1a, NiFe
alloy with diameter of about 100 nm are loaded on the GO. Figure 1b–d shows the element mapping
of the NiFe alloy. It can be seen clearly that the Ni and Fe elements are evenly distributed in the NiFe
alloy. This proves the successful preparation of the NiFe alloy. Figure 2 shows the XRD pattern of
NiFe/GO to further investigate the crystalline structure. The diffraction patterns located at 44.5◦, 51.9◦,
and 76.4◦ can be ascribed to the diffraction of the (111), (200), and (220) crystal planes of the NiFe alloy,
respectively [41]. No peaks of GO could be found due to its small amount.
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Figure 2. XRD pattern of the NiFe/GO composite.

3.2. Electrochemical Measurements

Figure 3 shows the typical cyclic voltammograms of the as-prepared GCE, GO/GCE, Fe/GO/GCE,
Ni/GO/GCE, and NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM glucose.
It can be seen from Figure 3 that GCE, GO/GCE, and Fe/GO/GCE show very small current in the
whole voltage range. Oxidation peaks between 0.50 to 0.55 V can be observed for Ni/GO/GCE and
NiFe/GO/GCE, which can be ascribed to the oxidation of Ni2+ to Ni3+. The Ni3+ accounts for the
oxidation of glucose [15]. When Fe was added to Ni to form the NiFe alloy, the current clearly increased.
This indicates that the NiFe alloy has higher performance for electrochemical glucose detection.

Sensors 2018, 18, 3972 4 of 12 

 

 

Figure 2. XRD pattern of the NiFe/GO composite. 

3.2. Electrochemical Measurements 

Figure 3 shows the typical cyclic voltammograms of the as-prepared GCE, GO/GCE, 

Fe/GO/GCE, Ni/GO/GCE, and NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM 

glucose. It can be seen from Figure 3 that GCE, GO/GCE, and Fe/GO/GCE show very small current 

in the whole voltage range. Oxidation peaks between 0.50 to 0.55 V can be observed for Ni/GO/GCE 

and NiFe/GO/GCE, which can be ascribed to the oxidation of Ni2+ to Ni3+. The Ni3+ accounts for the 

oxidation of glucose [15]. When Fe was added to Ni to form the NiFe alloy, the current clearly 

increased. This indicates that the NiFe alloy has higher performance for electrochemical glucose 

detection. 

 

Figure 3. Cyclic voltammograms (CVs) of GCE, GO/GCE, Fe/GO/GCE, Ni/GO/GCE, and 

NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM glucose at a scan rate of 10 mV/s. 

Inset: CVs of GCE and GO/GCE. 

To illustrate the effect of GO, the performance of NiFe/GCE and NiFe/GO/GCE were 

investigated. As shown in Figure 4, NiFe/GCE has only negligible current and the redox peaks can 

be seen in the inset figure. NiFe/GO/GCE shows much larger current than that of NiFe/GCE, 

indicating GO is important in the composite electrode. The GO not only acts as the support to 

protect the NiFe alloy from aggregation, but also plays an important role for electronic transmission. 

Figure 3. Cyclic voltammograms (CVs) of GCE, GO/GCE, Fe/GO/GCE, Ni/GO/GCE, and
NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM glucose at a scan rate of 10 mV/s.
Inset: CVs of GCE and GO/GCE.

To illustrate the effect of GO, the performance of NiFe/GCE and NiFe/GO/GCE were investigated.
As shown in Figure 4, NiFe/GCE has only negligible current and the redox peaks can be seen in the
inset figure. NiFe/GO/GCE shows much larger current than that of NiFe/GCE, indicating GO is
important in the composite electrode. The GO not only acts as the support to protect the NiFe alloy
from aggregation, but also plays an important role for electronic transmission.
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Figure 4. CVs of NiFe/GCE and NiFe/GO/GCE in 0.1 M NaOH solution in the presence of 1.0 mM
glucose at a scan rate of 10 mV/s. Inset: CV of NiFe/GCE.

