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Abstract: This paper presents a new method for measuring the linewidth enhancement factor
(alpha factor) by the relaxation oscillation (RO) frequency of a laser with external optical feedback
(EOF). A measurement formula for alpha is derived which shows the alpha can be determined by only
using the RO frequencies and no need to know any other parameters related to the internal or external
parameters associated to the laser. Unlike the existing EOF based alpha measurement methods which
require an external target has a symmetric reciprocate movement. The proposed method only needs
to move the target to be in a few different positions along the light beam. Furthermore, this method
also suits for the case with alpha less than 1. Both simulation and experiment are performed to verify
the proposed method.

Keywords: linewidth enhancement factor; relaxation oscillation; external optical feedback;
self-mixing interferometry; laser sensors

1. Introduction

Semiconductor lasers (SL) due to their small size, large gain per unit length and wide gain
spectrum play a key role in the emerging field of optoelectronics, such as optical sensor, optical
communication and optical disc system, etc. Henry in 1982 found SLs exhibit a strong variation
of refractive index and gain when the injected carrier density is changed, he introduced the
linewidth enhancement factor (also called α factor) to describe this dependence and it is defined
as α = (∂nR/∂N)/(∂nI/∂N), where N, nR and nI are, respectively, the carrier density, the real and
imagery part of the refractive index [1]. The α factor is regarded as a fundamental descriptive parameter
of the SL. It characterizes the characteristics of SLs such as the spectral effects, the modulation response,
the injection locking and the response to the external optical feedback [2]. Therefore, an accurate value
of the α factor is vital for behaviour analysis of an SL and designing its application systems. Various
techniques have been explored for measuring the α factor. These techniques can be mainly classified [3]
as: (1) The direct linewidth measurement [4]; (2) The current modulation [5]; (3) The optical injection [6]
and (4) The optical feedback technique [7–10]. Among all these techniques, optical feedback technique
is an emerging and promising method reflecting a minimum part-count scheme, which provides an
ease of implementation and simplicity in system configuration [11–14].

The optical feedback technique is based on the self-mixing effect. It occurs when a small fraction
of the light emitted by an SL is back reflected or back scattered by a remote target and re-enters the
laser cavity [15,16]. In this case, the steady-state intensity of the lasing light is modulated due to a
varying external optical feedback phase. The modulated SL steady-state intensity is considered as a
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self-mixing signal which carries the information of the parameters related to the SL and its external
cavity [7,17]. A basic configuration of a self-mixing interferometry (SMI) is shown in Figure 1, which
consists of an SL, a photodiode (PD) packaged in the rear of the SL, a lens and external target. The front
facet of the SL and the target form the external cavity.
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Figure 1. Schematic configuration of an SMI.

Based on the SMI configuration, various methods have been presented for the measurement of
α factor. In 2004, Yu et al. [7] proposed a method to measure α factor by using the hysteresis of SMI
signals when the external target has a reciprocating movement. However, this method needs the SMI
system being in moderate feedback regime and SMI signals have zero-crossing points, i.e., the optical
feedback level (denoted by C) in the range of 1 < C < 3. The required condition on the feedback level
may not be met in some practical applications. Although an attenuator can be used to adjust the optical
feedback to the measurement range with 1 < C < 3, however this may lead to a larger measurement
error as α factor is influenced by optical feedback level [10]. Then several other SMI-based methods
were developed [8–10,18,19] for covering different C level, e.g., the methods in [8,9] are for 0 < C
< 1 and methods in [10,18] for 1 < C < 4.6. These methods for retrieving α are based on commonly
accepted SMI waveform model by further data processing applied on the waveform of a self-mixing
signal, e.g., phase unwrapping in [10,19], and data-to-model fitting algorithms in [8,9,18]. However,
the reported hysteresis and it resulted sawtooth-like SMI waveform is on the case with α > 1 [7,10,20].
For α < 1, the hysteresis in an SMI waveform does not follow the switching law reported in [7,20].
Thus, the existing algorithms developed for α cannot work. To fill the gap, it requires to develop a
method which does not rely on the waveform of an SMI signal.

Recently, sensing and measurement using dynamics of the laser with optical feedback have been
reported [21,22]. High sensing sensitivity by using the relaxation oscillation (RO) frequency has been
demonstrated [21]. This gives us an inspiration to measure α factor by laser dynamics.

In this work, a method based on the laser dynamics for measuring α factor is presented. Staring
from the well-known Lang–Kobayashi (L–K) equations, we propose to measure α factor using the RO
frequency of an SL with optical feedback. Then both simulations and experiments are conducted to
verify the feasibility of the proposed method. Additionally, the proposed method also provides a way
to measure small values of α.