Furthermore, the effect of the ratio between the Ni and Fe elements were investigated. As shown
in Figure 5, Ni1Fe4/GO/GCE shows the smallest current. With the increase of Ni amount,
NiFe/GO/GCE shows the biggest current. Conversely, a greater amount of Ni decreases the current
for Ni4Fe1/GO/GCE. So, NiFe/GO/GCE was used for further research.
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Figure 5. CVs of Ni1Fe4/GO/GCE, NiFe/GO/GCE, and Ni4Fe1/GO/GCE in 0.1 M NaOH solution in
the presence of 1.0 mM glucose at a scan rate of 10 mV/s.

In order to improve the electrocatalytic performance of NiFe/GO/GCE, the loading amount
of NiFe/GO was studied. Figure 6 shows the cyclic voltammogram (CV) curves of NiFe/GO/GCE
with different amounts of NiFe/GO loaded onto the GCE. It can be seen that the current increases
gradually from the loading amount of 30 to 75 µg NiFe/GO. When the loading amount exceeds 60 µg,
the current decreases. So, 60 µg is the optimum loading amount and is used in the later experiments.
This phenomenon can be explained by the change of catalytic sites. At first, increasing the loading
amount of the NiFe alloy increased the number of catalytic sites. However, an excessive loading
amount limited the mass transfer process, leading to the decrease of current [19].

Cyclic voltammetric measurements were performed at increased scan rates to better understand
the electrocatalytic properties of the NiFe/GO/GCE electrode for glucose oxidation. As demonstrated
in Figure 7a, cathodic peak currents of NiFe/GO/GCE increased with the increasing scan rate.
Figure 7b illustrates the relationship between the cathodic peak current and scan rate. It can be
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seen that the cathodic peak currents increase linearly with the used scan rates. This result manifested
that the rate-determining step was surface reaction control rather than diffusion control, which is
favorable for quantitative analysis.
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Figure 7. (a) Cyclic voltammograms of NiFe/GO/GCE at different scan rates from 20 to 90 mV/s in
0.1 M NaOH with 1.0 mM glucose. (b) Plot of cathode current vs the scan rate.

3.3. Amperometric Response Towards Glucose Sensing

Amperometric measurement was carried out to show the current response of the NiFe/GO/GCE
electrode towards the continuous addition of various concentrations of glucose, which was carried out
in vigorously stirred electrolyte. As shown in Figure 8a, the NiFe/GO/GCE electrode consistently
generates a fast current response upon the addition of glucose with concentration from 50 to 400 µM.
According to the amperometric current, the corresponding calibration curve was plotted in Figure 8b.
It can be seen that the NiFe/GO/GCE sensor showed a wide linear sensing range, from 0.05 to 5 mM
(R2 = 0.9994), and a sensitivity of 173 µA mM−1 cm−2. The limit of quantitation (LOQ) is 0.05 mM,
while the limit of detection (LOD) is 9 µM at a signal/noise ratio of 3. At low concentrations, as shown
in the inset in Figure 8b, the NiFe/GO/GCE sensor also showed a sensitivity of 148 µA mM−1 cm−2,
which was close to that at high concentrations. As shown in Table 1, the performance of our sensor
was compared with the previously reported sensors based on Ni materials. Our sensor is comparable
to the previously reported sensors. The high sensitivity can be ascribed to the high electrocatalytic
activity of the NiFe alloy and the excellent electronic transmission performance of GO.
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Table 1. Comparison of our sensor to other Ni-based sensors.