2. Measurement Theory

The dynamics of an SL with optical feedback can be described by Lang and Kobayashi (L–K)
equations [23]. Three variables, electric field amplitude E(t), electric field phase φ(t), carrier density
N(t) and other parameters are associated with SL and its external cavity are shown in Equations (1)–(3)

dE(t)
dt

=
1
2

{
G[N(t), E(t)]− 1

τp

}
E(t) +

κ

τin
· E(t− τ) · cos[ω0τ + φ(t)− φ(t− τ)] (1)

dφ(t)
dt

=
1
2

α

{
G[N(t), E(t)]− 1

τp

}
− κ

τin
· E(t− τ)

E(t)
· sin[ω0τ + φ(t)− φ(t− τ)] (2)

dN(t)
dt

= J − N(t)
τs
− G[N(t), E(t)]E2(t) (3)
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where G[N(t), E(t)] = GN [N(t)− N0]
[
1− εΓE2(t)

]
is the modal gain per unit time, please note the

nonlinear gain term is ignored in this work. The physical meanings of the symbols appearing in
Equations (1)–(3) and the values of the parameters used in the simulations of this paper are shown in
Table 1 [20]. The laser intensity is calculated by I(t) = E2(t).

Table 1. Physical meaning of symbols in Equations (1)–(3).

Symbol Physical Meaning Value

κ Feedback strength

τ
External cavity round trip time,τ = 2L/c, where L

is external cavity length, c is speed of light

ω0 Angular frequency of solitary laser

α Line-width enhancement factor

J Injection current density

Jth Threshold injection current density

τin Internal cavity round-trip time 8.0× 10−12 s

τp Photon life time 2.0× 10−12 s

τs Carrier life time 2.0× 10−9 s

GN Modal gain coefficient 8.1× 10−13 m3s−1

N0 Carrier density at transparency 1.1× 1024 m−3

ε Nonlinear gain compression coefficient 2.5× 10−23 m3

Γ Confinement factor 0

The widely accepted mathematical model for describing an SMI waveform is derived from
the steady state solutions of the L-K equations by setting dE(t)/dt = 0, dφ(t)/dt = ωs − ω0 and
dN(t)/dt = 0. The model consists of the following [20]:

ωsτ = ω0τ − C sin(ωsτ + arctanα) (4)

Ns = N0 +
1

GNτp
− 2κ cos(ωsτ)

τinGN
(5)

E2
s =

(J − Ns/τs)

GN(Ns − N0)
(6)

Equation (4) is called the phase equation, where ωsτ and ω0τ are the light phase with and without
feedback respectively. The laser output power or intensity is E2

s , denoted by P = E2
s , which can be

expressed as: P = P0 + ∆P, where P0 is the laser output power without feedback, ∆P is the variation
part due to optical feedback. By substituting Equation (5) into Equation(6), the normalized variation of
the SL output power (denoted by ∆P/∆Pmax) also called the SMI signal can be described as

∆P/∆Pmax = cos(ωsτ) (7)

The relaxation oscillation frequency (denoted as fRO) of the SL can be obtained by linear stability
analysis for the system described by L–K equations. With the conditions of κτ/τin << 1, an expression
for fRO can be derived from L–K equations given as below [24]

fRO =
1

2π

√
J − 1
τsτp

(
1 + GN N0τp

)√√√√√
[
1− 2 κ

τin
τp cos(ωsτ)

][
1 + κ

τin
τ cos(ωsτ)− α κ

τin
τ sin(ωsτ)

]
1 + ( κ

τin
)2τ2 + 2 κ

τin
τ cos(ωsτ)

(8)



Sensors 2018, 18, 4004 4 of 10

where 1
2π

√
J−1
τsτp

(
1 + GN N0τp

)
is the RO frequency of a solitary SL (denoted by fRO−zero). ωs is the

laser angular frequency in the steady state [20]. It can be seen the RO frequency is determined by both
SL associated parameters GN , N0, τs, τp, α and its operation related parameters J, κ, τ. In following,
we derive the measurement formula of α.

First, we perform a simplification for Equation (8). Limiting our treatment to practical case
κ << 0.01 and neglecting second-order contribution, Equation (8) can be approximated as:

fRO
fRO−zero

=

√√√√1 + κ
τin

τ
√

1 + α2 cos(ωsτ + arctanα)

1 + 2 κ
τin

[
τp cos(ωsτ) + τ cos(ωsτ)

] (9)

In the SL with optical feedback, the external cavity length is usually L < 1 m, thus τp << τ,
Equation (9) can be further approximated as

fRO
fRO−zero

=

√
1− κ

τin
τ[cos(ωsτ) + α sin(ωsτ)] (10)

Let us consider the following two special cases. Note: fRO1 and fRO2 are the RO frequencies in
case 1 and case 2 respectively.

Case 1: with cos(ωsτ) = 0, sin(ωsτ) = 1, from Equation (10), we have

fRO1

fRO−zero
=

√
1− α

κτ

τin
(11)

Case 2: with cos(ωsτ) = 1, sin(ωsτ) = 0, we have

fRO2

fRO−zero
=

√
1− κτ

τin
(12)

Taking 1st order Taylor expansion for Equation (11), we can express the relative RO frequency
difference as below:

fRO1 − fRO−zero
fRO−zero

= −α
κL
cτin

(13)

Similarly, Equation (12) can be rewritten as:

fRO2 − fRO−zero
fRO−zero

= − κL
cτin

(14)

Keeping an SL under same optical feedback κ, Equations (13) and (14) describe a linear relationship
between the relative RO frequency difference and the external cavity length L respectively for the two
cases. Denoting the gradients of the two lines as S1 and S2, α can be calculated by their ratio shown
as below:

α =
S1

S2
(15)

3. Simulation Test

To verify the proposed method by simulation, we need to obtain fRO−zero and the RO frequencies
respectively at above two cases. All the RO related frequencies in Equation (13) and Equation (14) can
be gained from the transient oscillation waveform of laser intensity [25] through solving L–K equations.

The main procedure of the simulation test is summarized as below:

1. Starting from L = 15.0 cm, increase the cavity length and set it with 6 different locations.
2. At each location, apply a micro displacement ∆L onto the external cavity with 0.8 wavelength

shown on Figure 2a. Correspondingly, we can use the SMI model described in by Equations (4)
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and (7) to plot an SMI signal shown in Figure 2b, on which we can locate the accurate locations
for case 1 and case 2.

3. With the results obtained at step 2 for case 1 and case 2, generate the corresponding laser intensity
E(t)2 by numerically solving the L-K equations. E.g., the laser transient waveform for case 1
shown in Figure 3, from which, the RO frequency can be obtained.

4. Repeat steps 2 and 3 for the 6 different locations, we get 6 RO frequencies for each case,
denoted by fRO1i and fRO2i, i = 1,2, . . . 6. The relationship between the relative RO frequency
(( fROi − fRO−zero)/ fRO−zero) and the cavity length L for the two cases are depicted on Figure 4.
Note that the gradient can be determined by only 2 points. In order to reduce the measured error,
we prefer to use more than 2 points, e.g., 6 points to do line fitting to get the gradients at each
case. From the gradients of these two fitting lines, α can be calculated by using Equation (15).
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Figure 3. Transient waveform of the SL at Case 1 with L0 = 15.0 cm.

Figure 4 shows the simulation results when κ = 0.00003, J = 1.5 Jth with a preset α = 3. From
Figure 4 we get the gradients of the two lines as S1 = 0.0050 and S2 = 0.0017, then α = 2.94 which is
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close to the preset value of 3. Under the same operation condition, we change the preset value of α with
different values and measure it by using the above method. The results are shown in Table 2. Relative
error is used to measure the measurement performance, calculated by |α− α̂|/α, where α is the preset
true value and α̂ is calculated using the proposed method. It can be seen that the performance is
satisfactory. Then we change the injection current with J = 1.3 Jth, Table 3 shows the measured results
with the similar relative error as in Table 2. It can be concluded that the proposed method can work
for different α values including small α with α < 1. This method does not need to know any internal
or external parameters related to the SL, also does not need the external target having a symmetric
reciprocate movement. We achieved α measurement by using RO frequencies without relying on the
SMI waveform.
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Table 2. Simulation results with κ = 0.00003, J = 1.5 Jth.

α(τρυε) α̂(simulated) Error %

0.50 0.52 3.8%
1.00 1.01 0.6%
2.00 2.04 1.9%
3.00 2.94 2.0%
4.00 3.81 4.8%
5.00 4.75 5.0%

Table 3. Simulation results with κ = 0.00003, J = 1.3 Jth.