Materials Sensitivity
(µA mM−1 cm−2) Linear Range Reference

Pd−Ni/Si nanowires 190.7 0–20 mM [42]
Ni−Pt 66.9 0.1–30.1 mM [43]

Ni/Al LDH nanosheet 24.45 5 µM−10 mM [44]
PVP–GNs–NiNPs–CS 103.8 0.1 µM–0.5 mM [45]

PtNi–ERGO/GCE 20.4 Up to 35 mM [46]
HollowPt–Ni–graphene 30.3 0.5–20.0 mM [47]

3.4. Specificity and Reproducibility of the NiFe/GO/GCE Electrode

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) coexist in human blood, which influences
the electrochemical nonenzymatic glucose sensing. To investigate the effect of DA, AA, and UA on
glucose sensing, an amperometric response test was carried out. Figure 9 shows the amperometric
response current with the addition of DA, AA, UA, and glucose. It can be seen that the current
generated by DA, AA, and UA in normal physiological concentrations are only 4.1%, 1.9%, and 2.6%,
respectively, compared to that of glucose. This research demonstrates that the NiFe/GO/GCE electrode
possesses specificity for glucose sensing and thus can be used in real-world sensing applications.
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Figure 9. Amperometric response of the NiFe/GO/GCE electrode with interference by dopamine
(DA), ascorbic acid (AA), and uric acid (UA) at physiological concentrations.

To check the reproducibility of our manufacturing operation, we fabricated two electrodes in
the same conditions and tested their double-layer capacitance (Cdl). Cyclic voltammograms were
carried out in 0.1 M NaOH solution at scan rates from 10 to 100 mV s−1 (Figure 10a,b). Then, the
electrochemically active surface area was estimated by testing the capacitive current at non-Faraday
regions at different scan rates, from which the double-layer capacitance (Cdl) was determined by
plotting the 4J = (Ja − Jc) at 0.10 V versus Ag/AgCl against the scan rate, as shown in Figure 10c.
The linear slope is equivalent to double the Cdl, which can be used to represent the electrochemically
active surface area [48]. From Figure 10c, it can be seen that the two fabricated electrodes have almost
the same linear slope, revealing the same electrochemically active surface area of the two electrodes
fabricated in the same conditions. That is, our fabrication process is reliable.
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Figure 10. Cyclic voltammograms with different scan rates in the potential range of 0.0 V to 0.2 V vs.
Ag/AgCl, where no Faradaic processes occur for the first (a) and second fabrication (b) of the electrode.
Charging current density differences for the first and second fabrications (c) of the electrode are plotted
against scan rates.
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3.5. Practical Applications

For practical analysis, the NiFe/GO/GCE electrode was used to detect the glucose concentration
in human serum by amperometric measurement. Briefly, 20 µL of serum was injected into 15 mL of
0.1 M NaOH solution, and then the current response at +0.55 V on NiFe/GO/GCE was recorded.
The recovery value was confirmed by standard injection of glucose with a known concentration
to the above sample, then recording the current at +0.55 V. As listed in Table 2, the recovery
values of all three samples were close to 100%, indicating good practical application potential of
the NiFe/GO/GCE electrode.

Table 2. Amperometric detection of glucose in serum.

Sample Concentration
(mmol L−1) RSD (%) Added

(mmol L−1)
Found

(mmol L−1) Recovery (%)

1 9.3 3.5 1 10.1 98
2 5.8 3.1 1 6.7 99
3 7.1 3.4 1 8.0 99

4. Conclusions

In summary, a NiFe/GO/GCE electrochemical glucose sensor has been successfully fabricated.
The addition of the Fe element into Ni nanoparticles to form NiFe alloy nanoparticles improved the
electrochemical performance of the glucose sensor, which showed higher current than the Ni/GO
electrode. In addtion, the GO not only acts as a support to load the NiFe alloy from aggregation, but
also plays an important role for electronic transmission. The NiFe/GO/GCE showed best performance
when the ratio of Fe to Ni was 1:1. It was determined that 60 µg is the optimum loading amount in the
tested conditions. The NiFe/GO/GCE electrode exhibited excellent sensitivity (173 µA mM−1 cm−2)
and a wide detection linear range (up to 5 mM). In addition, the NiFe/GO/GCE electrode shows high
selectivity for glucose detection and can be applied to glucose detection in human serum. All results
demonstrate that the NiFe/GO/GCE electrode is a promising candidate in the development of cheap,
stable, and sensitive nonenzymatic glucose sensors.
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