α(true) α̂(simulated) Error %

0.50 0.51 2.4%
1.00 1.04 4.2%
2.00 2.05 2.7%
3.00 3.08 2.7%
4.00 4.01 0.2%
5.00 4.82 3.7%

4. Experiments

To verify the proposed method, we further built an experimental system as depicted in Figure 5.
The SL in the experiment is a single mode laser diode (Sanyo, Osaka, Japan, d-001S) with a wavelength
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of 780 nm and maximum output power of 25 mW, which is driven and temperature-stabilized by
a SL controller (Thorlabs, Newton, NJ, USA, ITC4001) at an injection current of 35 mA and at the
temperature of 23 ± 0.01 ◦C. The light emitted by the SL is focused by a lens and then hits the
piezoelectric transducer (PZT) (Thorlabs, Newton, NJ, USA, PAS005). An attenuator is used to adjust
the optical feedback strength. The PZT with a displacement resolution of 20 nm, driven by a PZT
controller (Thorlabs, Newton, NJ, USA, MDT694), is used to continuously adjust the external optical
phase to satisfy the requirements of case 1 and case 2 described in Section 2. The PZT is assembled
on a linear translation stage to change the external cavity at different locations. The photodiode (PD)
packaged at the rear of the SL is connected to a detection circuit to record an SMI signal when varying
the PZT. A beam splitter (BS) with a splitting ratio of 50:50 is used to direct a part of light into the
fast external photodetector (Thorlabs, Newton, NJ, USA, PDA8GS) through a fiber port coupler. This
fast photodetector with a bandwidth of 9.5 GHz is suitable to capture the transient laser intensity.
The SMI signals and transient laser intensity are finally captured and displayed in a fast oscilloscope
(Tektronix, Beaverton, Oregon, USA, DSA 70804) with a maximum sampling rate of 25 GHz and analog
bandwidth of 8 GHz.
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piezoelectric transducer.

Following the simulation test procedure described in Section 3, we choose 6 different locations for
the PZT target, with the external cavity length varying from 15.0 cm to 15.5 cm. For each location, we
linearly adjust the external optical phase by linearly moving the PZT with ∆L in a few wavelengths
through the control voltage applied on the PZT (denoted by VPZT). Note that in our experiment, each
0.1 V of the VPZT corresponds to 27 nm travel length of the PZT. Figure 6a shows the control signal
applied on the PZT and Figure 6b is the corresponding SMI signal. After signal processing on the
raw experimental signals, we are able to determine the locations for case 1 and case 2. We then set
the SL working under quasi-continuous wave (QCW) mode. In this case, by using the method in [25],
the transient laser intensity can be captured by using the external fast photodetector and oscilloscope.
Figure 7 shows one of the experimental signals for the transient laser intensity. Still, we apply digital
signal processing on the raw experimental signal and make the signal clearer. Then, the period of the
transient laser intensity can be measured to get the required RO frequency.
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The experimental data and calculated result of α are presented in Table 4 where the laser injection
current is 35 mA and the temperature is 23 ± 0.01 ◦C. The RO frequency in case 1 is denoted by fRO1
and case 2 by fRO2. The relationship between fRO and L for the two cases are depicted in Figure 8 with
line fitting. Note, we use the relative RO frequencies difference as expressed in Equations (13) and
(14), where fRO−zero = 4.751 GHz. The gradients S1 and S2 of the two lines are respectively 0.139 for
case 1 and 0.053 for case 2. According to Equation (15), we obtain that α factor for the laser diode
used in our experiment is 2.62. We also measure α factor under different laser operation condition, i.e.,
injection current J = 30 mA, T = 25± 0.01 ◦C , in this case we get α = 2.75. Since currently, there is no a
commercial measurement device for α, thus we do not have a true value of α to justify our measured
value. However, we can verify our results using the method in [7]. For the same laser diode, we applied
the method presented in [7] with J = 35 mA, T = 23 ± 0.01 ◦C , L0 = 15 cm under moderate feedback
regime, it gives α = 2.89 which is close to the result obtained by the proposed method.

Table 4. Experimental results.

L (cm) 15.0 15.1 15.2 15.3 15.4 15.5
fRO1 (GHz) 4.631 4.645 4.659 4.669 4.687 4.701
fRO2 (GHz) 4.697 4.702 4.708 4.709 4.717 4.725
fRO−zero (GHz) 4.751

S1 = 0.139, S2 = 0.053, α = 2.62.
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5. Conclusions

The RO frequency of a laser can be modified by external optical feedback. Based on this fact,
we investigated the relation between the RO frequency and α factor and presented a new method for
measuring this factor. The proposed method is verified by simulations using L–K equations. It is also
confirmed with the experiments and compared the result obtained with other reported method [7].
This work has the advantage that it does not need to know any parameters related to internal or
external parameters associated to the laser and not rely on the SMI waveform. In addition, this method
can work for the case with α less than 1 and does not need the external target having a symmetric
reciprocate movement. Furthermore, as the RO can be observed in many types of lasers, the proposed
method is not limited to semiconductor lasers.
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